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End Date: September 17, 2018



Contents

1 Introduction 3
1.1 Computational modelling . . . . . . . . . . . . . . . . . . . . . 3
1.2 Texture discrimination task . . . . . . . . . . . . . . . . . . . 4
1.3 Whisker sensory system . . . . . . . . . . . . . . . . . . . . . 5
1.4 Orbitofrontal cortex and decision making . . . . . . . . . . . . 8
1.5 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Methods 10
2.1 Spiking neural networks simulator Brain2 . . . . . . . . . . . . 10
2.2 The leaky integrate and fire neuron model (LIF) . . . . . . . . 11
2.3 Synapses and learning rules . . . . . . . . . . . . . . . . . . . 11
2.4 Temporal difference (TD) learning . . . . . . . . . . . . . . . . 14

3 The computational model 15
3.1 Early models . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Trial setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Showcasing a simulation . . . . . . . . . . . . . . . . . 22
3.3.2 Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Discussion 30
4.1 Possible localisation of model components in brain structures . 32
4.2 Future model improvement . . . . . . . . . . . . . . . . . . . . 32

5 Conclusion 33

6 Acknowledgement 33

References 35

2



1 Introduction

1.1 Computational modelling

Everything we do, think, decide and how we perceive the world is controlled
and coordinated by our brain. It is the master coordinator of our lives.
Although we are in the 21th century, the brain is still an overall mystery
that is waiting to be fully understood. But how would one apprehend such
a complex structure like the brain?
An approach to this is building a model. A model is per definition a simplified
representation of a system over some time period or spatial extent intended
to promote the understanding of the real system. There is a branch in neu-
roscience called computational neuroscience, which employs mathematical
models, theoretical analysis and abstractions of the brain in order to gain
further understanding about the principles that govern structure, physiol-
ogy, development and cognitive abilities of the nervous system (Trappenberg,
2009; Sejnowski, Koch, & Churchland, 1988; Dayan & Abbott, 2001; Ger-
stner, Kistler, Naud, & Paninski, 2014). Computational neuroscience aims
to describe biologically plausible physiology and dynamics of neurons and
neural systems.
The field is relatively young, since it has emerged in the 20th century. Early
historical roots can be traced to famous works such as those of of Lapicque,
Hodgkin and Huxley, Hubel and Wiesel and Marr. 1907 Lapicque intro-
duced the integrate and fire model of the neuron, which is a biological spiking
model. The model provided a mathematical description of the properties of
cells in the nervous system, that generate sharp electrical potentials across
their cell membrane. This model will be further introduced in the methods
section. About 40 year later, Hodgkin and Huxley developed the voltage
clamp, which is an experimental method to measure ion currents through
membranes of neurons, while holding the membrane voltage at a set level
(Hodgkin, Huxley, & Katz, 1952). This technique lead to the creation of the
first biophysical model of the action potential. Another important discovery
in the field was made by Hubel and Wiesel. They discovered neurons in the
primary visual cortex, which is the first area to process information com-
ing from the retina and it has oriented receptive fields and is organized in
columns (Hubel & Wiesel, 1962). A few year later Marr focused on the inter-
actions between neurons and suggested computational approaches to study
functional groups of neurons within the hippocampus and neocortex to gain
further understanding on how they interact, store, process and transmit in-
formation (Marr, 1969). Rall started computational modelling of biophysical
realistic neurons and dendrites with the first multicomponent model using
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cable theory, which is composed of mathematical models to calculate the
electric current and accompanying voltage along neurites, more in particular
the dendrites that receive synaptic inputs at different times and sites (Rall,
1964).
Computational neuroscientists collaborate closely with experimentalists to
analyse novel data and synthesize new models of biological phenomena. The
models cover a variety of topics such as single neuron modelling, develop-
mental, axonal patterning and guidance models, sensory processing models,
memory and synaptic plasticity models, behavioural models and models of
cognition, discrimination and learning.
There are also different approaches to create the models, such as for instance
the use of probabilistic math and different coding schemes. Examples of
different coding schemes are rate coding, temporal coding, population coding
and sparse coding.
This thesis focuses on modelling behavioural observation made during the
texture discrimination task conducted with mice and to use an actor-critic
reinforcement learning architecture in which the TD error is based on the
firing activity of certain neurons in the model. In the first part of the in-
troduction the texture discrimination task will be introduced, followed by
a brief overview of whisker sensory system that is heavily involved in the
texture discrimination task and the orbitofrontal cortex that is likely to be
involved. The final chapter of the introduction quickly introduces reinforce-
ment learning and the TD error.

1.2 Texture discrimination task

The texture discrimination task in rodents is popular among researchers
in biology (Chen, Carta, Soldado-Magraner, Schneider, & Helmchen, 2013;
Moore, 2004; Mehta & Kleinfeld, 2004; Arabzadeh, Petersen, & Diamond,
2003; Arabzadeh, Panzeri, & Diamond, 2004) and robotics (Fend, Yokoi, &
Pfeifer, 2003; Seth, McKinstry, Edelman, & Krichmar, 2004; Wijaya & Rus-
sell, 2002; Kim & Moeller, 2004) as well. It serves as a framework to unravel
the mystery of information coding and a vast array of literature has been
generated.
The texture discrimination task is a based on operant conditioning, which
is a learning process through which behaviour is modified by reward and
punishment. The animals is trained to associate a particular texture with
reward delivery and to suppress licking for reward when a non-target texture
is presented. The omission of licking when the wrong texture is presented
is often enforced by mild punishment with an unpleasant loud sound noise,
time outs or delayed trial continuation (Feldmeyer et al., 2013; Helmchen,
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Gilad, & Chen, 2018). The experiment relies on the go/no-go paradigm
as the animal is simply conditioned to go (lick) after receiving a certain
stimulus (texture) and refrain from licking (no-go) for reward when a non-
target distractor (different texture) stimulus is presented. The animal first
needs to discern if the correct stimulus was presented and subsequently needs
to make an active decision between two choices (lick or not lick). The four
possible outcomes of the texture discrimination task can be seen in Figure 1.

Figure 1: Go/ No-go texture discrimination task in a nutshell. Mouse is headfixed
and receives the roughness of a certain texture as sensory input and subsequently
needs to take a decisions whether to lick or not for reward. The four possible out-
comes are depicted on the figure. The mouse illustration is taken from (Helmchen
et al., 2018).

