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Simultaneous planning and action:
neural-dynamic sequencing of
elementary behaviors in robot
navigation

Erik Billing1, Robert Lowe1,2 and Yulia Sandamirskaya3,4

Abstract
A technique for simultaneous planning and action based on dynamic field theory is presented. The model builds on previ-
ous work on representation of sequential behavior as attractors in dynamic neural fields. Here, we demonstrate how
chains of competing attractors can be used to represent dynamic plans towards a goal state. The present work can be
seen as an addition to a growing body of work that demonstrates the role of dynamic field theory as a bridge between
low-level reactive approaches and high-level symbol processing mechanisms. The architecture is evaluated on a set of
planning problems using a simulated e-puck robot, including analysis of the system’s behavior in response to noise and
temporary blockages of the planned route. The system makes no explicit distinction between planning and execution
phases, allowing continuous adaptation of the planned path. The proposed architecture exploits the dynamic field theory
property of stability in relation to noise and changes in the environment. The neural dynamics are also exploited such
that stay-or-switch action selection emerges where blockage of a planned path occurs; stay until the transient blockage is
removed versus switch to an alternative route to the goal.
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1 Introduction

The question of how an agent represents and selects
actions in order to reach a behavioral goal runs deep in
the fields of cognitive science and adaptive behavior,
and it is an important problem for both biological and
artificial cognitive systems. This problem has been
approached by breaking down the behavioral repertoire
of the agent into Elementary Behaviors (EBs): ‘‘motor
primitives’’ or ‘‘schemata’’ that constitute the basic
action vocabulary of a cognitive controller (Matarić,
2000). This idea takes root in the early work of Arbib
(1985) on distributed motor control and is central in
behavior-based robotic architectures (Arkin, 1998;
Brooks, 1991). While the exact formulation varies sig-
nificantly between different bodies of work (Billing and
Hellström, 2010; Matarić, 1997; Nicolescu, 2003; Tani,
Ito and Sugita 2004) almost all formulations include
both sensor and motor aspects of the behavior in each
elementary behavioral unit. Each EB must be initiated
at the right time, and there is also a need to decide
when, and if, a behavior has been successfully executed.
Moreover, such a distributed controller needs to

coordinate competing behaviors and elaborate a
sequence of behaviors that leads to a long-term goal.

One way to approach this problem is to formulate
EBs as attractor patterns in a dynamical system that
may be coupled to the agent’s sensorimotor dynamics.
Such an approach has an advantage that the planning
decisions about selecting, activating, and terminating
EBs, as well as the sensorimotor dynamics of the indi-
vidual behaviors, are formulated within the same com-
putational substrate of attractor dynamics, which leads
to a more homogeneous architecture. Our work builds
on one such formulation (Sandamirskaya & Schöner,
2010; Sandamirskaya, Richter, & Schöner, 2011) within
the framework of Dynamic Field Theory (DFT). DFT
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is a mathematical and conceptual framework, in which
cognitive architectures may be built based on principles
of neuronal dynamics. In earlier work, we considered
the serial ordering of actions in time (Sandamirskaya &
Schöner, 2010) and the flexibility in the order of
actions, termed behavior organization (Richter,
Sandamirskaya, & Schöner, 2012), introducing EBs
within the DFT framework (Sandamirskaya et al.,
2011). Here, we extend the architectures for sequence
generation to a distributed dynamical controller capa-
ble of planning and executing a sequence of EBs that
leads to a behavioral goal. To study the functionality
of the new architecture, we implement a path planning
scenario for a simulated robotic vehicle as an example
of a more general planning and search capability.
Using the extended DFT-based EB formulation, we
enable path search and planning towards a given goal,
robust acting out of the planned trajectory, and updat-
ing of plans if the environmental situation changes. To
our knowledge, this work represents the first attempt
to utilize the neural-dynamic DFT framework for plan-
ning and search.

