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1 Introduction

1.1 Motivation

Depth perception is an essential component in many robotics applications as it helps
the robot understand its surroundings and localize itself in its environment. Typi-
cal systems used in modern robotic platforms include stereo camera setups, time
of flight cameras such as LIDAR or structured light such as Kinect. In the case of
stereo camera setups, extracting depth from RGB images can be a challenging task
to perform in real time.

Underlying principles of depth perception. For humans, it’s the binocular vision
that helps retrieve the notion of depth by relying on computing disparities, i.e. the
difference in image location of an object seen by the left and right eye. In biological
systems, this is effortlessly done by the brain but it requires intensive processing in
artificial vision systems. Computer vision requires indeed to know which pixel on
the left view image corresponds to which pixel on the right view image. This essen-
tial step is called matching, also known as stereo correspondence. One way to do it,
it to naively perform a 2D search in the whole image. But more efficient methods
use the geometric constraints bounding the two camera views to reduce the search
to a 1D line (epipolar geometry). This process can however still be cumbersome as
it highly depends on the image resolution.

Motivation of this project Our goal in this semester project is to prove that we can
reduce the stereo matching to a trivial problem by leveraging both event based vi-
sion and active laser features. The former will be used to allow for fast and efficient
feature extraction while the latter will solve the matching problem.

1.2 Related Work

Stereo event-based reconstruction. [2] introduces a robotic head supporting two
Dynamic Vision Sensor capable of panning and tilting movement. Because dispar-
ities can only be computed from a dynamic environment, they demonstrate active
perception through mimicking the microsaccades eye movements. [4] performed 3D
reconstruction using two DVS with a spiking stereo neural network implemented on
a massively parallel neuromorphic processor in which they fed the events. his work
tries to mimic the visual cortex function that retrieves depth information. propose a
model that solves the stereo-correspondence problem with a spiking neural network
that can be directly implemented on a neuromorphic chip that is with massively par-
allel, compact, low-latency and low-power. [5] introduces a pipeline for semi-dense
3D reconstruction using a stereo event camera. To do so they propose a global en-
ergy minimization problem to estimate the inverse depth of an event in the reference



view from a number of stereo observations and use a depth fusion strategy to im-
prove the density of the resulting reconstruction.

Active features. [1] proposes a frequency detector for event based cameras using
blinking LEDs. We will implement it and use it in our pipeline to detect events
stemming from a known frequency pattern.

Previous work. Our project relies on an idea presented in [3] to combine event-based
vision with active laser features to reconstruct a depth map of a static scene. We
introduce a new implementation in C++ of the full pipeline, which has the advantage
to be simpler and more lightweight.

The following contributions stem from our work:

All-in-one Camera & Laser Calibration procedure. An easy and quick calibra-
tion procedure to extract intrinsics and extrinsics parameters for each cameras
and laser. We use a chessboard pattern widely used for calibrating conven-
tional cameras.

Laser controller. Visual interface with trackbars to precisely control the laser
point along with a tunable sweep mode (boundaries, speed, frequency). We
also added a pointing system that control the laser such as it points at a certain
pixel in the camera frames.

Filter. Before matching, we want to discard all events that may stem from
noise, platform & background movements as well as any events that doesn’t
come from the laser. For that purpose we implement a robust frequency fil-
ter [1] that only outputs events coming from a source blinking at a given fre-
quency.

Temporal Matcher. As we receive new filtered events from both cameras we
just assess their time consistency, i.e. we constraint a match up to a fixed
threshold in time distance.

Triangulation. We propose two methods to achieve per-pixel depth estima-
tion. The first relies on a standard stereo camera-camera triangulation. The
second makes the assumption that the laser can be modeled as a camera and
hack the same stereo triangulation pipeline.



