
ETH Zürich Universität Zürich

Institute of Neuroinformatics

An embedded neuromorphic computing
platform for cognitive agents

Author:

Michel Frising
Supervisors:

Prof. Dr. Giacomo Indiveri
Dr. Yulia Sandamirskaya

Moritz Milde

June 9, 2016

1

Abstract

A autonomous mobile platform controlled by spiking neurons on the Reconfigurable On-
line Learning Spiking (ROLLS) embedded neuromorphic processor is demonstrated. The
neurons are stimulated with image events streamed from an embedded Dynamic Vision
Sensor (eDVS) camera. The Parallella, a credit-card sized computer, serves as a host for
the three devices.

Contents

1 Introduction 4

2 Interfaces and features 5
2.1 Parallella . 5
2.2 embedded Dynamic Vision Sensor (eDVS) . 6

2.2.1 Interface . 8
2.3 Keyboard Input . 11

2.3.1 Interface . 12
2.4 OmniBot and PushBot . 12

2.4.1 Interface . 13
2.5 Reconfigurable On-line Learning Spiking (ROLLS) Neuromorphic Processor . . . 16
2.6 Short-Term Plasticity Synaptic Array . 17

2.6.1 Interface . 17

3 Applications 20
3.1 Command line tool for ground truth data acquisition 20
3.2 LED tracker . 21

4 Conclusion and Outlook 26
4.1 Future work . 26

A LED Tracker Tutorial 30
A.1 Checklist for experiments with the ROLLS on the Parallella 30

B Started work on an unfinished GUI using Qt 32

2

3

1 Introduction

Humans and animals can e↵ortlessly interact with dynamic environments - a feat that man-made
robotic systems notoriously fail at. Perception is one of the bottlenecks limiting the realization
of intelligent autonomous robots capable of navigating in unconstrained environments. Conven-
tional image processing algorithms are known to be computationally expensive limiting their
application in real-time scenarios[1]. They are also often specific for a given task, limiting their
flexibility. Moreover state-of-the art image processing algorithms process frames containing a
snapshot of the whole field of vision at a given moment[1]. These frames however contain a lot of
redundant information within a series of consecutive frames and even within individual frames,
stressing the limited memory of embedded systems unnecessarily[1]. Hardware implementations
of models of biological neuronal architectures are a promising path to address these problems.
Their output are often asynchronously timed spike trains (see for example the Dynamic Vision
Sensor (DVS)[2] or the Reconfigurable On-line Learning Spiking (ROLLS) neuromorphic chip[3]).
Neuromorphic circuits implemented with transistors operating in subthreshold also have the ad-
vantage of low power consumption, e.g. the Dynamic Vision Sensor (DVS)[2]. Moreover artificial
neural networks are intrinsically capable of parallel processing like their biological counterparts.
With the rise of the Internet Of Things, electronic devices become more and more interconnected
and smarter such that low-power, fast and robust embedded computing platforms become ever
more important.

The goal of this project was to demonstrate the feasibility of a neuromorphic computing
platform processing asynchronous input events, e.g. input stream of an embedded Dynamic
Vision Sensor (eDVS) camera, for controlling a mobile robotic platform. The interfaces to the
di↵erent components and their interactions are defined with custom developed C++ code, as
explained further in section 2 on the following page. Two applications were developed with the
help of this interfaces, a tool for ground truth acquisition and a demonstration of the robotic
platform being controlled solely by the spiking output of the Reconfigurable On-line Learning
Spiking (ROLLS) neuromorphic chip.

4

2 Interfaces and features

The setup included a host computer, the eDVS camera, the OmniRob and the Reconfigurable
On-line Learning Spiking (ROLLS) neuromorphic processor interfaced by a host computer, either
a Parallella board or a PC, and an optional keyboard for input. Figure 1 defines the interactions
between the di↵erent components of the setup. The di↵erent components and their interfaces
will be explained in detail in the next sections.

Parallella

ROLLS

OmniBoteDVS

keyboard

event
acquisition

keystrokes
excitation

spiking
neurons

drive
instructions

robot
state

robot
movement

Figure 1. Overview of the di↵erent components of the experimental setup: a eDVS camera streams
events to the Parallella minicomputer. The Parallella can stimulates neuron populations on the
ROLLS and reads the addresses of the spiking neurons out and drives the mobile robotic platform,
the OmniRob, accordingly. Alternatively the OmniBot can also be controlled with keystrokes with no
feedback from the neuromorphic chip.

Two applications were realized in the scope of this work, first an application to acquire
ground truth data for training of neural networks by controlling the robot movement by defined
controls. For this application it is possible to drive the OmniRob with keystrokes from a host
computer instead of the Parallella while simultaneously logging events from the eDVS and the
drive state of the robot to gather ground truth data for learning experiments (see also section 3.1
on page 20). The second application shows the feasibility of the embedded loop in figure 1 and
demonstrates an embedded neuromorphic computing platform. The abilities of this platform
were demonstrated by implementing a simple application that was able to detect a blinking LED
and orient the robot such that the LED is always in the center of the camera pane (see also
section 3.2 on page 21).

2.1 Parallella

The Parallella from Adapteva [4] is a powerful credit-card sized mini-computer running a full
fledged Linux operating system and serves as a host for all the applications showed in figure 1.
The low power consumption (⇡5W[4]) and the high performance (tech specs from [4]) of the
board make it an ideal platform for the intended setup:

• Zynq-Z7010 or Z7020 Dual-core ARM A9 CPU
• 16-core Epiphany Coprocessor
• 1GB RAM
• MicroSD Card Slot
• USB 2.0
• Up to 48 GPIO signal
• Gigabit Ethernet

5

• HDMI port
• Linux Operating System
• 54mm x 87mm form factor

As the Parallella runs a Linux operating system and has an Ethernet port and can also be fitted
with a WiFi dongle, the board can be conveniently remote controlled with ssh:

log in as normal user
ssh -X parallella@ <IP Address >
or to log in as super -user
ssh -X root@ <IP Address >
in both cases
Password: parallella