The focus of the present work concerns linking the
lower level sensorimotor dynamics to higher cognitive
processes as they manifest themselves in planning and
search. This is achieved through a biased competition
between the currently viable action candidates and,
simultaneously, between the future action candidates.
With this approach, the local sensory-driven (reactive)
behaviors are integrated with the ‘‘long-term’’ plan, rep-
resented as an attractor pattern over a number of neural
fields. The approach presented here can handle the
problem of shallow gradients, which is otherwise com-
mon in, e.g. potential field approaches. In the proposed
architecture, attractors are sustained during action,
both at a sensory-motor level and at the planning level,
allowing for robust performance within a changing
environment. This feature also permits long trajectories
to remain stable in the face of transient sensory pertur-
bations. Furthermore, the DFT approach used here has
the potential to maintain many plans and sub-plans in
parallel whilst simultaneously carrying out actions. To
this end, we refer to this approach as implementing
Simultaneous Planning and Action (SPA). This absence
of separation of planning (as well as path extraction)
and execution phases, we suggest, promotes great flexi-
bility and robustness of performance of the robotic
agent whilst not severely compromising on measures of
optimality (e.g. shortest path finding and maintaining
safe distances from obstacles).

To the authors’ knowledge, no DFT-based system
has previously been proposed that searches for a
sequence of actions towards a goal, in a way that can
be compared to classical artificial intelligence (AI) for-
mulations of planning (as we do in the discussion).
While efficient and optimal search may have been

overemphasized by classical AI in explaining human
and animal cognition, search is without question a key
component in at least higher-level cognitive functions,
such as planning. For this reason, we believe that a
DFT formulation of search and planning can contrib-
ute to a better understanding of the link between the
lower-level sensorimotor processes and higher-level
cognitive functions. It may also shed light on the pros
and cons of the dynamical, sensorimotor, or embodied
approaches in relation to classical AI-formulations of
search.

The rest of the paper breaks down as follows. After
introducing the basics of DFT in Section 2, we present
the DFT architecture able to plan a sequence of actions
leading towards a goal in Section 3. The presented archi-
tecture should be understood as a generalization of previ-
ous work on sequence representation (Sandamirskaya
et al., 2011; Sandamirskaya & Schöner, 2010). Three test
cases applying the architecture as a planning and control
system for a simulated e-puck robot are presented in
Section 4. While the presented work should be under-
stood as a generic search architecture, we make an effort
to present a complete system, where inputs and outputs
interface directly with the world. Results from simulated
robot experiments are given in Section 5. Here, we focus
solely on planning within an existing state space rather
than on problems of localization and mapping (i.e. con-
struction of a cognitive map of the environment). A dis-
cussion of possible connections to animal planning and
learning abilities, as well as of the relation of our work to
AI planning and search algorithms are presented in
Section 6. Finally, conclusions are given in Section 7.

2 Methodological background: dynamic
neural fields

DFT (Schöner, 2008) is today a well established
neurally-based framework in cognitive science, used to
model various perceptual (Johnson, Spencer, &
Schöner, 2008; Zibner, Faubel, Iossifidis, & Schöner,
2011), motor (Bastian, Schöner, & Riehle, 2003,
Schöner, Kopecz, & Erlhagen, 1997), and cognitive
functions (Sandamirskaya, Zibner, Schneegans, &
Schöner, 2013; Schöner, 2008; Spencer & Schöner,
2003). DFT is often presented as a bridge between the
sensorimotor levels of neural processing and levels that
relate to cognitive processes (Spencer, Perone, &
Johnson, 2009).

In the language of DFT, the state of a cognitive sys-
tem is characterized by dynamic activation functions,
Dynamic Neural Fields (DNFs). A DNF is a mathemat-
ical formulation of the neuronal activation at popula-
tion level, taking root in the mean-field approximation
of the activation dynamics in biological neuronal net-
works (Amari, 1977; Ermentrout, 1998; Wilson &
Cowan, 1973). DNFs are defined over behaviorally
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relevant dimensions, for instance, continuous percep-
tual features (color, orientation, or location) or motor
parameters (joint position, velocity, or force), or dis-
crete cognitive dimensions (serial order, object labels).
The activation of a DNF evolves in time according to
equation (1), first analyzed by Amari (1977). This dyna-
mical system equation has an attractor solution of a
particular shape, a localized bump of positive (supra-
threshold) activation. This bump, or peak, is stabilized
by the recurrent interactions in the DNF. The position
of the supra-threshold activation bump on the DNF’s
dimension specifies the content of the respective repre-
sentation, i.e. which parameter values characterize the
current state of the cognitive system. The strength of
the activation bump expresses the certainty of the sys-
tem in the current estimation of the behavioral para-
meter. Such localized activity bumps are units of
representation in cognitive architectures, built with
DNFs (Sandamirskaya et al., 2013; Schöner, 2008) they
represent perceptual objects, motor intentions, or plans.