2 Method

2.1 Hardware setup

2.1.1 DAVIS cameras

Event-Based Vision. Event-based cameras such as the DVS and DAVIS have the
main characteristic of having each of the pixel updated asynchronously with a bi-
nary encoding of the intensity. Such sensors implement a level-crossing sampling
rather than a uniform time sampling like in conventional cameras and reacts to log-
arithmic brightness changes (see 2.1a) and therefore offer a new constraint to solve
the correspondence problem: time. This has several advantages:

o Efficiency. Pixels only react to a certain threshold in contrast change leading to
much less redundant information and a highly sparse data stream (see 2.1b).
This allows for the use of more efficient algorithms.

e Speed. Traditional cameras have an update rate in the range of the millisec-
ond making it prone to motion blur effects (see 2.1c). Whereas event-based
sensors have an much higher temporal resolution, close to the microsecond
which prevents this problem to occur.

e High Bandwidth. Because of the asynchronicity of each pixel, event-based
cameras are also able to detect intensity changes in a wide range of luminos-
ity intensity - also known as High Dynamic Range (HDR) - without saturation
while traditional cameras would lead to underexposed and overexposed im-
age areas.
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(a) Principle of level-crossing sampling in DVS.
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(b) Sparse data stream. (c) High temporal resolution.

Figure 2.1: (a) shows how events are triggered for a single pixel given
the change of brightness in a logarithmic scale. (b) & (c) illustrates the
main advantages of a Dynamic Vision Sensor (DVS) over a standard
cameras.

Fixed stereo rig of DAVIS. In our setup, we use two DAVIS cameras as a stereo pair
on a fixed rig (see 2.2). The main difference between the DAVIS and the DVS is that
the former also outputs 240 by 180 gray-scale frames aligned with the event pixels
allowing for the use of standard stereo calibration pipelines.

Challenges. The main challenge in using event-based sensors in our project is to cor-
relate in time and space the events coming from both cameras. This requires keeping
the devices synchronized and coming up with a solution for the stereo matching.
The synchronization problem is solved by connecting the two DAVIS using a 3.5mm
plug patch cable allowing for the event time-stamps to be synchronized. To cope
with the matching problem, we introduce active laser features which reduce the tra-
ditional stereo correspondence search into a trivial problem.

2.1.2 Active laser features

| v |

Figure 2.2: Hardware setup. Stereo rig composed of a laser and two
DAVIS. The laser beam is reflected by a two-axis mirror-driven gal-
vanometer and blinks at a known frequency which trigger events in
the DVS at the same time.



The main idea behind active laser features is to create a known pattern of laser stim-
uli that is easily and instantaneously detectable in the DAVIS event streams.

e Active Feature Extraction. Traditional methods for stereo depth estimation
usually rely on keypoints detection at the early steps, which is difficult in
the case of textureless/uniform surfaces since it needs corners or blobs to be
present in the scene. Instead of passively extracting features from the scene,
our method relies on actively creating features by using a blinking laser in-
side the field of view of the cameras. This always lead to keypoints as long
as the surface is reflective enough to trigger events in the cameras. We use a
laser beam reflected by a two-axis mirror driven galvanometer enabling us to
control the laser dot and make it sweep the scene (see 2.2).

e Temporal matching. Using the laser to trigger localized events in both cam-
eras, the matching of keypoints becomes trivial. Traditional pipeline requires
computationally expensive matching methods to match keypoints from each
camera frame. Furthermore, the accuracy and robustness of such matching
technique heavily depends on the descriptor used to describe each keypoint.
In our case, we only need to consider the arrival time - called event times-
tamp - of each keypoint event as descriptor. To ensure time consistency and
increase robustness as the laser is moving, we match two filtered events if their
temporal distance is below a certain threshold before sending them to the tri-
angulation block in our pipeline.

2.2 Software pipeline
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Figure 2.3: High level view. Our pipeline consists in a series of func-
tional blocks that process the events coming from both DAVIS as in-
put and return a depth map as output. A visualization of 3 different
steps in the pipeline is representing (from left to right): the incoming
raw events, the output of the frequency detector and the depth map.

Laser Control. The laser dot can be pointed and moved to different spots in the
scene by controlling two mirrors - on which the laser beam is reflected - around their
rotation axis. We keep track of the laser state using a command space similar to the
(x-y) pixel space of a camera. We can also control the laser to sweep through the
scene while blinking.



Tunable parameters: Blinking laser frequency, vertical & horizontal step size and sleeping
time between each command update.