1.3 Whisker sensory system

Rodents such as mice and rats use their whiskers (vibrissae) to gather in-
formation about their surroundings. As they are nocturnal animals, they
mostly live in environments with dim or fading light and as a consequence
they need to rely on their tactile information. The whisker sensory system
is likely to have evolved to compensate for the poverty of visual informa-
tion. Rodents have well-developed a number of tactile capacities. By the
use of their whiskers they are able to obtain information about object fea-
tures such as size and shape (Brecht, Preilowski, & Merzenich, 1997), object
location (O’Connor et al., 2010), object texture (Carvell & Simons, 1990;
Von Heimendahl, Itskov, Arabzadeh, & Diamond, 2007; Carvell & Simons,
1990; Guić-Robles, Valdivieso, & Guajardo, 1989; Prigg, Goldreich, Carvell,
& Simons, 2002), object distance (Shuler, Krupa, & Nicolelis, 2001; Solomon
& Hartmann, 2006), bilateral distance (Knutsen, Pietr, & Ahissar, 2006;
Krupa, Matell, Brisben, Oliveira, & Nicolelis, 2001) and orientation (Polley,
Rickert, & Frostig, 2005). Tactile exploration consists of an interplay of
motor output and sensory input as the rodent uses a sweeping motion of
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the whiskers in a rhythmic forward-backward cycle (Berg & Kleinfeld, 2003;
Hill, Bermejo, Zeigler, & Kleinfeld, 2008). The whiskers are moved in rhyth-
mical sweeps at frequencies ranging between 5 Hz and 15 Hz (Carvell &
Simons, 1990; Kleinfeld, Sachdev, Merchant, Jarvis, & Ebner, 2002). Due
to the rhythmical nature of the whisking neuronal activity in the primary
somatosensory (barrel) cortex varies rhythmically in synchrony with whisker
movement and contact against obstacles (Mégevand et al., 2009; Fee, Mitra,
& Kleinfeld, 1997; Crochet & Petersen, 2006; Von Heimendahl et al., 2007).

The whiskers are made of inert material, tactile sensitivity is provided by
an array of follicles at the mystical pad that anchor the whiskers to the skin
(Dörfl, 1985; Diamond, Von Heimendahl, Knutsen, Kleinfeld, & Ahissar,
2008) and each follicle is innervated by peripheral branches composed of
about 200 cells of the trigeminal ganglion (Dörfl, 1985). The nerve endings
of the trigeminal ganglion convert the mechanical energy into action poten-
tials that travel past the cell bodies in the trigeminal ganglion and continue
along the central branch to excitatory glutamatergic synapses in the trigemi-
nal nuclei of the brainstem (Torvik, 1956; Clarke & Bowsher, 1962). Afferent
vibrissal information is then conveyed to the thalamus, where trigeminotha-
lamic neurons of the principal trigeminal nucleus are arranged in a barrel like
divisions which are called barrelets. Each barrelet receives strong input from
a single whisker (Veinante & Deschênes, 1999). The principal trigeminal
neurons then project to the ventral posterior medial (VPM) nucleus of the
thalamus, which also contains barrel like structures called barreloids. VPM
neurons respond precisely and rapidly to whisker deflection with the particu-
larity that one whisker evokes stronger response then the others (Friedberg,
Lee, & Ebner, 1999; Simons & Carvell, 1989; Brecht & Sakmann, 2002). The
axons from the VPM neurons within individual barreloids lead to the layer
4 barrel field of the primary somatosensory cortex (Deschênes, Timofeeva,
Lavallée, & Dufresne, 2005). In this layer 4 barrels field each whisker is rep-
resented by a discrete and well-defined structure (Woolsey & der Loos Van,
1970) and interestingly these layer 4 barrels are somatotopically arranged
in an almost identical fashion to the layout of the whiskers on the snout
(Petersen, 2007).
Motor movement is controlled by the vibrissal motor cortex (Brecht, Schnei-
der, Sakmann, & Margrie, 2004) and is interconnected with cortical and
subcortical sensory structures (Miyashita, Keller, & Asanuma, 1994) and
the activity in the motor cortex is also modulated by whisker movement
(Kleinfeld et al., 2002; Chakrabarti, Zhang, & Alloway, 2008).

Knowledge on this sensory system permits to predict behavior as it can be
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generated by signals originating from whisking. For instance spike counts
in the barrel cortex neurons, integrated over seconds of time resulted in a
good prediction of rat performance when they perceived pulsative whisker
stimuli. (Gerdjikov, Bergner, & Schwarz, 2017). Due to the neuroethological
relevance, the rodent whisker-system is a popular model system for studying
tactile information processing (Feldmeyer et al., 2013; Petersen, 2007). Ex-
periments with head-restrained rodents enable precise tracking of behavioural
parameters resulting from whisking as the animal is not able to move any-
thing else. These experiments are used for precise tracking of behaviour
parameters such as whisker touch and movement and generate data about
the neuronal activity from the cellular to the large network level by intercel-
lular recordings, calcium imaging techniques and optogenetics (Helmchen et
al., 2018). Diverse whisker-based discrimination tasks experiments have been
created for head-restrained animals (Guo et al., 2014). In the texture dis-
crimination task the mechanism by which the animal can distinguish between
different textures are so-called stick-slip events. Sandpaper for instance has
strong textures and the whiskers get caught by the sandpaper grains, get
streched and then released like a spring (Arabzadeh, Zorzin, & Diamond,
2005; Wolfe et al., 2008; Boubenec, Shulz, & Debrégeas, 2012). The fre-
quency of the slip-stick events encodes for graininess. It is beneficial for the
animal to engage in active whisking as it increases the likelihood of stick-slip
events in a texture dependent manner (Von Heimendahl et al., 2007; Zuo,
Perkon, & Diamond, 2011; Chen et al., 2015). Read-out parameters in this
experiment are whisking angle, that can be measured for individual whiskers
or aRveraged across multiple whiskers, whisker set point, contact-induced
curvature change and frequency of stick-slip events. These parameters al-
low to estimate the lateral and axial forces that act on the whisker follicles
(Von Heimendahl et al., 2007; Wolfe et al., 2008; Chen et al., 2015; Boubenec
et al., 2012; O’Connor et al., 2010; Pammer et al., 2013). The representation
of touch events in the neuronal population of the S1 barrel cortex are in-
vestigated using electrophysiological recordings or calcium imaging of touch
evoked neuronal responses. Imaging during discrimination task revealed co-
ordinated patterns of activity between S1 and S2 neuronal populations, to
both motor behavior (whiskering and licking) as well as sensory processing
(Chen, Voigt, Javadzadeh, Krueppel, & Helmchen, 2016). Further imaging
results in anaesthetized rats hint that whisker vibrations associated with
different textures evoke cortical responses that differ according to the tex-
ture. Grainier textures evokes more spikes per sweep (Arabzadeh et al., 2005;
Arabzadeh, Panzeri, & Diamond, 2006).
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1.4 Orbitofrontal cortex and decision making