The temporal dynamics of the activation function of
a DNF, u(x, t), is defined over a continuous behavioral
dimension, x

t _u x, tð Þ=�u x, tð Þ+ h

+

Z
f u x0, tð Þð Þv x� x0ð Þdx0+ S x, tð Þ

ð1Þ

where t is the time constant of the field dynamics, t is
time, h \ 0 is the resting level that ensures that without
external input the field is subthreshold, i.e. at a negative

activation level, and S (x, t) represents the external sti-
muli. The connectivity function v(x 2 x#) is a bell-
shaped kernel representing a short-range excitatory
(cexc), a longer-range inhibitory (cinh), and a globally
inhibitory (cglobal) inflows from other activated loca-
tions in the field
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where s represents the width of the kernel.
The output of the DNF is shaped by a sigmoidal

non-linearity, f, that determines which locations of the
DNF provide input to other locations in the field, and
possibly other connected fields

f u x, tð Þð Þ= 1

1+ exp �bu(x, t)½ � ð3Þ

where b is the slope of the sigmoidal non-linearity.
Figure 1 shows a one-dimensional DNF, described

by equation (1), and the respective lateral interactions
kernel, equation (2). The external input, S(x, t), to the
field (green line in the plot) has two regions of higher
strength, in which the activation level of the DNF
(blue line in the plot) reaches the activation threshold.
The lateral interactions of the DNF, described by the
kernel level depicted in the lower part of the figure,
‘‘pull’’ a localized activity peak over one of the regions

Figure 1. An exemplary one-dimensional DNF (equation (1); top) and the respective interaction kernel (equation (2); bottom).
The activation level u(x,t) (blue line), sigmoid output f(u(x, t)) (red line), and external input to the field S(x, t) (green line), are shown.
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with high input strength (the one that first reached the
activation threshold), inhibiting the DNF at other loca-
tions. This inhibition also suppresses activation in the
second region with high input strength.

Thus, through its dynamics, the DNF in Figure 1
made a decision, selecting one of the two regions in the
input distribution and stabilizing this decision by lateral
interactions. This decision will have impact on down-
stream structures in a DNF architecture through cou-
pling of this field to other DNFs and, ultimately, to the
sensory-motor dynamics.

A different parameterization of the interaction ker-
nel, with cglobal = 0, would lead to a DNF that builds
two localized activity peaks if stimulated with the same
input as the one, depicted in Figure 1. If the excitatory
part of the interaction kernel is strong enough, on the
other hand, the activity peak may remain supra thresh-
old even when the initial input to the field has vanished.
Cognitive neural-dynamic architectures can be built
with DNFs with different parameterizations and have
been used both to model human cognitive behavior
(Johnson, Spencer, & Schöner. 2009) and to control
cognitive robots (Sandamirskaya et al., 2013).

3 The neural-dynamic SPA architecture

3.1 The general framework

In previous work, Sandamirskaya and Schöner (2010)
and Sandamirskaya et al. (2011) used the notion of EB
to describe a discrete functional component represent-
ing some part of the complete behavioral repertoire of
the agent; e.g. ‘‘look for an object with color X’’ is one
possible EB, which implements search and approach
(or gaze) towards an object of a given color, ‘‘move
arm to position Y’’ is another typical EB. Each EB is
characterized by two neural-dynamic structures, related
to control of action initiation and termination: intention
(I) and condition of satisfaction (C), each represented
by a DNF (Sandamirskaya et al., 2011). When the I-
field is activated, it impacts the downstream dynamical
structures, connected to the sensors and actuators of
the robot, and the intended behavior is executed.
Moreover, it pre-activates (or pre-shapes) the C-field to
be sensitive to the desired sensory outcome of the beha-
vior. When the sensory conditions are perceived that
correspond to a successful accomplishment of the cur-
rent action, the C-field becomes active, signalling that
the behavioral goal is achieved. The C-field also inhi-
bits the I-field and deactivates the EB.