Figure 2. Photo of the low-power and small size eDVS camera from inilabs. Image from [5]

2.2 embedded Dynamic Vision Sensor (eDVS)

The eDVs is a spike-based silicon retina Dynamic Vision Sensor (DVS)[2, 5] that operates on
a principle similar to the human retina resulting in a an asynchronous and sparse representa-
tion of visual stimulus discarding redundant image information. The pixels of the camera are
continuous-time logarithmic photosensors that are capable of deciding individually when to dig-
itize the analog vision signal[2]. The pixels have a high dynamic range (120 dB) as the pixels
only react to logarithmic changes of the scene illumination and the output bandwidth is imposed
by the dynamic parts of the scene[2]. One pixel typically has an area of 40x40µ2 with 9.4%
fill-factor[2]. Figures 3 and 4 compare the DVS camera to a conventional camera. The digital
signals emitted in form of address-events (AE) encode the relative change in reflectance with
micro-second resolution timestamps providing fast asynchronous visual feedback[6]. One bit of
the emitted AE also includes if the change in log intensity was positive or negative, also referred
to as polarity. The dynamic vision sensor represents an attractive platform for low-latency dy-
namic vision in situations of uncontrolled illuminations and for embedded applications due to
low data streams and processing requirements compared to frame-based systems with the same
temporal resolution.[2]

6

Figure 3. Demonstration of the dynamic range of the DVS. In the images on the right taken with
a conventional camera half of the represented Edmund density chart is hidden by an artificially cast
shadow, whereas the DVS camera has no problem with the widely varying scene illumination. From [7]

Figure 4. Demonstration of the dynamic capabilities of the DVS. On the left a still from a moving
man and on the right the corresponding DVS image obtained by integrating the recorded events over
a duration of 40ms. One can nicely see, that only the moving man triggers events, whereas the static
background despite being rich in information, does not trigger additional events. From [7]

7

2.2.1 Interface

eDVShost PC

acquire
events

EBV EDVS4337SerialUSB.h
EDVSEventSynchronizer.h
myLogListenerEDVS.h

Figure 5. Header files defining the interfaces to the eDVS and the eDVS listeners

The used eDVS camera can be conveniently connected with an USB cable and interfaced as a
serial device with the flags defined in listing 2.2.1, specified here [8], thanks to the embedded
FTDI chip. The original code for this work was provided by Mr Julien Martel.

Listing 1. Configuration of the serial port according to [8]. The same configuration is used for the
OmniBot

#include <linux/serial.h>
#include <termio.h>

int m_ttyFd = open(port_name , O_RDWR) /* Serial Port is opened
as read -write on port port_name */

/*
The serial port is configured as non canonical mode , ie , raw

mode.
*/
struct termios tty;
// get a copy of the current parameters
tcgetattr(m_ttyFd , &tty);
// set input mode flags
tty.c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP | INLCR |

IGNCR | ICRNL | IXON);
// set output mode flags
tty.c_oflag &= ~OPOST;
// set local mode flags
tty.c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG | IEXTEN);
// set control mode flags
tty.c_cflag &= ~(CSIZE | PARENB); /* No parity check */
tty.c_cflag |= CS8; /* 8 bits */
tty.c_cflag |= CLOCAL | CREAD; /* CLOCAL: ignore CD (carrier

Detect) signal; CREAD: enable receiver */
tty.c_cflag |= CRTSCTS; /* use hardware flow control */
tty.c_cc[VMIN] = 0; /* minum number of charcters read before

read returns */
tty.c_cc[VTIME] = 10; /* 1 second timeout */

The asynchronous nature of the AE-protocol is convenient for low-latency and low-redundancy
data streaming, but poses challenges for traditional data acquisition. Typically sensors such as
accelerometer or gyroscopes are read out at a fixed sampling frequency. We made heavy use of
the Observer pattern[9] to handle the event-based nature of the DVS data transmission e�ciently.
The Unified Modeling Language (UML) class diagram in figure 6 on the following page explains
the basic paradigm: the object Subject has a list of subscribed Observer that are notified
with notifyObservers() upon change of the state of Subject. Observer can be added and
removed to the list with registerObserver(observer) and unregisterObserver(observer).
The Observer object is a abstract base class with the purely virtual member notify(). Observer
has to be subclassed and notify() has to be reimplemented to extend the observer with the
desired behavior.

8

Figure 6. UML class diagram of the Observer Pattern. Image from [10]

Applying the observer pattern to the eDVS camera interface, results in the class structure
in figure 8 on the next page. The denomination listener is preferred here over observer. The
Subject, in this case the EDVS4335SerialUSB object has a dedicated thread that reads bytes
from the serial port. The input is then parsed using the eDVS formats defined in [5]. Each
time the chunk of bytes in the bu↵er is completely parsed, the subscribed listeners are notified
with warnEvent. The eDVS also features an Inertial Measurement Unit (IMU) that is currently
not used, but all the necessary interfaces are provided. Currently three listeners are provided,
myLogListenerEDVS, EDVSEventSynchronizer and DumbEDVS4337Listener. The first one logs
the eDVS events as comma-separated text (format: x, y, timestamp, polarity). The second
one can perform a calibration to synchronize the timestamps provided by the eDVS with the
clock of the computer (see also figure 7). The last listener simply displays all the received events
in a window on the host computer screen like the black window on the right of figure 7.

Figure 7. Image illustrating the synchronization process. When the synchronization process starts, a
flashing window appears on the window. The DVS camera is oriented such that the flashing window
is nicely visible in the event window (black window on the right). During the calibration the o↵set
between the appearance of the programmed flashing window and the recording registered on the host
computer is determined (typically 50 µs)

A typical usage example can be found in listing 2.2.1, showing how the interface to a eDVS
camera connected over USB can be started and a listener can be registered and activated. More
exhaustive information can be retrieved from the accompanying documentation [11] in the gitlab
repository (https://code.ini.uzh.ch/mmilde/omnibot-lib).