Another brain region which might be involved in the texture discrimination
task is the orbitofrontal cortex (OFC), because the ability to maintain in-
formation to be manipulated and integrated with other information to guide
behavior has been described as working or representational memory and de-
pends on the OFC (Goldman-Rakic, 2011). The OFC is interconnected with
limbic areas, those areas are known to support a variety of functions includ-
ing emotion, motivation, long-term memory, behavior and olfaction. This
interconnection permits the OFC to allow information regarding outcomes
to access representational memory (Schoenbaum & Roesch, 2005). Studies
in humans have shown that a neural correlate of expected outcome value
is present in the OFC, because the blood flow in the OFC changes during
anticipation of outcomes and when the value of the outcome is modified
(O’Doherty, Deichmann, Critchley, & Dolan, 2002; Gottfried, O’doherty, &
Dolan, 2003). Further evidence in primates and rodents suggest that neu-
ral activity in OFC preceding predicted rewards and punishments reflect the
value of those outcomes (Schoenbaum, Setlow, Saddoris, & Gallagher, 2003;
Schoenbaum, Chiba, & Gallagher, 1998). The OFC has a critical role in
signalling outcome expectancies in reinforcer devaluation tasks. These are
tasks that assess the control of behaviour by an internal representation of
the value of an expected outcome. Assume that rats have been trained to
associate a particular texture with reward, when this texture however yields
to punishment all of the sudden, then it is devalued and when the texture is
presented again in another trial the rat will respond less to the cue than the
non devalued cues. This decrease in responding happens in addition to nor-
mal decrease caused by extinction, leading to faster unlearning. Experiments
have shown that OFC lesioned rats fail to change their behaviour after de-
valuation. First rats were trained to associate a light cue with food and later
the food was devalued by pairing it with an illness. OFC lesioned rats condi-
tion and devalue normally, but unlike OFC intact rats do not show the effect
of devaluation on conditioned responding (Gallagher, McMahan, & Schoen-
baum, 1999). They continue to respond to light to obtain food, even though
they will not eat it when presented. This effect can be observed whether
OFC lesions are made before or after learning, this indicates that OFC is
not solely involved in acquiring the cue-outcomes association (Pickens et al.,
2003). Rather it is thought that the OFC is critical to control conditioned
responding according to internal representations of the new value of the ex-
pected outcome (Izquierdo, Suda, & Murray, 2004). Further experiments
with rodents in which genes in the OFC were selectively silenced or lesioned
also showed impaired reversal learning (Ferry, Lu, & Price, 2000; Kolb, Non-
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neman, & Singh, 1974) and (Banerjee et al. 2018, unpublished data). As
mentioned above OFC lesions do not disrupt the ability to perform discrim-
ination but there is a deficit in the early stage of reversal learning, which is
characterized by the inability to inhibit previous reinforced response, which
lead to preservation. A finding that has been found in primates (Rolls, Hor-
nak, Wade, & McGrath, 1994; Dias, Robbins, & Roberts, 1996; Iversen &
Mishkin, 1970; Jones & Mishkin, 1972) and rats (Brown & Bowman, 2002;
Chudasama & Robbins, 2003; McAlonan & Brown, 2003). The deficit of the
OFC lesioned organisms might be due to failure of prepotent instrumental
response. This failure in inhibition might be enhanced by effects of proactive
interference from previous established association, leading to an enhanced
expression of stimulus response habit that tends to be impervious to changes
in value of reinforcement (Balleine & Dickinson, 1998; Dickinson & Balleine,
1994; Boulougouris, Dalley, & Robbins, 2007). Proactive interference is when
the old memory information prevents the recall of newer information.

1.5 Reinforcement learning

The computational field of reinforcement learning has provided a normative
framework within which decision making can be analysed and conditioned
behavior can be understood (Sutton & Barto, 1998). Reinforcement learning
emphasises on the question on how to map situations to actions to maximize
the reward signal and to minimize punishment. The learner is not told what
actions to take but must discover which actions yield reward by trying them,
in order to do so the agent must be able to sense the state of the environment
and must be able to take an action that affects the state. Optimal action
selection is based on predictions of long term future consequences, such that
decision making is aimed at maximizing rewards. Neuroscientific evidence
provided by various animal experiments such as lesion studies, pharmacolog-
ical manipulations and electro-physiological recordings have provided links
to neural structures similar to key computational constructs in reinforcement
learning as for instance the neuromodulator dopamine. Dopamine provides
basal ganglia target structures with phasic signals that convey a reward pre-
diction error, which influences learning and action selection in stimulus driven
behavior (Schultz, 1998; Houk, Davis, & Beiser, 1995; Houk et al., 1995).
Operant conditioning such as for instance the texture discrimination task
introduced in the general introduction, involve learning to select actions that
will increase the probability of rewarding events and decrease the probability
of aversive events (Thorndike et al., 1912; Skinner, 1935). From a compu-
tational point of view, such decision making can be treated to optimize the
consequences of actions in terms of some long-term measure of total obtained
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reward and avoided punishment and thus it makes the study of operant con-
ditioning represent an inquiry into the most fundamental form of decision
making (Niv, 2009). The texture discrimination task can be addressed as
a reinforcement problem. This task has been previously described and can
be summarized as follows. A particular texture (environmental state) is pre-
sented to the animal and the animal needs to make a decision based on its
sensory information and take an action (that affects the state of the ani-
mal), which is lick or not to lick in order to maximize reward and minimize
punishments.

1.6 Aim of the thesis

The aim of this thesis is to create a computational model of the texture
discrimination task using Brian2, which is a spiking neural network simulator
that will be further introduced in the methods section. The key idea of
this project is to link the ideas of reinforcement learning with spiking neural
networks to create a model that can simulate learning in mice and investigate
on how a particular stimulus is mapped to an outcome and learned with an
actor critic implementation.

2 Methods

2.1 Spiking neural networks simulator Brain2

Computational simulations have become an important tool in neuroscience
and Brian2 is used to build the model. It is a free, open source simulator
for spiking neuronal networks that can be used across multiple platforms. It
is written in Python and focuses on simplicity, extensibility of neuronal and
synaptic models. The models can be described using mathematical formulas
with the use of physical units (Goodman, Stimberg, Yger, & Brette, 2014;
Stimberg, Goodman, Benichoux, & Brette, 2014). Brian2 is valuable for
working on non-standard neuronal models, that cannot be easily covered by
other existing software and it is an alternative to Matlab or C simulations.
It has a simple syntax and is also well suited for starting into computa-
tional neuroscience (Goodman & Brette, 2008). Simulating a neural model
means tracking the change of neural variables such as membrane potential
and synaptic weights over time. The rules governing these changes take two
principal forms: one of continuous updates as for example of the decay of
the membrane potential back to a resting state in absence of inputs and the
second of event-based updates as for instance the reset after a spike in an
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integrate and fire neuron. An event can be described as a change in the
state variables of the system that is triggered by a logical condition on these
variables. Continuous updates are described by deterministic or stochastic
differential equations while event-based updates are described as a series of
mathematical operations (Stimberg et al., 2014). The description of an accu-
rate model needs both variables that evolve continuously and discontinuously
through events. This can be achieved by the use of the leaky integrate and
fire model (LIF).