Frequency Detector. The goal of the frequency detector is to associate a frequency to
each of the incoming DAVIS polarity events and only output the ones that match the
laser frequency (see 2.4). Our implementation is based on [1] and consists in three
steps for each pixel:

o First layer - Polarity event. Keeps track of the last event that arrived at the
given pixel. Each time there is a new incoming event, its polarity is compared
with the previous one. If the polarity changed, a transition event is triggered
in the second layer. We then update the last event.

e Second layer - Transition event. We trigger a transition event and for each
two types of transitions (on-off or off-on), we keep track of the last transition
event

e Third layer - Transition interval. Finally we can compute the frequency asso-
ciated to each transition event by calculating the intervals between consecutive
transitions timestamps and this discard the original event or not.

Tunable parameters: Target frequency and frequency window tolerance.
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(a) Working principle of the frequency detector for a given pixel.

(b) (Left) - Input raw events. (Right) - Output events of the frequency detector.

Figure 2.4: Frequency detector block. (a) illustrates the working
principle of the frequency detector implemented from [1]. (b) shows
a typical input of incoming raw events from a DAVIS and the associ-
ated output where most of the noisy events have been discarded.

Events Temporal Matching. The matching block receives the events from the fre-
quency detector associated to each stereo view in two buffers and outputs event
pairs that satisfy a given temporal constraint. Such temporal constraint is necessary



as both buffers are filled at two different paces. This is mostly due to variations in
the internal characteristics of the sensors as well as their different viewpoints lead-
ing to more or less events being triggered - noisy or not. Two events are paired up
and sent to the triangulation block if their associated timestamps are closer in time
than a given threshold.

Tunable parameters: Buffer size (maximum event age) and temporal matching threshold.

Triangulation. Finally, for each events pair, we can compute the associated 3D point
using the calibration parameters of our setup. The 2D depth maps are obtained by
populating a 240 by 180 matrix using the left event coordinates and the depth value
of the 3D point. We can also visualize the full 3D point cloud after a bit of post-
processing using Python and MeshLab.

(a) 2D depth map output visualized in ~ (b) 3D point cloud output visualized offline
real-time with Meshlab

Figure 2.5: Triangulation block outputs. (a) shows a 2D depth map
sample for a scene composed of 3 planar objects at different distance.
(b) represents a 3D point cloud of a tilted plane after recording the
triangulated points.

Laser & Camera Calibration. Before running the pipeline, we need to calibrate the
setup to estimate the intrinsic and extrinsic parameters of each camera and the laser.
This procedure needs to be done carefully as it will greatly influence the quality of
the triangulation block output. We use a conventional stereo calibration pipeline
from the OpenCV library using a chessboard pattern of 8 by 5 squares with a length
size of 2.86cm. The calibration of the DAVIS cameras relies on detecting the chess-
board corners using the frame information under different view points. This leads
to intrinsics parameters such as the calibration matrix and the distorsion parame-
ters as well as the extrinsics parameters, i.e. the rigid transformation between the
two cameras. A similar procedure is used at to calibrate the laser as we make the
assumption that we can fit a camera model. Instead of knowing where the event is
triggered in the second camera, we know what command (x,y) we used to trigger
the event in the first camera. Using this image space / command space analogy we
can retrieve the extrinsics and the intrinsics of the laser using a standard calibra-
tion pipeline. We detect the blinking laser dot using the events stream outputted
by the frequency detector and update the laser command to make the dot converge
towards each detected chessboard corner.



3 Experimental evaluation

This chapter aims at evaluating the main components of our system. We will first
focus on how our frequency detector behaves when discarding events and then eval-
uate the depth reconstruction w.r.t several parameters such as the laser speed, the
scene distance and the temporal matching constraint.

3.1 Frequency detector

We analyzed the output of the frequency detector for a laser blinking at about 520Hz
in two states: static and sweeping. This frequency was chosen as it triggered a higher
number of events in both DAVIS and was far away from the noisy frequency range
- 0 to about 100Hz - due to intrinsic electronic noise and background movements.
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Figure 3.1: Frequency analysis. Histograms of detected frequen-
cies in a static mode (only blinking) and sweeping mode (blinking
& sweeping the scene) for a laser blinking at 520Hz.