9

https://code.ini.uzh.ch/mmilde/omnibot-lib

Figure 8. UML class diagram of the Observer Pattern applied on the eDVS interface.

10

Listing 2. Usage example for the eDVS interface with an event logger

#include "myLogListenerEDVS.h"
#include "EBV_EDVS4337SerialUSB.h"

// open a port to the eDVS camera
int dvsFileDescriptor = getUSBFileDescriptor(port_name_dvs ,

baudrate_dvs , "eDVS");
// initialize a eDVS device object with the valid file

descriptor
// the Constructor takes care of setting up the serial port and

starting the eDVS services
EDVS4337SerialUSB EDVSdevice(dvsFileDescriptor);
// Initialize an eDVS listener that logs to a file
myLogListenerEDVS EDVSlogger;
// register the listener with the openend camera
EDVSdevice.registerListener (& EDVSlogger);
//start listening
EDVSdevice.listen ();
//stop EDVS
EDVSdevice.stopListening ();
// and deregister the Listener
EDVSdevice.deregisterListener(&EDVSlogger);

2.3 Keyboard Input

The current version of the interface also allows to drive the robot with a keyboard connected
to the host computer. At the moment only the keys in figure 9 are mapped to corresponding
drive instructions, but the list can be extended easily if needed. Figure 9 also shows the intended
robot movement when pressing the corresponding key. Releasing the key results in removing
the according component from the movement, as rotational and translational movement can
be superimposed independently for the OmniBot. The curved trajectories resulting from key
combinations are not implemented yet.

W

S

DA

W+DW+A

S+A S+D

EQ *

Figure 9. Mapped keystrokes and the resulting robot trajectories. The OmniBot is represented by
the circle with the arrow, indicating the preferred direction (e.g. camera lens). The curved trajectories
resulting from key combinations are not implemented yet.

11

2.3.1 Interface

KeyboardParallella

keystrokes
Mapping to

drive commands
keyboard.h

myKeyboardListener.h
Robot.h

Figure 10. Header files defining the interfaces to the keyboard and the keyboard listeners

Detected key presses also arrive asynchronously and need to be processed as fast as possible,
suggesting the use of the observer pattern as depicted in 11.

Figure 11. UML class diagram of the Observer Pattern applied on the keyboard interface.

The concrete implementation myKeyboardListener also has a pointer to the instance of
the currently used robot, for handling the keystrokes. As shown in figure 12, pressed keys are
converted to a bit set in the variable int keysPressed. Releasing the key reverts the bit at the
corresponding position back to 0. Non-supported keys are simply ignored.

int keysPressed
... 0 0 1 0 0 1

Q E D A S W

Figure 12. Example of how the registered key presses are stored in the variable keysPressed. Higher
bits that are currently unused are not shown. When for example the keys D and W are pressed, the
corresponding bits in the variable are set to 1 while all the other bits remain 0.

2.4 OmniBot and PushBot

In the most recent version of the omnibot-lib two robots are supported: the OmniBot and the
PushBot.

The OmniBot on the left in figure 13 on the following page is a mobile robotic platform
with an omni-directional drive provided by NST at TU Munich. The robot has a diameter
of approximately 30 cm and a large battery pack that allows it to operate up to 10 h without
recharging (as specified by Mr Jörg Conradt in a conversation with Mr Moritz Milde). The
planar top of the robot makes it an ideal substrate to mount all the modules from figure 1 on
page 5 securely and make the experiment mobile. The OmniBot is fitted with a WiFi module,
such that it can be accessed over telnet:

telnet omnibot1 56000
the omnirob1 is registered in the INI Network
type ’??’ to get a list of the currently supported features

12

We chose however to connect the robot over a serial port to the Parallella to make connection
more robust and the small size, weight and power consumption of the Parallella allow it to be
mounted on the robot as well.

The second supported robot is the PushBot, also provided by NST. The PushBot has a similar
interface as the OmniRob and can also be easily accessed with the build-in WiFi module[8] over
a socket application programming interface (API).

Figure 13. The two robotic platforms currently supported by omnibot-lib: on the left the PushBot
and on the right the OmniBot (see also [12, 5]) for more information

2.4.1 Interface

RobotHost PC

robot control
and connectivity
robot listener

Robot.h
OmniRobot.h
PushBot.h

RobotListener.h
USBConnector.h
TCPConnector.h

Figure 14. Header files defining the interfaces to the robots and the robot listeners

The Robot was controlled by sending the necessary instructions over the serial connection from
the Parallella. The most important instructions are listed in table 1 on the following page:

Similarly to the DVS camera, di↵erent properties of the OmniBot are monitored asyn-
chronously by the RobotListener object, such as the actual servo states, if and which bumper
has been hit, making use again of the observer pattern as can be seen in figure 15 on page 15.
These states are logged as formatted text or processed immediately, such as the bumper states,
that trigger an emergency stop of the robot until the next drive command is send. At the
moment the Robot is polled in an interval of 1 s, future updates of the OmniBot firmware will
feature a broadcast function. However, logging the robot parameters is currently disabled as it
is favored to directly log the mapped keyboard inputs (see also figure 9 on page 11 for a list of
the mappings) instead of the polled robot parameters, amounting to the same result. Linux has

13

Table 1. Overview of the most important commands for the OmniBot. A complete list can be
retrieved by sending on a console ’??’ to the OmniBot.

Instruction Explanation

!P<id><signal> Set the speed of servo id to signal. The signal can
assume values from -1024 to 1024 in integer steps,
where -1024, 0 and 1024 correspond to the servos
standing still. Maximum speed can be obtained with
a signal around 900. One unit of the signal corre-
sponds roughly to 0.111 rpm. With a wheel radius
of 2.54 cm this corresponds to a speed of 0.28 cm s�1

per unit signal resulting in a top speed of 2.8m s�1.
!PA<signal> sets all the servos to the same signal. Useful for

turning on place.
!T<enable><id><signal> Sets the torque of servo id to signal. enable is a flag

assuming the values 1 and 0 to enable and disable the
servo respectively.