2.2 The leaky integrate and fire neuron model (LIF)

In this thesis the LIF with noise was used.
The most simple version of LIF can be described as follows:

dv/dt = −(v − v0)/τm

After v > vth : v ← v0

where v0 is the resting and reset potential of the cell and τm is the membrane
time constant. If the voltage v is bigger than the threshold vth than v will
be reset to v0. At the moment the threshold is reached a spike is emitted.
LIF has different states as for instance excitable and non excitable (refrac-
tory) state. An event (spike) can trigger changes in the state variable and
also a transition between these states. The fact that a neuron is not able
to generate a second action potential for a short time after the first one is
emitted, is modelled by imposing a refractory period after each spikes.
In order to include a random element to the equation to simulate noise the
symbol ξ was added to the differential equation of the LIF:

dv/dt = −(v − v0)/τm + ξ ∗ τ−0.5

The symbol ξ stands for a stochastic differential and behaves similar to a
Gaussian random variable with mean 0 and standard deviation 1. It is also
taken into account how stochastic differentials tend to scale with time, that
is why ξ is multiplied by τ−0.5. The integration method used for the differen-
tial neuron equation in the simulation is the Euler-Maruyama method. For
further information about stochastics and the Euler-Maruyama method the
reader is referred to the following textbook (Mao, 2007).

2.3 Synapses and learning rules

Synapses connect a presynaptic neuron to a postsynaptic neuron and events
(spikes) can trigger changes in pre- and postsynaptic neural variables. In
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contrast to neural models, there is no need for a synaptic threshold condition
since action potentials are emitted from the pre- and postsynaptic neurons
according to the threshold conditions of the neural model. As spikes occur
in the presynaptic neuron, it causes an instantaneous change.

vpost ← vpost + w

In simple synapses a variable w is added to the voltage of the postsynaptic
neuron vpost when spikes occur in the presynaptic neuron.
More complex synapses are governed by another learning rule, in our case
the Fusi learning rule. The Fusi learning rule is an extension of the model
of spike time dependent plasticity (STDP). Thus STDP will be introduced
first.

∆w =
∑
tpre

∑
tpost

w(tpost − tpre)

The change of the synaptic weight w is the sum over all presynaptic spike
times tpre and postsynaptic spike times tpost of some function W of the dif-
ference in these spike times (Gerstner, Kempter, van Hemmen, & Wagner,
1996; Kempter, Gerstner, & Van Hemmen, 1999). W (∆t) stands for the so
called learning window and can be defined as follows:

W (∆t) = Apree
−∆t/τpre ∆t > 0

W (∆t) = Apost − e∆t/τpre ∆t < 0

The parameters Apre and Apost depend on the current value of the synaptic
weights and the time constant is in the order of τpre = τpost.
In other words when a presynaptic spike shortly precedes a postsynaptic
action potential, it is likely that depolarization of an LIF neuron is high,
resulting in long term potentiation (LTP) and memory consolidation. If the
presynaptic spikes comes shortly after the postsynaptic action potential, the
postsynaptic neuron is likely to be hyperpolarized, which results in long term
depression (LTD).
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Figure 2: Illustration of the STDP kernel.

The Fusi learning rule differs slightly from STDP. It has another variable
which is the calcium variable C(t) with a long time constant that is a function
of postsynaptic spiking activity (Brader, Senn, & Fusi, 2007).

dC(t)

dt
= − 1

τC
+ Jc

∑
i

δ(t− ti)

where the sum over postsynaptic spikes arriving at times ti. Jc is the contri-
bution of a single postsynaptic spike and τC is the time constant. The variable
X(t), which has a similar function to the A parameters of the STDP, is modi-
fied on the basis of the postsynaptic depolarization v(t) and the postsynaptic
calcium variable C(t). The synapses are bistable with efficacies J+ (potenti-
ated) and J− (depressed). The efficiencies J+ and J− can be any number and
are not restricted to binary values (0,1). The internal state of the synapse is
represented by X(t), and the efficacy of the synapse is determined whether
X(t) lies above or below a threshold θx. The variable X(t) is restricted to
the interval 0 ≤ x ≤ Xmax and is a function of C(t) and of both pre- and
postsynaptic activity. A presynaptic spike which arrives at tpre reads the
instantaneous values of Vpre and C(tpre) and the conditions for a change in
X depend on those values as follows

X → X + a if V (tpre) > θv and θlup < C(tpre) < θhup

X → X − b if V (tpre) ≤ θv and θldown < C(tpre) < θhdown

where a and b represent jump sizes, θv is the voltage threshold and θhup,
thetalup, thetahdown thetaldown are the thresholds on the calcium variable. In
absence of a presynaptic spike or if the previously above mentioned conditions
are not met, X(t) drifts toward one of the two stable values,
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dX

dt
= α if X > θx

dX

dt
= −β if X ≤ θx

where α and β are positive constants and θX is a threshold on the internal
variable. If at any point during the time course X < 0 or X > 1, then X
is held at the respective boundary value. The efficiency of the synapse is
determined by the value of the of the internal variable at tpre. If X(tpre >
θX), the synapse is potentiating and in the case that X(tpre ≤ θX), the
synapse is depressing.

2.4 Temporal difference (TD) learning

The framework of reinforcement learning provides a theory and algorithms for
learning (Sutton & Barto, 1998). An attractive formulation of reinforcement
learning is temporal difference TD learning (Sutton, 1988). TD learning
assumes that an agent moves between states in its environment by choosing
appropriate actions in discrete time steps. Rewards are given in certain
conjunctions of states and actions, and the agents goal is to choose its actions
in order to maximize the amount of reward it receives (Frémaux, Sprekeler, &
Gerstner, 2013). In TD learning, the goal of the learning system (also referred
to as the agent), is to estimate and predict values of different situations or
states, in term of future reward or punishments (Niv, 2009). From a learning
standpoint, the TD model assumes that the goal of a mouse in the texture
discrimination task is to learn the value of the texture (stimulus) that will
lead to reward after licking at the water delivery port. One way to do this is
to estimate for each texture the amount of reward that the mouse can expect
to receive in the future. To further quickly introduce TD learning think of a
Markov chain. A Markov chain is a stochastic model describing a sequence
of possible events in which the probability of each event depends only on
the state attained in the previous event. In this Markov chain different
states follow one another in a predefined probability distribution P (st+1|st).
A useful quantity to predict in such a situation is the expected sum of all
future rewards, given the current state St, which can be referred as the value
of state St.