Sandamirskaya et al. (2011) demonstrated how this
structure enabled autonomous organization of simple
action sequences. To encode order of actions in a
sequence, nodes representing rules of behavioral orga-
nization were introduced. In particular, the precondition
(P) node inhibits the initiation of an EB that requires
certain conditions to be fulfilled in order to be

activated. The P node is inhibited, in its turn, by an
activated condition of satisfaction (C) node of a differ-
ent EB. Sandamirskaya et al. (2011) have demonstrated
how different action sequences may be encoded in this
architecture and activated by selecting one of the task
nodes. A task node boosts all EBs and precondition
nodes, involved in achieving the selected behavioral
goal. As a result, a sequence of behaviors unfolds, lead-
ing to accomplishment of a task, such as grasping,
pointing, or lifting an object.

Here, we present a planning architecture that con-
sists of four main parts, depicted in Figure 2 for two
connected EBs. Analogous to previous work, there is
intention (I), condition of satisfaction (C), and precondi-
tion (P) components, implemented as DNFs, with a
fourth component, motivation (M), added. M should be
seen as a goal representation, feeding activity to both P
(connection 1, Figure 2) and I (connection 3). Supra
threshold activity in the I-field initiates execution of the
EB, but also parametrization of the sensorimotor sys-
tem during the particular action (e.g. location of the
motor goal). There is consequently a close link between
the goal representation (M) and the initiation of an
action to reach that goal (I). Supra-threshold activity in
the precondition field (P) suppresses activation of I
(connection 4). The precondition can be released by an
inhibitory input from the perceptual system (release of
precondition, Figure 2, or internally, by C-field activity
(connections 7), which signals successful execution of
another part of a behavioral sequence. A plan emerges
in the interaction between the M and P fields, where
supra threshold activity in the P-field propagates to M-

Figure 2. Schematics of the main components of the proposed
architecture. A sequence of two elementary behaviors (EB1
followed by EB2) is displayed. A goal (γ) is introduced as a
motivation (input to the M-field) to execute EB2, given some
contextual information (λ) and that some preconditions
(represented as activity in the P-field) are fulfilled. Numbers on
some connections are added to ease reference from the main
text (Section 3).
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fields of EBs that can fulfill that precondition (connec-
tion 2). Behavioral sequences (connections 2 and 7) are
formed both between different EBs, in this case EB1
fulfills the preconditions of EB2, or internally within
an EB, constituting a sequence of one EB, executed sev-
eral times with different parameterizations. Finally,
condition of satisfaction (C-field activity) results from
simultaneous input from both the I-field (connection 5)
and perceptual input (connections 8) indicating a goal
state. C-field activity acts both to terminate execution
(connection 6) and release preconditions (connection
7).

A plan is represented as a pattern of self-stable
supra-threshold attractors (see Schöner, 2008) distribu-
ted over the M and P fields (connections 1 and 2). The
active regions in the P-fields inhibit respective regions
in the I-fields (connection 4), which would otherwise be
activated by input from the active M-fields (connection
3). When one of the P-fields receives inhibitory input
(connection 7) strong enough to inhibit the relevant
location in this field and thus release the precondition,
a peak rises in one of the intention fields, and the plan
unfolds into action.

An example of a minimal planning sequence using
recurrent activation of a single EB is illustrated in
Figure 3. This minimal plan helps to illustrate the
spreading of activation in time between EBs in the pro-
posed DFT framework. Slices of the two-dimensional
fields are depicted, illustrating the formation of a plan
along a continuous dimension of a single EB. Each
location on this dimension corresponds to an action of
the EB with a different parametrization (e.g. movement

to a particular location in space). Active locations in
the M-field excite the respective locations in the I and
the P fields. If activity in the P-field is not inhibited, it
suppresses the respective location in the I-field, pre-
venting initiation of the action.