?SA Query the speed of every servo. Returns a string of
the form -SA <servo 0> <servo 1> <servo 2>

?B Query the battery voltage. Returns a string of the
form -B <voltage>

?Ib Query the value of the bumper. Returns a string
of the form -Ib: <bumper>. bumper is an integer
where the bits are 1 if the bumper is hit and 0 else.
To determine which bumper has been hit a bitmask
of the form bumper & 0b10 (e.g, bumper 2) can be
applied. The bit-shift of each bumper is indicated on
the OmniBot in blue marker pen.

14

abstract interfaces to deal with physical devices, so called ”file descriptors”, such that the only
time that the physical connection, i.e. serial connection or wireless, has to be taken into account
is when opening the file descriptor.

Figure 15. UML class diagram of the Observer Pattern applied on the robot interface.

Additionally a custom drive function was developed according to the ideas from [13] to provide
high-level commands to steer the robot. The three omni-directional wheels of the OmniBot allow
it to move in every direction immediately by turning on the place, unlike a conventional car for
example, making it holonomic. The idea behind motor control of this robot is projecting the
two-dimensional vector giving the speed and direction of the wanted movement on each wheel
direction, as depicted in figure 16.

Figure 16. Schematic of the circular chassis of the OmniBot. The wheels are arranged tangentially
on the periphery of the chassis, with a spacing of 120� between them. The solid arrows designate
the wheel directions that can be actively controlled by the servos. The dotted arrows designate the
directions that the wheels can passively turn. A vector (AB) denoting the trajectory of the robot
from A to B is decomposed in the active directions of the wheel space. As the robot has 6 degrees of
freedom and the trajectory only gives 2 constraints (as the robot is centrally symmetric), more than
one decomposition of (AB) is possible. Image adapted from [14]

15

The drive function has the following signature:

void drive(double angular_vel , bool CCW , double linear_vel ,
double direction)

angular vel and linear vel are the desired angular and linear velocity respectively and are
normalized with respect to their maximum values and have an allowed range of 0 to 100. The
speed coordinates are given in polar coordinates, hence linear vel and direction (in degrees)
must be provided instead of v

x

and v
y

. The flag CCW indicates if a angular movement should
be counterclockwise (CCW=true) or clockwise (CCW=false). Listing 3 gives a simple example of
typical usage of the OmniBot interface. More details about the implementation can be found in
the accompanying documentation on gitlab.

Listing 3. Robot Interface usage example

#include "OmniRobot.h"
#include "PushBot.h"
#include "USBConnector.h"
#include "TCPConnector.h"
#include "myLogListenerRobot.h"

int robotFileDescriptor = getUSBFileDescriptor(port_name_robot ,
baudrate_robot , "OmniRob");

OmniRobot omniRobot(robotFileDescriptor);
omniRobot.drive (30,true ,0,0); // drive in a circle
omniRobot.drive(0,true ,30,0); // drive straight ahead

// register a logging listener to the robot
myLogListenerRobot myRobotLogger;
omniRobot.registerListener(&myRobotLogger);
omniRobot.listen ();
/* do some stuff here */
// stop robot
omniRobot.stopListening ();
//and deregister Listener
omniRobot.deregisterListener(&myRobotLogger);

2.5 Reconfigurable On-line Learning Spiking (ROLLS) Neuromorphic
Processor

The Reconfigurable On-line Learning Spiking (ROLLS) neuromorphic processor developed at INI
is a highly integrated (on-chip area = 51.4mm) and low-power (4mW for typical experiments)
VLSI device. Di↵erent types of synapses and neurons on the device emulate the biologically
plausible behavior of real neurons and synapses. 256 neurons are shared by 256⇥256 learning
synapses for long-term plasticity and 256⇥256 programmable synapses as seen in figure 17 on
the following page. Additionally 256⇥2 virtual synapses for modeling excitatory and inhibitory
synapses are integrated. The device is aimed at exploring computational science models for
brain-inspired circuits. Integrated bi-stable spike-based plasticity mechanisms also provide on-
line learning abilities.[3].

16

Figure 17. Block diagram of the layout of the ROLLS processor. The first block from left to right
represents the programmable synapses, the second block the learning synapses and the last block
the virtual synapses and the soma of the neurons. Around the neurons and the synapses periph-
eral circuits providing the AER logic, an analog-to-digital converter and a temperature-compensated
programmable bias generator to set the bias currents controlling the synapse and neuron properties.

2.6 Short-Term Plasticity Synaptic Array

In this work only the Short-Term Plasticity Synaptic Array was used for experiments. Mr. Ning
Qiao suggested that it is always a good idea to turn unused features o↵ by setting the respective
currents to the lowest possible value to avoid any unwanted cross-talk between components. As
mentioned in section 2.5 on the previous page, the programmable on-chip bias generator can be
used to set the biases of the di↵erent components on the chip, e.g. the integrate and fire (IF)
neurons or the Synaptic Array in figure 17 and tune the behavior of the di↵erent components.
3 provides a list of the controllable biases of the Short-Term Plasticity Synaptic Array, 2 the
controllable biases for the IF neurons.

2.6.1 Interface

The interface to the ROLLS neuromorphic chip is provided by aerctl.h developed by Mr Jonathan
Binas at INI, along with a webtool webAEX to visualize the spiking output of the chip. Docu-
mentation for the ROLLS chip can be mainly found in [3] and a accompanying manual written
by Mr Ning Qiao.

ROLLSHost PC

excite neurons
read spiking neurons

aerctl.h

Figure 18. Header files defining the interface to the ROLLS

The ROLLS chip can be interfaced with the functions defined in aerctl.h, allowing to set
connectivities between neurons, stimulating synapses and retrieving the addresses of the spiking
neurons from the ROLLS that can then be used to control the robot(see also section 3 on page 20).
However connectivities are not set in with the functions provided by aerctl.h, except for the
stimulating input, but in a separate java-script file that can be loaded in the webAEX application
developed by Mr Jonathan Binas that allows at the same time to display the retrieved spiking
neurons with temporal and spatial resolution.