v(St) = E[rt + γrt+1 + γ2rt+2 + ...|St] = E[
∞∑
i=t

γi−tri]

γ ≤ 1 discounts the effect of rewards distant in time on the value of the
current state. The discount factor rate was introduced to ensure that the
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sum of future rewards is finite and it supports the fact that animals prefer
earlier rewards to later ones. Such exponential discounting is similar to the
assumption of a constant interest rate per unit time on the received rewards.
To learn the values it is necessary that consistency holds only for correct val-
ues, which are those that predict the expected discounted sum of future val-
ues. If the values however are incorrect, there will be a discrepancy between
the predicted values and the correct one. This is called the TD prediction
error and is defined as follows

δt = P (r|St) + γ
∑
St+1

P (St+1|St)V (St+1)− V (St)

The prediction error is a natural error signal with the aim of improving the
estimates of the function V (St). The larger the error is, the larger is the
difference between the expected and actual reward. When this is paired with
a stimulus that accurately reflects the future reward, the error can be used
to associate the stimulus with future reward.
In this project the TD error is used to gate the plastic learning synapses by
scaling the learning. If the TD error is high, strong learning happens if it is
low and the prediction is correct then few or no learning happens because
the TD error is small. To gate learning through the TD variable, the activity
of the TD error neurons was monitored with a variable that increases with
neural activity and decays with time when no activity happens. The variable
is activity variable. It has similar dynamics to the LIF but differs slightly by
having no threshold condition and reset.

dA/dt = −A/τA
The variable has been monitored in the TD error neurons and summed up
to one neuron, where it is normalized such as that the maximum activity of
the TD error neurons represent 1, the minimum 0 and the activity values in
between minimum and maximum represent a range of scalars from 0 to 1.
The Fusi equation at the plastic synapses is multiplied by this value and is
thus gradually gated (Figure 2).

3 The computational model

It is crucial to introduce the structure of the model, as the structure de-
termines what the model is doing and what the limitations are. Figure 1
illustrates the structure of the model. The first neuron group of the model
is called input neurons and comprises two poisson input generator neurons.

15



Those neurons represent the two possible input textures, which can be pre-
sented to the mouse. As only one texture can be presented to the mouse
at a given time, those two neurons are never simultaneously active. At the
beginning of each trial one of the two is randomly selected to be active for the
duration of the trial. The trial structure will be introduced in a later subsec-
tion of this thesis. Those two input neurons are connected to a middle layer
with a Gaussian probability and as a consequence the middle layer is differ-
entially affected by the two input neurons. As for instance the blue input
neuron is stronger connected to the middle neurons in the left of the middle
neuron group and thus affects them more then the neurons on the right of
the neuron group and lead to higher firing in the left when the blue input
is activated. Those two Gaussians thus ensure that the activity distribution
across the middle layer is different when the first input (blue) is active and
when the second input (orange) is active. This idea behind this difference
in activity of the middle layer is that different inputs (textures) might be
differentially processed by neurons. The middle neurons are connected via
plastic synapses to the output neurons.
The output neurons comprise two subpopulations, which represent the two
different behavioural outcomes of the texture discrimination task, that are
licking and no licking. As introduced in the methods section those plas-
tic synapses update their synaptic weight when the previous neurons group
spikes shortly before the next neuron group spikes, in this case it is the middle
and output group. The reason why the Gaussian distribution of the inputs of
the synaptic weights do not overlap is that if they would overlap then a por-
tion of the middle neurons would spikes regardless of which input is active,
because it is connected to both inputs and thus its constant spiking would
interfere in the learning of the outputs. As it always spikes it would have
the tendency to associate one output with both inputs. This problem was
encountered during the early stages of the implementation of the model and
thus the Gaussian were implemented such as to have a minimal overlap. The
synaptic weights are set to be a value between 0 and 1. When initiated their
value is around 0.5, giving them the possibility to either potentiate or get de-
pressed. These plastic synapses allow the mapping of the input to an output.
The behavioural response of a mouse in the texture discrimination task is ei-
ther lick or no-lick, two distinct decisions that cannot take place in the same
time. To ensure that the model captures this fact a winner take all is imple-
mented between the two subpopulations of the output group. This winner
take all is the result of a synaptic connection between the two subpopulations
that inhibits both subpopulations equally strong. The subpopulation that
receives more input however can escape this inhibition because the excitation
that is coming from the middle layer is stronger then the inhibition provided
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by the other subpopulations and thus that subpopulation would ”win”.
Each output subpopulation is connected to an additional neuron belonging to
the binary neuron group, this neuron is used to represent the activity of the
whole output neuron subpopulation that is connected to it. It can be seen like
a relay station that sums up the activity of the output subpopulations. The
name binary was used as designation because only one of the neurons is meant
to be active for the same reasons as for the output group mentioned above.
To ensure this behavior, inhibition in a winner take all fashion between the
binary neurons has been implemented.
The binary neurons have a special role in reward signal generation in the
programming code. They have been used to decide when the input is applied
to the reward neurons. The program checks which input is active and also
which binary neuron is more active. At the beginning of each simulation
the rewarded connection of inputs (textures) and outputs (lick or not lick)
is chosen to be rewarded. For the results showed later the connection that
is to be learned is input 1 - output 1 (blue and violet in figure 3) and input
2 - output 2 (orange and green in figure 3). The input 1 to output 1 is
labelled as Hit in the later sections because it represents the association of
a texture with licking, while the connection from input 2 to output 2 is
called as a correct rejection because it represent the omission of licking. In
this model both of these connections are rewarded, because they represent
correct behavioural outcomes that the mouse is required to learn during the
texture discrimination task. Note that in the actual task the mouse is only
rewarded when the the mouse licks for the target texture, in our case input
1 and is not rewarded when it does not lick after sensing input 2 (texture 2).
For the sake of simplification the correct association of texture 2 with not
licking is also rewarded, because from a conceptual standpoint it can be seen
as a rather favourable situation as it has no punishment as a consequence
for the mouse. Additionally it is necessary in this model to reward this
situation or else it wouldn’t be learned by the plastic synapses. The learning
in these synapses are gated by the TD error that is only active when reward
is received. Currently the model checks what input is active and with what
output it is associated. If the correct binary neuron that is connected to the
output group subpopulation that harbours reward when associated with the
currently active input is 2 times more active then the other binary neuron
that is associated to the other output subpopulation, then the reward neurons
are given an input.
While the reward is given and the reward neurons are active, they excite
the TD error neurons. Those are the neurons that are used to calculate
the TD error in order to gate the learning at the plastic synapses. First
their activity is summed up to one neuron and subsequently this activity is
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normalised between 0 and 1 and this will be used to gate the learning. This
will be better explained later.
Back to the binary neuron group. This group is connected to the four out-
comes neurons. As the name of this neuron population suggest, those neurons
represent the four possible outcomes that can be observed in the texture dis-
crimination task. Those are Hit, Miss, Correct Rejection and False Alarm.
Their spiking helps visualize which connection has been selected by the sys-
tem. The way how the neurons represent that, is that they receive input
from the input group and also from the binary group and the four outcomes
subpopulations are also connected in a winner take all fashion, which leads
to the winning of only the selected outcome. For the sake of simplicity of
illustration the figure 2 only displays inhibition between neighbouring sub-
populations, but in fact all the subpopulations inhibit each other.
Those subpopulations in turn are connected to a critic neuron group via
plastic synapses so that the synapses can associate different synaptic weights
to the critic depending on the selected outcome, that is important for the
calculation of the TD error. The critic neurons inhibit the TD error neurons
and is also in turn excited by the TD error neuron.
To further understand how this works it is important to examine the loop
of reward neurons, TD error neurons and critic neurons. The activity of the
TD error neurons is the result of a balance between excitation from reward
neurons and inhibition of critic neurons. The goal of the system is to max-
imize the reward in a long term and to do so the correct association must
be learned or in other words the plastic synapses connecting the correct as-
sociations need to be potentiated while the other synapses should depress.
To do so it is important to make a prediction of the value of the current
decision and update the value function accordingly. The critic represent the
current value. To illustrate how this TD error works, please look at figure
3 and assume a naive system that has not been rewarded yet. In that case
the synaptic weights of the plastic synapses are rather low. The input would
excite the middle layer which would excite one of the output subpopula-
tions, as those synaptic weights are low however the output group would not
spike significantly, the exciting signal is then propagated to the other neurons
groups until it arrives the critic. Again there are plastic synapses between
the four outcomes group and the critic and those would also excite the critic
minimally. Thus the critic would not spike much. In case the correct asso-
ciation is given, the input current of the reward neurons is switched on and
the reward neurons excite the TD error greatly while the critic that would
continue to spike with a similar low activity and not inhibit the TD error
neurons much, which has as a consequence that the TD error neurons are
very active. Due to the fact they are very active and their activity is used
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to gate the plastic synapses the synapses would update their synaptic weight
a lot due to a high TD error . With time as the system receives more and
more reward, the synaptic weights for the correct association are more and
more updated, while the synaptic weights for the unrewarded association go
down. This change of synaptic weights has as a consequence that the critic
receives more input when reward is given and thus in turn inhibits the TD
error stronger. The excitatory input of the reward neurons stays always the
same and as the inhibition of the critic neurons rises, the activity of the TD
error goes down, which leads to a lower value of the TD error gating and
thus less learning for the plastic synapses. If the spiking and of the critic and
reward neurons synchronises and the inhibitory and excitatory connections
affect the TD error neurons equally strong, then the learning is off. The
TD error neurons receive an additional current that gives them a baseline
firing so that the TD error can be always calculated, this baseline firing is
subtracted from the actual TD error calculation.
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Figure 3: The architecture of the model. The model consists of 9 neuron groups,
indicated in different colors. Excitatory synapses are marked with black lines, in-
hibitory synapses with black lines which end with vertical lines and plastic synapses
which are TD error gated are marked in blue. Synaptic connection are not bidirec-
tional and go from the upper neuron groups to the neuron groups below except the
connection from the TD error neuron to the critic which excites the critic. The
TD error gating is represented by black dashed lines and the connections originate
at the red TD error neuron that summarizes the whole activity of the TD error
neuron group and affects all the plastic synapses in the system. A winner take all
is implemented between the different subpopulations of the output neurons, binary
neurons and the four outcomes.
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3.1 Early models