An active part of the P-field may also activate the
M-field, that is, the architecture is forming a motiva-
tion to fulfill that particular precondition. A single site
of P-field may activate several locations in the M-field,
or even M-fields of other EBs, as illustrated in Figure 2
and later discussed in Section 3.2. Eventually, the
spreading motivation may lead to activation of an M-
field for which the precondition is suppressed (Figure
3, right), allowing a peak to form in the I-field, and the
plan unfolds into action.

3.2 The SPA architecture implemented for the path
planning scenario

The SPA architecture for the navigation example, con-
sidered in this work, is shown in Figure 4. The imple-
mentation of the SPA framework for this scenario
requires some explanation: the individual EBs corre-
spond to elementary movements in one of the direc-
tions in space (arbitrarily denoted as North, South,
West, and East). Each EB is parameterized along two
dimensions corresponding to physical space, resulting
in two-dimensional DNFs implementing M, P, I, and C
(compare with Figure 2). Locations in M, P, I, and C
fields represent transitions between places in the envi-
ronment. For instance, activity at a location A in the I-
field of the North EB initiates a movement towards the

Figure 3. Left: Initiation of a minimal plan. The plan consists of recurrent activation of a single EB, illustrated as an intersection of
the two-dimensional motivation (M), precondition (P), and intention (I) fields. An external (goal) stimulus (g) activates a particular
site at the M-field. The blue lines represent activity in the corresponding fields shortly after the goal stimulus is introduced. The
horizontal black lines represent detection thresholds of the fields (see Section 2), allowing activity to spread to other fields. Activity
in the M-field spreads, via connections 1 and 3, to P and I. As a peak forms in P, the I-field is inhibited (connection 4), preventing
execution of the behavior. Activity will continue to spread, via connection 2, activating a neighboring site of the M-field. The process
continues recursively, eventually forming a plan between M and P, until intersecting with a release of precondition. Right: Execution
of minimal plan. Suppression of precondition (connection 7) allows a peak to form in the intention field (I), initiating execution of the
behavior. If execution is successful, a condition of satisfaction peak will form (indicated as a red-line input), releasing precondition for
the next step of the plan (compare with Figure 2). δ denotes the size of the shift for connections 1 and 3.
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north, potentially involving the robot turning in this
direction, from the location A. The robot will continue
to move north as long as there is activity in the North I-
field, but the precondition for moving north (which
inhibits the respective intentions) will normally never
be released unless the robot is standing at a location
from which it can move north towards a motivated
goal.

Figure 4 shows how the M, P, I, and C DNFs are
connected with sensors and actuators of the robot. The
I-fields propagate activity to four action fields (connec-
tion 11), which induce rotations of the robot’s wheels

(connections 12 and 13) so that it orients and moves in
the selected direction. Activity in the action fields is
shifted depending on the correct heading direction of
the robot (connection 9) and is inhibited by sensed
obstacles on the robot’s path (connection 10).

A peak in the condition of satisfaction C-fields forms
when the robot reaches a position adjacent to the cur-
rent location in the intended direction, i.e. when input
from connections 5 (input from the I-field) and 8 (per-
ceptual input from the place sense of the robot) inter-
sect. Mathematical formulations of this network are
given in Appendix A. Note that the SPA framework is

Figure 4. Overview of the complete architecture, including interactions with the robot. See text for details.
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not limited to four EBs representing compass direc-
tions; this particular configuration was used to consti-
tute an intuitive example comparable with classical
planning approaches.

Some of our EBs are mutually exclusive (e.g. South
and North). Competition between opposing EBs is
implemented in a similar way as the motivational links
(connection 2, Figures 2–4), but is represented by inhi-
bitory rather than excitatory connections. For example,
activation in the East M-field representing motivation
to go east towards a specific position X results in acti-
vated preconditions for locations west of X (compare
with Figure 3). Activity in the East P-field will spread,
via excitatory connections, to corresponding locations
in the M-fields of North and South, but will also sup-
press activity in the West M-field. This results in a cas-
cade of competing activation between M- and P-fields,
among the available set of EBs. One example of this
cascading activity among all four EBs is presented in
the result section (Figure 12).