17

Table 2. List of the controllable biases for the Integrate and Fire (IF) neuron array

Bias Name E↵ect

IF RST N Controls the reset threshold current
IF BUF P Bu↵er for Oscilloscope
IF ATHR N Controls the adaption threshold current. The higher

the more synaptic current is supplied
IF RFR1 N Controls the current that is used to discharge the ca-

pacitors controlling the refractory period of the neu-
ron when RFR1 latch is storing 1. Cannot be <1 nA

IF RFR2 N Controls the current that is used to discharge the ca-
pacitors controlling the refractory period of the neu-
ron when RFR1 latch is storing 1. Cannot be <1 nA

IF AHW P Controls the adaption weight current
IF AHTAU N Control the adaption time constant
IF DC P Controls the value of additional static current that

is injected in all neurons
IF TAU2 N Controls the time constant of the neuron when TAU2

latch is storing 1. The higher this value is the higher
the time constanta

IF TAU1 N Controls the time constant of the neuron when TAU2
latch is storing 1. The higher this value is the higher
the time constant

IF NMDA N Controls the sensitivity of the neuron. The higher
this current is, the easier the neuron will fire.

IF CASC N Controls the cascode current
IF THR N Controls the threshold current. The higher this value

is the higher the synaptic current.

a
If Iw � I⌧ , the static current through the di↵-pair integrator (DPI) is given by [15]:

Istatic =

IthrIw
I⌧

18

Table 3. List of the controllable biases for the Non-plastic synaptic Array (NPA). Adapted from [16]

Bias Name E↵ect

NPA PWKL P Controls the pulse-width of the synaptic current.
NPA WEIGHT STD N Controls the depression magnitude of the excitatory

synaptic current after an input spike. The larger it
is, the more depressed the synapse is after an input
spike.

NPA WEIGHT EXC P Controls the magnitude of the weight independent
component of the excitatory synaptic current. This
component is always generated in response to an in-
put spike when the synapse is excitatory irrespective
of the 2-bit weight in the synapse.

NPA WEIGHT EXC0 P Controls the magnitude of the excitatory current
component which is injected into the excitatory DPI
when the weight 0 latch is storing 1.

NPA WEIGHT EXC1 P Controls the magnitude of the excitatory current
component which is injected into the excitatory DPI
when the weight 1 latch is storing 1.

NPDPIE THR P Controls the threshold current of the excitatory DPI
NPDPIE TAU P Controls the time constant of the excitatory DPI
NPA WEIGHT INH N Controls the magnitude of the weight independent

component of the inhibitory synaptic current. This
component is always generated in response to an in-
put spike when the synapse is inhibitory irrespective
of the 2-bit weight in the synapse.

NPA WEIGHT INH0 N Controls the magnitude of the inhibitory current
component which is injected into the inhibitory DPI
when the weight 0 latch is storing 1.

NPA WEIGHT INH1 N Controls the magnitude of the inhibitory current
component which is injected into the inhibitory DPI
when the weight 1 latch is storing 1.

NPAPDPII TAU P Controls the threshold current of the inhibitory DPI
NPDPII THR P Controls the time constant of the inhibitory DPI

19

3 Applications

A robust tool for ground data acquisition is necessary to generate reproducible real-world data
for simulations to validate experiments or explore pathways for future experiments.

The second application demonstrates the feasibility of an embedded neuromorphic computing
platform for cognitive agents by combining the DVS camera, a mobile robotic platform and the
ROLLS neuromorphic chip.

3.1 Command line tool for ground truth data acquisition

The command line tool allows to log DVS events and the corresponding robot controls as for-
matted text to provide ground truth data of the mobile system for training and simulations.
When all the components are up and running the program located can be started by typing in
the command line:

// ./ robotloop is located in
// /omnibot -lib/USB_robot/test/build
./ robotloop

This assumes that the eDVS camera is connected on /dev/ttyUSB0 and the OmniRob on
/dev/ttyUSB1. The serial ports are opened with the default values 6000000 and 2000000 respec-
tively. If no synchronization between the DVS camera and the host computer clock is performed,
the robot can be controlled right away and the o↵set is set to the standard value of 50µs. When
synchronization is required, a window flashing at a fixed frequency pops up. After aligning the
eDVS with the flashing window, synchronization is performed by determining the time o↵set
between the recorded events and when the window has been flashed on the computer. The de-
termined o↵set can then be used to eliminated the accumulated lag from the eDVS events and
the robot events. ./robotloop can also be called with number of optional arguments. When no
arguments are supplied, the default values indicated in lsiting 4 are used: these values can be
adjusted in main.cpp.

Listing 4. Usage examples of the command line tool for ground truth data acquisition

/* connecting a robot with a certain connectivity */
./ robotloop [connectivity] [robot_type]
// default values:
// connectivity = serial
// robot_type = OMNI_BOT

/* connecting the push_pot */
./ robotloop tcp push [host] [port]
// default values:
// robot_type = OMNI_BOT
// host = 10.162.177.186
// port = 56000

/* connecting a robot and a camera on a serial port with
specified baudrates */

./ robotloop [connectivity] [robot_type] [camera_port] [
robot_port] [camera_baudrate] [robot_baudrate]

// the connectivity argument has to be provided , but has no
effect

// default values:
// camera_port = /dev/ttyUSB0
// robot_port = /dev/ttyUSB1
// camera_baudrate = 6000000
// robot_baudrate = 2000000

20

The ground truth data are stored in /omnibot-lib/USB robot/test/build in a directory
with the date as name (Format YYYYMMDD). Inside the directory the eDVS events are stored
as formatted text in a file (log file name: EDVS HH MM, individual events: x, y, timestamp,
polarity) as well as the robot drive instructions parsed from the keyboard input (log file name:
keyboard HH MM, individual events: timestamp, keysPressed. keysPressed needs to be pro-
cessed as a binary number and the keystrokes can be reconstructed with the help of figure 12
on page 12). In a future release of the OmniBot firmware from NST a broadcast function is
planned, transmitting diagnostics for the OmniBot. These could then be monitored as well by
adapting the RobotListener accordingly.