The above presented architecture is the final architecture with reinforcement
learning implemented thanks to the TD error gating. The early builds of the
model consisted of an unsupervised and a supervised version of the current
model. This early model only contained the input neurons, middle neurons
an the output neurons (Figure 3). In the unsupervised version of the model
the system selects randomly an output subpopulation to be associated with
the inputs. The mapping from input to output are not determined and each
output is equally likely to be associated with an input. The plastic synapses
were connected by the STDP and Fusi learning rule as both of them per-
formed equally the Fusi learning rule was chosen to be tuned for the final
architecture (Figure 3), because it is compatible with the Dynapse and would
facilitate a possible future implementation on neuromorphic hardware. The
supervised version of the model is slightly different, it has in addition to the
3 first neurons groups another neuron group that excited the output sub-
populations. This neuron group always excites a given output subpopulation
when a particular input of choice is active. This excitation ensures that the
subpopulation that is wished to connect to a input population spikes when
this input spikes and as the spike at they fire together, they wire together.
That means the synaptic synapses update their weight for this association.
Biologically speaking it might be unlikely that neurons learn in an unsuper-
vised or supervised way as there is dopamine. Dopamine is neurotransmitter
that signals the value of an outcome which motivates the organism to achieve
an outcome (Berridge & Robinson, 1998). Considering dopamine signalling,
it seems much more probable that the brain learns through a mechanism
such as TD error.

Figure 4: The architecture of an unsupervised model.
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3.2 Trial setup

All trials have an equal length and are separated by a pause of equal length
as the trial. At the beginning of each trial an input is randomly chosen to be
active for the duration of the trial. During the pauses the inputs are turned
off and as the system loses inputs all the neurons relax, which means their
activity goes down. At the start of each trials the voltages and activity of all
the neurons are reset to 0.

3.3 Results

3.3.1 Showcasing a simulation

In this section a simulation will be showcased. This simulation has 300 trials
and 300 pauses in between trial. Each trial and pause have the duration of 1
second. At the beginning of each pause the activity of the neurons is reset.
During the first 100 trials no reward is given to the system to let it explore
different options and after the 100 trials they system is rewarded when input
1 - output -1 is associated (Hit) and input 2 - output 2 is associated (Correct
rejection). Other associations such as input 1- output 2 (Miss) and input 2 -
output 1 (False alarm) are not rewarded. Figure 5 shows the spiking pattern
of all neurons during a simulation and figure 6 shows the associated legend.
As this graph is fairly crowded, figure 7 shows a version that is zoomed in at
the position where the transition happens between the non rewarded state
and the rewarded state. The transition happens after 200 seconds. In the
non rewarded phase the TD error gating is off and as reward is given to the
system the TD error gating starts to affect the synapses. The black line at
the top figure 7 shows the strength of the TD error gating. At times when
reward is given (those are in between the light grey lines on the figure 7)
the TD error gating affects the synapses the most as it is the time when the
reward neurons receive a current and excite the TD error neurons.
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Figure 5: Spiking pattern of a simulation comprising 300 trials and 300 pauses in
between. Each trial has a duration of 1s. The legend of the figure is indicated in
the figure below.