The M-fields receive a Goal (connection g) input,
essentially a place-holder for the neural activity corre-
lated with a reinforcing input, e.g. an anticipated or
actual rewarded state. In other work (Gaussier,
Leprêtre, Quoi, Revel, & Joulian 2000, Hirel et al.,
2013) motivations are considered in relation to drives
(Tolman, 1948) and gate the valuation of the particular
goal location. We take a similar approach by represent-
ing the goal as a stimulation to one or more M-fields.
This stimulation constitutes the starting point for the
formation of a plan. In the present work, a single
Gaussian goal input is given to all M-fields, corre-
sponding to a specific target location in the local sur-
roundings that potentially can be reached from any
direction.

Obstacles and other behavioral restrictions imposed
by the environment are represented as inhibitory contex-
tual input to the motivation fields (connection l, Figure
4). The context should here be understood as a memory
of the local surroundings. Both the DNF representa-
tions, and their mapping to the world through sensors,
are continuous in space and time. A contextual or goal
input may change at any time, sometimes resulting in
dramatic changes in the activation patterns of the fields,
and as a result, the robot’s behavior. While plans form
as competing activity in the M- and P-fields and are in
this sense continuous, each EB implements a certain
connection shift (d, see Figure 3) and has in this sense a
discrete component. Plans may also involve several dif-
ferent EBs, e.g. execute West to release the precondition
for going North. In a different scenario, this may involve
moving towards a table before reaching for an object,
where reaching and moving are formulated as different
EBs. In this way, the architecture opens up for planning
between different representational spaces (LaValle,
2006).

The agent may have many memories of different
surroundings, but only one is active and imposed onto
the M-fields at a single time. How these context repre-
sentations may be formed and selected is discussed in
Section 6, implementation of these processes is outside
the scope of this work.

The SPA architecture for path planning integrates
sensor information of three types: place sense; head
direction; and proximity sensors, see Figure 4. The place
sense provides sensory evidence for condition of satis-
faction. In a general sense, it provides information that
one EB has been successfully executed, the desired loca-
tion has been reached, and the next step of the plan can
be initiated. In the present implementation, the place
sense field receives Gaussian input from a single noisy
position sensor, see Section 4 for details.

Activity in the head direction and proximity sensor
fields biases action selection (Figure 4). Each EB con-
nects to one action field, a one-dimensional DNF
defined over an angular dimension, representing the
turning angle of the robot. The head direction field
provides a single Gaussian input to each action field
(connection 9).

By default, the head direction input results in sub-
threshold activity of the action field and hence no
motor output. However, when the action field gets
additional input from the I-field (connection 11), the
combined input results in a supra-threshold peak in the
action field, and motor output. The detailed mathemat-
ical formulation is given in Appendix A.

Each action field also gets inhibitory input from the
proximity sensors (connection 10), which are activated
if an obstacle is present near the robot. This input may
shift or completely suppress a peak in the action field,
and as a result, adjust or prevent a turn in a specific
direction. This mechanism implements elementary
dynamics of obstacle avoidance.

4 Robotic demonstration

Since the proposed architecture is to our knowledge the
first DFT formulation that implements a mechanism
for search, the main purpose of this demonstration was
to evaluate to what degree the architecture can search
for a sequence of actions towards a goal, in a way com-
parable to classical search algorithms. Secondary goals
were to study the system’s response to changes and
noise during planning and plan execution. Since the
neural fields constituting the search mechanism are
bound directly to the sensory-motor systems of the
robot (see Figure 4), it is effectively implementing both
path planning and path tracking, and is therefore ana-
lyzed as a complete system.

The proposed architecture
1

was implemented using
the Matlab framework COSIVINA (Schneegans, 2015)
and evaluated in two simulated environments, using
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the robot simulation software Webots (Cyberbotics,
2015). The first environment is a minimalistic Z-maze,
depicted in Figure 5. The second environment, depicted
in Figure 6, is a large maze introduced to test the archi-
tecture in a more complex setting. It should be noted
that, despite their block-like look, these environments
are continuous. To analyze behavior of the architec-
ture, three test cases were defined;

Case 1. 100 pairs of start-goal locations in the Z-
maze were selected randomly.