3.2 LED tracker

The second application developed was a simple demonstration how a robot controlled by the
spiking neuron output of the ROLLS can follow the position of an LED (fLED=60Hz) waved
in front of the eDVS camera. This application was completely embedded on the Parallella and
an external computer was used only to display diagnostics. As seen in figure 19, the idea was
to separate the upper part of the DVS retinal space in three regions, e↵ectively reducing the
horizontal resolution from 128 to 3: left, center, right. The lower part is going to be used for
obstacle avoidance in future works. On the ROLLS chip three neuron populations in the range 0
to 150 were defined and grouped by 50 (without any connection among each other) corresponding
to the DVS pane regions l(eft), c(enter), r(ight). Ideally the flashing LED generates much more
events than anything around in the corresponding region of the DVS pane. The vents are then
sorted to the di↵erent regions and the corresponding neuron population is excited. If the biases
are well chosen, only the neuron population corresponding to the region where most spiking
events were detected, i.e. where the LED is placed, is spiking, rejecting noise to some extent.
The spiking neurons in turn are used to estimate the center of mass (COM) of the object, i.e. the
position of the LED if no noise or other objects is in the background. The robot was controlled
turn on place to follow the LED such that the LED always stays in the center of the DVS pane.
Rotating the camera however generates a lot of spiking events, such that a noisy background
degrades the performance of the simple LED tracker. By using a blank paper background this
problem could be eliminated.

left center right

collision avoidance

DVS retinal space ROLLS

...
l

c

r

center of mass
estimation

Figure 19. Schematic overview of the LED tracker setup. The top half of the eDVS is divided into
three regions (left, center, right). On the ROLLS chip the neurons from 0 to 150 are grouped by
50 without any connections among each other (l(eft), c(enter), r(ight)). When an event is detected
in one of the three regions, the corresponding group of neurons is excited. When the biases are
well chosen, only the neuron population corresponding to the region where most spiking events were
detected, i.e. where the LED is placed, is spiking, rejecting noise to some extent. The spiking neurons
in turn are used to estimate the center of mass of the object, i.e. the position of the LED if no noise
or other objects is in the background.

After dropping 90% of the events coming from the DVS, one can nicely see in the right
part of figure 21 on page 23 the flashing LED, while most of the background or other unwanted
events are suppressed. In the left part of figure 21 on page 23 shows the corresponding spiking

21

neuron populations as defined in figure 19 on the preceding page. Indeed only the populations
corresponding to the DVS pane region containing the bulk of the events spike. The spikes rapidly
decay when the stimulation is stopped or the LED moves to another region. Only the three biases
framed in figure 20 of the NPA block needed to be tuned to achieve this behavior. The exact
biases and and a guide on how to use the ROLLS in combination with the Parallella can be
found in section A in the appendix.

Figure 20. Screenshot of the webAEX tool with the tab allowing to change the NPA biases opened.
The red frames indicate the three biases that were tuned to achieve the spiking behavior shown in
figure 21 and 22. In this figure all the neurons are spiking even with no stimulation because the
biases are ill tuned.

22

Figure 21. Screenshots of the DVS events and the spiking neurons in the webAEX interface. The
black window on the right displays the events from the DVS after dropping 90% of them. The red,
blue and green stripes on the left represent the corresponding spiking neurons on the ROLLS. The
cyan circle in DVS events window shows the position of the COM estimated by the spiking neurons.
The images from top to down correspond to an flashing LED that is slowly but steadily moved in
front of the DVS camera from right to left

23

Figure 22. Screenshots of the DVS events and the spiking neurons in the webAEX interface. The
black window on the right displays the events from the DVS after dropping 90% of them. The red,
blue and green stripes on the left represent the corresponding spiking neurons on the ROLLS. The
cyan circle in DVS events window shows the position of the COM estimated by the spiking neurons.
The top picture shows the ROLLS response when no input is present and o neurons are stimulated.
There is one neuron firing continuously though. The bottom picture shows the ROLLS response when
the LED is rapidly moved from left to right in front of the camera. In the window on the right with
the DVS events a significant overlap between the center and right region is visible. The overlap of
the spiking neuron populations is however quite small.

24

25

4 Conclusion and Outlook

Parallella

ROLLS

OmniBoteDVS

keyboard

event
acquisition

keystrokes
excitation

spiking
neurons

drive
instructions

robot
state

robot
movement

Figure 23. Schematic showing the di↵erent components that form the neuromophic computing
platform explored in this project and the interactions among them.

In this project a DVS camera and the ROLLS neuromorphic chip were combined with a mobile
robotic platform to demonstrate an embedded neuromorphic computing platform. This plat-
form can be either controlled by keyboard input of an human operator or act autonomously by
processing the output of spiking neurons from the ROLLS neuromorphic chip. Each of these
components can be interfaced and controlled with a set of flexible interfaces developed in this
project that capable of asynchronous event handling by relying in the the observer programming
pattern. These interfaces enable the rich interactions depicted in figure 23.

A tool for ground truth acquisition was developed using these interfaces, providing real-world
data serving as input for simulations or validation of simulations as well as training data for
neural networks.

A second application making the robot follow a blinking LED, demonstrates that this mobile
robotic platform can be e↵ectively controlled by the spiking neuron output of the ROLLS chip
and makes this platform a staging point for future experiments.

4.1 Future work

The interfaces to the di↵erent components of the setup is work in progress, especially for the
robots. The OmniBot for example is developed by the NST group in Munich who continuously
upgrade the firmware providing new features that can be included into the code. The are still
some features not yet implemented in the ground truth acquisition tool, like the curved robot
trajectories set by the key combinations defined in figure 9 on page 11 or gathering IMU data.
Another interesting feature might be some filters for the incoming DVS event streams, currently
simply 90% of the incoming events are dropped, but there are certainly smarter filter around.
Currently some parts of the code are Linux specific and one could spend some e↵ort on making
the code platform independent by using an event-based framework as Qt (see also section B on
page 32 for some unfinished work in that direction).