Static mode. There is a significant spike at the corresponding frequency of 520Hz
as well as smaller spikes at the harmonic frequencies. We make the conjecture that
these events correspond to the pixels triggered at the boundary of the laser blob that
is prone to small fluctuations. Between two consecutive triggers, the elapsed time
should be a multiple of the laser period which is what is observed.

Sweeping mode. The vast majority of the events are located around a spike at the
expected frequency (yet more spread and smaller then in the static mode). We can
still observe the harmonics like in the static case. The rest of the events - in the 0-
100 frequency range - are probably triggered by the laser blob movement and noisy
events.

In our pipeline the output of the frequency detector are the events corresponding
the one close to the spike of the laser frequency.



3.2 Depth reconstruction

3.2.1 Ground truth and evaluation method

To assess both qualitatively and quantitatively the reconstruction quality of our sys-
tem, we recorded the depth ground truth of a same scene under different conditions
using an ASUS Xtion Pro. By aligning the ground truth point cloud with our trian-
gulated point cloud, we can assess qualitatively our results (see 3.2).

(a) Ground truth point (b) Front view of (c) Top view of superposed
cloud. superposed point clouds. point clouds.

Figure 3.2: Point clouds comparison. (a) shows the ground truth
point cloud collected by a ASUS Xtion. (b) & (c) displays the superpo-
sition of the ground truth with the system’s triangulated point cloud.

Before drawing any conclusions however, we need to extract meaningful statistics
from this 3D point cloud comparison. A first method would be to use the ICP (It-
erative Closest Point) procedure to align both point clouds and compute a point-to-
point mean distance between each point cloud. Another method would be to man-
ually align both point clouds, fit planes on each planar section of the ground truth
scene and then compute a point-to-plane mean distance between for each point clus-
ter of our result point cloud corresponding to a planar section of the ground truth.
We will go for the second method as it straightforward and still gives meaningful
statistics. The plane fitting method rely on a RANSAC procedure to increase the
robustness towards noise (see 3.3). We then considered the absolute error distance
between the fitted plane and each 3D point of our setup.

3000 4

2500 4
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# points
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1000

0 1 2 3 4 5
Absolute distance error (cm)

(a) 3D point cloud and its fitted plane  (b) Histogram of absolute distance error

Figure 3.3: RANSAC plane fitting & error metrics. (a) illustrates
the plane fitting procedure using RANSAC over a 3D point cloud tri-
angulated by our system. (b) represents the histogram of absolute
distance error computed between each 3D point and the fitted plane.
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3.2.2 Influence of the scene distance

The following experiment uses a tilted plane - ranging from 30cm to 60cm w.r.t
the setup - to test the influence of the distance on the reconstruction quality. Af-
ter recording the reconstructed 3D point cloud and the ground truth, we can use the
evaluation method introduced in 3.2.1.

Fixed parameters:
e Temporal matching constraint: 0.1ms

e Laser speed range: 5 scanned lines per second
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(a) Histogram of distance for the (b) Evolution of the error w.r.t the
reconstructed 3D point cloud distance

Figure 3.4: Influence of the distance using a tilted plane. (a) displays
the distribution of the reconstructed 3D points w.r.t their distance to
the camera. (b) represents the absolute distance error (smoothed with
a box filter) between each 3D point and the RANSAC fitted plane w.r.t
the distance of the scene to the camera.

From 3.4a we can conclude that the sparsity of the reconstructed point cloud is
highly correlated to the distance: the further the scene, the sparser the reconstruc-
tion. In 3.4b we can also notice a degradation in the reconstruction accuracy as
the distance to the setup increases, especially above 40cm. The saturation observed
above 50cm is likely due to the small number of triangulated points and might not
be representative of the true reconstruction quality, as we expect the error to increase
exponentially.