Case 2. 100 pairs of start-goal locations in the large
maze were selected randomly.

Case 3. The behavior of the system was evaluated
when obstacles are introduced at different times during
planning and execution. Fixed start and goal locations
were used (as displayed in Figure 5). Two types of

obstacles were used, a partially obstructing obstacle
and a fully obstructing obstacle. The test case was exe-
cuted 240 times for each obstacle type.

The purpose of the first two cases was to confirm
that the architecture produces path planning and track-
ing behavior comparable to traditional methods, in
both a small minimalistic setting (Case 1) and a larger,
somewhat more demanding, environment (Case 2).
Case 3 was designed to evaluate the system’s response
to changes in the environment. The effects of noise were
studied in all test cases, using two noise levels.

Start and stop locations were selected with a mini-
mal distance of 40 mm from walls and obstacles. The
obstacle introduced in Case 3 appeared at a random
time ti and was removed at time ti + tp. ti and tp were
drawn from a uniform distribution such that 30 \ ti
\ 700 and 2 \ tp \ 500 simulation steps. These limits
were selected to make the obstacle appear during plan-
ning or execution, before the robot reached the goal.
When an obstacle was added, apart from introducing
an object in the simulator, the map was updated with
the new obstacle information, providing a new contex-
tual inflow to the motivation fields.

Each test case was repeated with two different levels of
noise, while keeping all other parameters constant. With
the low noise level, normally distributed noise with an
std=5% of the contextual stimuli strength (l in Figure
4) was applied to the map. Normally distributed noise
with std of 5 mm was also applied to the position sensor.
With the high noise level, std of 100% of l and 20 mm
was applied to the map and position sensor, respectively.
Noise mean=0 in all cases. Distance measures in the
simulated environment are given in proportion to the
physical e-puck robot (Mondada et al., 2009), with a dia-
meter of 74 mm. Locations for the obstacles introduced
in test case 3 are depicted in Figure 13.

In addition to the tests using the proposed architec-
ture, test cases 1 and 2 were executed with a reference
implementation of Follow the carrot (Barton, 2001).
For details on the implementation of Follow the carrot,
please refer to Appendix B.

5 Results

5.1 Results for test case 1 and 2

The proposed SPA architecture was compared to a
standard path tracking approach Follow the carrot.
Tests were executed in two environments, a minimalis-
tic Z-maze (Case 1, Figure 5) and a large environment
(Case 2, Figure 6). Test cases 1 and 2 comprised a total
of five conditions each. The proposed SPA architecture
with low and high noise, and Follow the carrot tested
without noise, with low noise, and with high noise.
Each condition was executed 100 times for at most
3000 simulation steps (corresponding to 192 s with a

Figure 6. Evaluation environment 2, the large maze used for
test case 2.

Figure 5. Evaluation environment 1, the Z-maze. The e-puck
robot is here standing at the starting point used for test case 3.
The green area marks the goal.
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simulated time step of 64 ms). This limit was selected
to be well above the time necessary to reach the goal,
even for the longest paths.

The proportion of successful runs is presented in
Figure 7. To get an overview of the stability and optim-
ality of the proposed architecture, divergence from the
optimal path was calculated as Lp/Lo. Lp represents the
executed path length and Lo is the optimal path,

defined as the Euclidean distance given by A* over an
eight neighbor grid with a cell size of 1 cm and a mini-
mum obstacle distance of 4 cm. A One-way ANOVA
revealed no significant differences in path length
between different conditions in environment 1
(F=0.97) and environment 2 (F=0.98). Executed
paths produced by SPA from six representative runs of
Case 2 are presented in Figure 9.
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Figure 8. Divergence from optimal path for environment 1 (left) and 2 (right). Results are given for the proposed SPA architecture
tested with low noise (SPA-LN) and high noise (SPA-HN), compared to Follow the carrot without noise (FTC-NN), with low noise
(FTC-LN), and high noise (FTC-HN).
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5.2 Results for test case 3

In order to analyze the detailed function of the architec-
ture, activity in all fields was logged during a single run
from Case 3, where a fully obstructing obstacle was
introduced at t = 336. Figure 10 displays the temporal
evolution of activity at four locations in the motivation
field, which are defined below, for each of the four EBs
(North, East, South, andWest). The same four locations
are displayed as a path plot in Figure 11. A snapshot of
the activity in the motivation fields at the moment when
planning is complete and the robot starts to move
(t = 210) is presented in Figure 12.