There are also room for improvements on the LED tracker application. Currently the position
of the LED with respect to the DVS camera is estimated on the Parallella, but one could use a
neural network, such a Winner-Take-All network instead that can directly supply the necessary
drive controls. Acquiring the position of the LED also needs to be made more robust or extended
to other features. It was also planned to include obstacle avoidance by evaluating the lower part of
the eDVS retinal space. Some code in that direction is available from the CapoCaccia workshop
in the gitlab repository. An other issue is the horizontal resolution of the LED tracker, that

26

is reduced to 3 at the moment but can bi increased to take advantage of the full 128 pixel
resolution of the camera. The controllable biases of the ROLLS neuromorphic chip can also be
further tuned. In figure 21 on page 23 for example one neuron is always firing, even in absence of
stimulation. This problem can be addressed by identifying the index of the neuron and changing
which bias defines the time constant, usually by enabling TAU2 for all the other neurons, and
shutting o↵ the troublesome neuron by enabling TAU1 for it and setting the bias to a high value.

Acknowledgments

At this place I want to thank Prof. Indiveri for giving me the opportunity to do this project in his
group. I also want to thank Yulia Sandamirskaya and Mortitz Milde for supervising this project
and the many interesting discussions and the helpful advice. Also many thanks to Jonathan
Binas for technical advice on the Parallellla and all the other people at INI for advice and help.

Parts of the code were developed during the CapoCaccia Cognitive Neuromorphic Engineering
Workshop. This includes combining all the interfaces into the commandline tool for ground truth
acquisition, the DVS synchronizer as well as an example for obstacle avoidance with spiking
neuron output from the ROLLS chip that was adapted for the LED tracker.

27

References

[1] Bartolozzi C, Rea F, Clercq C, Fasnacht DB, Indiveri G, Hofstätter M, Metta G. Embedded
neuromorphic vision for humanoid robots. In: CVPR 2011 WORKSHOPS. 2011; pp. 129–135.

[2] Lichtsteiner P, Posch C, Delbruck T. A 128⇥128 120 dB 15 mus Latency Asynchronous Temporal
Contrast Vision Sensor. IEEE Journal of Solid-State Circuits. 2008;43(2):566–576.

[3] Qiao N, Mostafa H, Corradi F, Osswald M, Stefanini F, Sumislawska D, Indiveri G. A reconfig-
urable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.
Frontiers in Neuroscience. 2015;9.

[4] The Parallella Board. https://www.parallella.org/. Accessed: 2016-05-30.

[5] User Guide - eDVS4337 (embedded Dynamic Vision Sensor) and PushBot. http://inilabs.com/

support/hardware/edvs/. Accessed: 2016-05-30.

[6] Conradt J, Cook M, Berner R, Lichtsteiner P, Douglas R, Delbruck T. A pencil balancing robot
using a pair of AER dynamic vision sensors. 2009 IEEE International Symposium on Circuits and
Systems. 2009;.

[7] Lichtsteiner P, Posch C, Delbruck T. A 128⇥128 120 dB 30 mW asynchronous vision sensor that
responds to relative intensity change. 2006; pp. 508+491. Cited By 47.

[8] Accessing the device manually. http://inilabs.com/support/hardware/edvs/#h.2v48aal08cim.
Accessed: 2016-05-30.

[9] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: Abstraction and reuse of object-
oriented design. In: ECOOP ’93. Springer-Verlag. 1993; pp. 406–431.

[10] Observer pattern. https://en.wikipedia.org/wiki/Observer_pattern. Accessed: 2016-05-30.

[11] Documentation omnibot-lib. Https://code.ini.uzh.ch/mmilde/omnibot-lib.

[12] OmniRob: Mobile Robot Base with Robotic Arm for Manipulation Tasks. http://www.nst.ei.

tum.de/projekte/edvs/. Accessed: 2016-05-30.

[13] Ribeiro AF, Moutinho I, Silva P, Fraga C, Pereira N. Three Omni-Directional Wheels Control On
A Mobile Robot. IEEE. 2004; .

[14] Build an easy holonomic “Kiwi drive” robot platform that moves instantly in any direction. http:
//makezine.com/projects/make-40/kiwi/. Accessed: 2016-05-30.

[15] Bartolozzi C, Mitra S, Indiveri G. An ultra low power current-mode filter for neuromorphic systems
and biomedical signal processing. In: 2006 IEEE Biomedical Circuits and Systems Conference.
2006; pp. 130–133.

[16] Manual MN256R1. Internal communication.

[17] Qt documentation. http://doc.qt.io/. Accessed: 2016-06-06.

28

http://dx.doi.org/10.1109/JSSC.2007.914337
http://dx.doi.org/10.1109/JSSC.2007.914337
http://dx.doi.org/10.3389/fnins.2015.00141
http://dx.doi.org/10.3389/fnins.2015.00141
https://www.parallella.org/
http://inilabs.com/support/hardware/edvs/
http://inilabs.com/support/hardware/edvs/
http://dx.doi.org/10.1109/ISCAS.2009.5117867
http://dx.doi.org/10.1109/ISCAS.2009.5117867
http://dx.doi.org/10.1109/ISSCC.2006.1696265
http://dx.doi.org/10.1109/ISSCC.2006.1696265
http://inilabs.com/support/hardware/edvs/#h.2v48aal08cim
https://en.wikipedia.org/wiki/Observer_pattern
http://www.nst.ei.tum.de/projekte/edvs/
http://www.nst.ei.tum.de/projekte/edvs/
http://makezine.com/projects/make-40/kiwi/
http://makezine.com/projects/make-40/kiwi/
http://doc.qt.io/

29

Table 4. Possible inputs for the argument <population> of aertest modif and the corresponding
stimulated neuron populations.