Figure 6: Legend of the figures 5 and 7. Showing the name of the neuron groups
and indicting which color is associated.
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Figure 7: Spiking pattern of the transition between the non rewarded beginning
and the rewarded period. The grey lines indicate when the reward is given to the
system. The rewarded association is input 1 - output 1 and input 2 - output 2.

Figure 8 and 9 show the evolution of the synaptic weights of the plastic
synapses during the simulation. The black line represents the border between
the the beginning where no reward was administered and the moment from
which on reward was given for the correct associations. On both graphs
in the beginning during the naive stage (non rewarded stage), no learning
happened as the synaptic weights do not rise. For the synapses between the
middle and output group the synaptic weights stay relatively the same as
opposed to the plastic synapses between the four outcomes neurons and the
critic neurons. The reason for this slight decay of synaptic weights between
the four outcomes neurons and the critic neurons is that those synapses do
not get a lot of input as the critic fires relatively low. Figure 10 shows this low
firing of the critic. This low firing is a consequence of low synaptic excitement
to the output neurons. This is changed after the system is rewarded. During
the first times the system is rewarded, the critic neurons continue to fire at a
low rate while the reward neurons fire at a much higher rate when activated
at the moment the correct association is rewarded. This discrepancy in
firing rate has a consequence that the TD neurons are not much inhibited
by the critic neurons but strongly excited by the reward neurons, thus the
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firing rate of the TD neurons is high. This high firing rate is used to gate
the learning in the plastic synapses. As it is high the synaptic weights are
strongly updated. After the beginning of reward administration the synaptic
weights rise quickly (Figure 8 and 9), this is due to the high TD error firing
rate shortly after the first reward administration.

Figure 8: Evolution of synaptic weights connecting the middle neurons with the
output neurons. The black line represent the moment of the transition from a
naive state to a rewarded state. The mean of 25 weights was chosen to represent
this synapses as the total number of synapses in the simulation was 600 and for
computational performance reason not all of them could be monitored.
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Figure 9: Evolution of synaptic mean weights connecting the four outcomes neurons
with the critic neurons. The black line represent the moment of the transition from
a naive state to a rewarded state.

Figure 10 shows that the firing rate of the critic is low when no reward is
given. This is due to the absence of reward. When there is no reward, the
reward neurons receive no input and thus they cannot excite the TD error
neurons which in turn excite the critic and the only input the critic receives
is the one coming from the four output association. This input however is
not enough to make the critic fire significantly. When the reward signal is
given the activity and firing of the critic gradually increases, as it gets more
input and the synapses from middle to output are strengthened. At the
same time TD error neuron activity rises as the reward signal activates an
input current to the reward neurons which become active and thus excite
the TD error neurons. However as mentioned before the weights of middle
to output are low in the beginning of the simulation during the first times
when reward is given and thus when the TD neurons are excited for the first
time, the critic neurons have a low activity and firing rate. As a consequence
the inhibition from the critic to TD error neurons is weak and the TD error
activity is very high. At these times the learning is rate is high, because
the high activity of the TD error that has been used to gate learning at the
plastic synapses. While learning the activity of the critic gradually increases
until it starts to correlate with the reward activity and the TD error activity
goes down with time. After the model has learned the right association that
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is rewarded, a balance between inhibition and excitation of the TD error
neurons is established, the critic fires synchronous to the reward neurons.

Figure 10: Evolution of the firing rate across different trials of the reward neurons,
critic neurons and TD neurons.

Figure 11 shows the percentage of trials in which the different associations
were chosen during the above showcased simulation. The mouse has chosen
the correct associations during 40 percent of the trails and the non rewarded
associations during around 20 percent of the trials.
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Figure 11: Bar chart showing the percentage of trials the four different behavioural
outcomes have been chosen by the system.

3.3.2 Reversal

In some experiments the rewarded association is switched after some time.
Results form these experiments show that mice learn faster the new rewarded
association after the switching then the first rewarded association that has
been learned. This switching has been incorporated in the model. Figure 12
shows the spiking pattern of a simulation where the first 200 seconds were
unrewarded, followed by 200 seconds with reward and after the 400 trials
the rewards are switched. This switch has as a consequence that the Hit
becomes Miss and the Correct rejection a False alarm. Figure 12 and figure 13
show that after the first reward administration the systems learns quickly the
right reward association and chooses often rewarded situation. The learning
happens relatively quickly compared to the learning of the reversal. The
synaptic weights after the reversal of the newly rewarded associations rise
slower than the the prior rewarded association when it was learned. A reason
for this is that as the previous rewarded association has high weights at the
moment when the reward is switched and the system continues to choose
those previously rewarded association. With time those weights go down as
they are not rewarded any more and the newly association rises. Another
reason is that the weights of the newly rewarded association start at a lower
value then in the beginning of the simulation. As there is no negative learning
incorporated in the system the old rewarded association are forgotten through

28



extinction rather then actively. Experiments have shown that mice learn
faster after the reversal of reward, which is partially due to the devaluation
of the previously rewarded association. The absence of reward speeds up the
forgetting, because it might emotionally impact the mouse. As the forgetting
is faster the learning is also faster. Interestingly mice who are lesioned at the
OFC show a similar behaviour as the one captured by the model. They fail
to respond to devaluation and continue to learn at a similar rate or slower
rate the new association compared to the previously learned association.
The weights of the plastic synapses between the middle neurons and output
neurons behave analogous to the figure 13 and thus are not shown here.

Figure 12: Spiking pattern of a simulation where the first 100 trials were unre-
warded, followed by 100 rewarded trials and 400 trials in which the reward was
switched. The light grey lines indicate when reward is given. Reward is given more
frequently during the time when the first reward association is rewarded and less
frequently after the switch.
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Figure 13: Evolution of synaptic mean weights from four outcomes neurons to the
critic neurons. The black line represent the time when the system transitioned from
a naive state to a rewarded state to a state that has reversed reward association.

4 Discussion

This section covers some debatable points of the model.