3.2.3 Influence of the laser speed

To estimate the influence of the laser speed on the reconstruction quality, we recorded
the output of the triangulation block - i.e. the triangulated 3D point cloud - using a
planar scene. In our experiments, we define the laser speed by the number of lines
scanned in the scene per second and make it vary in a range from 1 to 13 scanned
lines per second .

Fixed parameters:
e Distance to the scene: 30cm

e Temporal matching constraint: 0.1ms
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Exp regression: y = 276441%*exp(-0.73*x) + 3988 2nd order poly: y = 0.02x~2 + -0.26x + 2.24
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Figure 3.5: Influence of the speed for a planar scene. (a) displays the
evolution of the sparsity of the reconstructed 3D point cloud w.r.t the
laser speed. (b) represents the evolution of the median absolute dis-
tance error between the reconstructed 3D point cloud and the ground
truth fitted plane with the laser speed.

As expected, 3.5a clearly shows an increase in the point cloud sparsity as we make
the laser sweep faster. However 3.5b reveals an interesting phenomenon, that is,
the reconstruction accuracy is worse a low speed and reaches an optima around 7
scanned lines per second before deteriorating. While the right part of the plot makes
sense, the left part - slow laser speed - seems a bit counter intuitive. We don’t have
any conjecture about this phenomenon.

3.2.4 Influence of the temporal matching constraint

When matching the extracted features of both event streams, the temporal constraint
also plays an important role in the reconstruction accuracy. To assess it, we vary the
temporal matching constraint in a range from 0.1ms to 10ms with the same scene as
the last experiment. If the timestamp distance of two events (one from each stereo
pair) is below a given threshold, we match them, otherwise we discard the oldest
event.

Fixed parameters:
e Distance to the scene: 30cm
e Laser speed range: 5 scanned per second

As we relax the temporal matching constraint, we observe an denser 3D point cloud
but also a clear loss in reconstruction accuracy (see 3.6).
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Figure 3.6: Influence of the temporal matching constraint for a pla-
nar scene. (a) displays the evolution of the sparsity of the recon-
structed 3D point cloud w.r.t matching constraint. (b) represents the
evolution of the median absolute distance error between the recon-
structed 3D point cloud and the ground truth fitted plane w.r.t the
matching constraint.

3.2.5 Laser-DAVIS stereo pair

In the following experiment, we make the assumption that a camera model can
be applied to the laser (see 2.2). As we know the laser command, we can use the
same stereo triangulation pipeline as before. However we don’t apply any temporal
matching constraint as the commands aren’t given any precise timestamps. Despite
a loss in reconstruction accuracy and some offset between the two pairs, we believe
this method may become useful when incorporated into a data fusion pipeline.

(a) (Left Camera - Laser)  (b) (Right Camera - Laser) (c) (Left Camera - Laser)
stereo pair depthmap stereo pair depthmap. stereo pair point cloud.

Figure 3.7: Laser-DAVIS stereo pair reconstruction. (a) & (b) dis-
play the superposition of the triangulated depth map and the frame
for each (Laser-DAVIS) stereo pair. (c) shows the triangulated point
cloud corresponding to (a).

3.2.6 Other considerations

Several other parameters and choice of setting could have been considered for this
evaluation such as the laser frequency, the ambient lightning and the choice between
a DVS or a DAVIS.
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4 Conclusion

Figure 4.1: GUL

We introduced in this semester project a new way of estimating depth in stereo us-
ing event-based sensors and laser active features. The main contributions consists
in establishing a full pipeline in C++ from the calibration of the camera/laser, the
frequency detection, event matching and triangulation as well as OpenCV user in-
terface to visualize each step of the pipeline (see 4.1).

Several tracks for improvements of this project include:

e Range increase: Higher laser output power to collect more events in a wider
range.

e Laser synchronization: Adding timestamps to the laser commands would al-
low proper measurements from the (laser-DAVIS) stereo pair triangulation.

e Depth map fusion: Optimizing a single depth map using the triangulated
points from different stereo pairs and inferring depth at missing pixel values.

e Make it fly: Allow the platform to move and reconstruct the scene in 3D while
having it on a drone. This could be beneficial for close range drone inspection.

I want to thank V4RL and INI for offering this project opportunity.
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