<population> Neuron index range

1 0-50
2 51-100
3 101-150

A LED Tracker Tutorial

In this tutorial it is assumed that the serial-to-USB hub with the DVS camera and the robot are connected
on the micro USB slot of the Parallella and the Parallella itself is connected with a Ethernet cable to
the INI network and can be remotely accessed with SSH:

ssh -X root@ <host >

Where host is the IP address or the name of the Parallella in the INI network. In our case the Parallella
is registered as parallelly. The ROLLS chip is connected with the corresponding breakout board to the
Parallella. After powering up the Parallella and logging, the first thing to do is starting the webserver
with the bash script server:

server

This also initializes the ROLLS chip in a clean working state by configuring the initial biases. One can
check if the server is running by typing in a web browser while connected to the INI network:

<host >:9000

If the system is running you should see a window similar to figure 20 on page 22. You can then
proceed to load your experiment in the leftmost tab and load a set of saved biases (for the LED tracker
LED tracker 27 05 b, the relevant values from the IF and NPA tabs are also documented in table 5
and 6) or change them in the two other tabs. New experiments can be generated by adapting existing
experiments from the directory

cd /var/www/aex/static/

Beware, if you try to load biases while stimulating the neurons, the system may crash. Changing biases
in the first tab seems not to be compromised. You can observe the e↵ect of di↵erent biases by using the
aertest modif -s <population> utility located in

cd /home/parallella/paex -dist -cc/aertest/

This utility can continuously stimulate neuron populations of 50 neurons in the index range 0 to 150.
The possible values of the argument and the corresponding stimulated neuron populations can be found
in table 4.

The LED tracker example is located in the folder:

cd /home/parallella/code/MadBot_Michel/USB_robot/test/build

And can be started by invoking

./ robotloop

N.B. Sometimes the neuron populations seem indi↵erent to an external stimulus. In that case you may
stimulate them from the outside with aertest modif as a first diagnostic measure in conjunction with
the webAEX tool.

A.1 Checklist for experiments with the ROLLS on the Parallella

• Check if all the devices are connected

– DVS and Robot over micro USB to the Parallella.

– Parallella over Ethernet or a WiFi dongle1 to the INI network.

1
If you use the WiFi dongle, make sure the necessary drivers are installed and working

30

• Remote access the Parallella

• Start the webserver

• Open the webserver in your browser

• Load your experiment

• Load your biases

• Start your experiment

• If your experiment does not work and it did in the past, check the neurons with aertest modif

-s <population>

Table 5. Biases as configured in webAEX tool. The values are in the same format as needed for the
web tool and can be directly entered. The current is specified as maximum range (column Current)
and the fraction of the current supplied (column Current Fraction). Maximum current is supplied
when current fraction is set to 255. If we set NPA PWKL P to 6.5n and 45 means we are setting this
bias to e↵ectively 45/255 · 6.5 =1.15 nA

Bias name Current Current Fraction

NPA PWKL P 6.5n 45
NPA WEIGHT STD N 15p 0
NPA WEIGHT EXC P 24u 160
NPA WEIGHT EXC0 P 24u 120
NPA WEIGHT EXC1 P 3.2u 150
NPDPIE THR P 820p 255
NPDPIE TAU P 6.5n 10
NPA WEIGHT INH N 24u 100
NPA WEIGHT INH0 N 24u 255
NPA WEIGHT INH1 N 24u 255
NPAPDPII TAU P 24u 255
NPDPII THR P 15p 0

Table 6. Biases as configured in webAEX tool. The values are in the same format as needed for
the web tool and can be directly entered. As in table 5 the current is specified as maximum range
(column Current) and the fraction of the current supplied (column Current Fraction).

Bias name Current Current Fraction

IF RST N 15p 0
IF BUF P 15p 0
IF ATHR N 15p 0
IF RFR1 N 15p 3
IF RFR2 N 105p 60
IF AHW P 15p 0
IF AHTAU N 6.5n 193
IF DC P 15p 0
IF TAU2 N 105p 105
IF TAU1 N 105p 105
IF NMDA N 15p 0
IF CASC N 15p 0
IF THR N 15p 4

31

B Started work on an unfinished GUI using Qt

Figure 24. Screenshot of the main window of an unfinished tool for ground truth acquisition using
Qt.

Qt is an mature, open-source, cross-platform, event-driven framework that can be deployed to various
software and hardware systems, even on embedded systems[17]. Qt extends the C++ programming
language by signals and slots, that implement the enhanced versions of the Observer pattern without
any programming overhead. Considering requirements such as asynchronous data handling and a light-
weight solution that can be deployed to embedded systems, Qt o↵ers an attractive framework for this
project. Figure 24 shows a screenshot of a simple and still unfinished alternative tool for ground truth
acquisition with a GUI. The black window displays the events parsed from the DVS data stream. Di↵erent
connected components can be started with the buttons on the right. On the left di↵erent widgets
provide diagnostics about the system that are usually printed on the command line. The status bar
below the record button shows the free capacity of the circular array bu↵ering the data before they
are written to the disk. The treeview above the record button displays the current log files. The
development of this application was also aimed at addressing thread-safety issued that are not yet
handled by the current command-line tool, such as concurrent access to the shared variables for logging
and parsing from the streams. The code for this application can also be found in the gitlab repository
(https://code.ini.uzh.ch/mmilde/omnibot-lib) in the folder Qt viewer.

32

https://code.ini.uzh.ch/mmilde/omnibot-lib

33

	Introduction
	Interfaces and features
	Parallella
	embedded Dynamic Vision Sensor (eDVS)
	Interface

	Keyboard Input
	Interface

	OmniBot and PushBot
	Interface

	Reconfigurable On-line Learning Spiking (ROLLS) Neuromorphic Processor
	Short-Term Plasticity Synaptic Array
	Interface

	Applications
	Command line tool for ground truth data acquisition
	LED tracker

	Conclusion and Outlook
	Future work

	LED Tracker Tutorial
	Checklist for experiments with the ROLLS on the Parallella

	Started work on an unfinished GUI using Qt