As mentioned in the architecture section the reward neurons receive input
while the correct input and output association is active and in this time
window learning is happening though TD error gating. In real life settings
however reward is given after accomplishing a task and not while doing it and
learning happens later. Therefore the reward should be given at the time after
the trial has ended. This poses an implementation issue because the plas-
tic learning rules follow the popular dictum ”Fire together, wire together”,
thus the desired synaptic weights are only strengthened when neurons of the
desired association fire. This cannot be assured if the reward is given after
the end of the trial as the absence of input causes the system to return to
baseline firing of neurons and noise could bias subsequently the association
that is active at the delayed time and that association is likely to differ from
the desired one.
A drawback of the model is the reversal learning, which has been quickly
incorporated but not properly set up yet. In this simulation the association
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of the input and output, which lead to reward was switched. After switching
has happened the previous association needs to be unlearned while the new
is learned. A certain rate of unlearning is necessary to induce the actor to
do exploration. Experimental data of mouse brains also indicate that mice
forget actively as they learn (Madroñal et al., 2016). This active forgetting
is not captured by the model yet as their forgetting is induced by extinction.
The synaptic weights go down because they synapses are not potentiating,
while the other synapses of the newly rewarded association are. Furthermore
learning the new association after the switch is currently slower, which seems
to support experimental data of OFC lesioned mice but not wild type mice.
Another possible drawback of the model is that all the trials have the same
duration and in-between trials are pauses of equal duration to the trial. In
the real life set-up however trial duration varies depending on the choice of
the mouse as can be seen in figure 1. If the mouse licks for the non target
texture it is punished by a time-out, which has as a consequence that the
mouse needs to wait longer until it can claim the next reward. There is also
no punishment for incorrect decisions in the computational model. Correct
decisions are encouraged with reward but incorrect ones are forgotten by
extinction because they don’t yield reward and not because they are uncom-
fortable and need to be avoided. As a consequence after the switching of
the associations the absence of reward does not lead to further devaluation
of the previous rewarded association and the previous association is forgot-
ten through extinction. Furthermore the emotional state of the mouse is
not modelled. As mentioned above there is an absence of punishment and
variable trial duration. Both of these might provoke an emotional response
in the organism. A consequence of a variable trial duration is frustration
because the mouse needs to wait longer for the reward and a consequence of
punishment is aversion because of an uncomfortable feeling originating from
it.

Furthermore, by examination of the architecture the reader might have no-
ticed that there are neural populations that excite and inhibit other neu-
rons at the same time and thus violate Dale’s principle. Dale’s principle in
a nutshell consists of the idea that a neurons synaptic connections cannot
be excitatory and inhibitory simultaneously (Osborne, 2013). This can be
observed hower in this model, for instance in the output, binary, four out-
comes and critic neurons (Figure 2). This choice has been made to save
computation time and resources. The addition of further neuron groups per-
forming inhibition would not have changed the overall functionality of the
network. Additionally, Dale’s principle has been critically reviewed in the
past (Osborne, 1979; Sabelli et al., 1976). Experiments conducted in snails
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have indicated that serotonin neurons utilizes 5-Hydroxytryptamine (5-HT)
and acetylcholine (ACh) as neurotransmitters (Kerkut, Sedden, & Walker,
1967; Emson & Fonnum, 1974; Cottrell, 1977). It is however debatable if
this finding are evidence enough against Dale’s law.

4.1 Possible localisation of model components in brain
structures

In this section the different components of the model will be linked to what
they could possibly represent in biology. This section is rather conceptual
and should not be taken up as something absolute but rather ideas that are
debatable.
The input neurons represent the sensory inputs. As the input neurons are
generating input spikes to be propagated in the system, they could represent
the nerve endings in the trigeminal ganglion that convert mechanical whisker
energy into action potentials (AP).
The AP are then propagated to the middle group which could be seen as
the somatosensory cortex. As they two stimuli which can be presented are
not the same, they are thought to be processed by different neurons. This
is modelled by the Gaussian connectivity of the synapses between input and
middle group which connects differently the inputs to the neurons of the
middle group depending on which input is active.
The output neurons could represent the motor area in the brain, which de-
cides on the ouptut and the four outcomes neurons could be conceived as
working memory, which holds the information about which input and output
has been chosen until a reward is given and subsequently the TD error is
computed. Therefore the four outcomes neurons might represent the OFC.

4.2 Future model improvement

The next step in this model is to modify the reversal learning to be more
accurately describing the experimental data in wild type mice. In order to
do so the synaptic weights of the previous learned association should be
forgotten faster. An idea is to modify the plastic learning rule it in order
to induce faster forgetting after switching rewards. Furthermore it would
be interesting to look at existing learning and forgetting models (Jaber &
Sikström, 2004) and to see if those could be incorporated into spiking neural
networks and can be used to describe accurately experimentally observed
reversal learning.
Another thing that would be interesting to implement in the model is punish-
ment. Implementing this might help to solve the problem of reversal learning
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because punishment could lead to devaluation.
Additionally the model needs to be fit to experimental conditions, by tuning
the learning rate in order to learn at the same speed in the same time window
mice learn.
Another possible modification of the model can be made to simplify the ar-
chitecture. The four outcomes can be represented in the middle layer instead
as an own neuron group. This can be achieved by making the middle group
a 2D field that gets input from the inputs and has a recurrent connection
from the output back into the field.

5 Conclusion

The model presented in this thesis provides a conceptual architecture with
the attempt to capture the essence of learning in the mouse discrimination
task by using ideas from reinforcement learning and spiking neural networks.
In the beginning, that is in the absence of reward the system tries randomly
association of input and outputs. As soon as reward is given the system
learns the correct association. When this association is reversed the system
keeps choosing the previously rewarded association. Thus this hinders ex-
ploration and slows down the learning of the new association. The learning
is gated with a TD error signal that is generated by an interaction loop be-
tween TD error, reward and critic neurons and that is propagated to gate
the Fusi learning rule at the plastic synapses. TD error neurons are excited
when reward is given and excite the critic neurons, which in turn inhibit the
TD neurons. Thus the TD neurons activity is determined by a balance from
inhibition coming from critic neurons and excitation from TD error neurons.
When this balance is established the learning rate is low but if there is an
discrepancy in inhibition and excitation the learning is strong. This TD
learning captures the learning well.The first time a system is presented with
an reward association when this association between stimuli and outcome is
switched the model fails to capture experimental observation. As the learned
association keeps being selected and forgetting is slow. In experimental con-
dition however the learning of an new association is faster. Interestingly this
behaviour of the model, is similar to that seen in OFC lesioned animals.
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Köhn, M., Mattucci, C., . . . others (2016). Rapid erasure of hippocam-
pal memory following inhibition of dentate gyrus granule cells. Nature
communications , 7 , 10923.

Mao, X. (2007). Stochastic differential equations and applications. Elsevier.
Marr, D. (1969). A theory of cerebellar cortex. The Journal of physiology ,

202 (2), 437–470.
McAlonan, K., & Brown, V. J. (2003). Orbital prefrontal cortex mediates

reversal learning and not attentional set shifting in the rat. Behavioural
brain research, 146 (1-2), 97–103.
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