The robot starts at location 1 (t = 0), then continues
to location 2 (t = 500), location 3 (t = 850) and,
finally, location 4 (t = 1250). At t = 0, an excitatory
input is introduced in all motivation fields, at the loca-
tion of the goal. Through the interplay between the M-
and the P-fields, motivation is back-chained for each
action, i.e., activity spreads north in the south motiva-
tion field, and vice versa, but also from the south moti-
vation field to the east and west fields, leading to a
competitive spread of activation in all directions. The
goal input first propagates to the north and east moti-
vation fields at location 4, see in Figures 10 and 11.
The south and west M-fields receive inhibitory input
from north and east, respectively, leading to the dip in
activity at this location. Around t = 150, the wave of
propagating activity reaches location 2, activating the
west motivation field, and at t = 210, the complete
‘‘plan’’ is present as a pattern of supra-threshold activa-
tion in the four motivation fields (Figure 12).

After t = 210, activity increases in the intention
fields (Figure 10, bottom pane). As a consequence of
strong activity in the north field, and competing activ-
ity in the west and east fields, the robot leaves location
1, turns north, and as the west field wins the competi-
tion, continues towards north-west (Figure 11).

A fully obstructing obstacle is introduced during
early execution (t = 336). The following interval 350 \
t \ 550 can be seen as a replanning phase where the
activity in the west motivation field dies away, and is
replaced by activation in the south and east motivation
fields, at location 2. The resulting sequence of actions is
visible in the maximum activity of the four intention
fields (Figure 10, bottom pane). Around t = 550, the
east attractor stabilizes at location 2, leading high activ-
ity in the east intention field, followed by south, west,
and finally, north.

This replanning behavior is dependent on the para-
metrization of the neural fields, resulting in a self-stable,
but not self-sustained, field activation. That is, active
regions of the field that no longer get the propagated
support from a goal will decay. This is the case when
the obstacle is introduced, cutting propagation of moti-
vation to go west, and as a result, activity at location 2
of the west M-field (Figures 10 and 11) will decay,
allowing competing motivation from the south to take
over, resulting in the initiation of an alternate route.

An overview of the systems response to introduced
obstacles is presented in Figure 13. Individual runs are
colored according to the selected path, where green rep-
resents a direct route north of Z (shortest), blue repre-
sents a direct route south of Z (when the north path is
blocked), and red represents an initial selection of the
north path with a change to the south.

The time course for some representative runs from
Case 3 is presented in Figure 14. If no obstacle is pres-
ent, the robot would always opt for the shortest (green)
path, not displayed here. When the obstacle appears
during early planning, the robot opts instead for the
slightly longer south (blue) route, independently of
obstacle type (Figure 14, top pane). Obstacles appear-
ing later do not have the same effect. A partly obstruct-
ing obstacle appearing during late planning or
execution will not result in a change of the selected
path. The robot persists on the north (green) path,
which should be understood as a case of path adjust-
ment rather than complete replanning. However, when
a fully obstructing obstacle appears during late plan-
ning or early execution, the robot switches from the
north to the south route (red). A period of velocities
close to zero can in these cases be understood as the
time of replanning.

A detailed analysis of path selection and replanning
behavior is presented in Figures 15 and 16. As visible in
Figure 15, the appearance of a partly obstructing obsta-
cle during the first 200 time steps results in the selection
of the south (blue) route, even if the duration of that

Figure 9. Path plot of six representative runs from Case 2,
each start/stop pair plotted with a unique color. Lines are
marked with diamonds and squares, representing low and high
noise, respectively.
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obstacle is short. However, the fully obstructing obsta-
cle that persists for a short time (Figure 16) appears to
have less effect on the decision-making (i.e. the robot
selects the north route more often).

When the obstacle occurs after t = 200 time steps,
which roughly corresponds to the time when the robot
starts moving (see Figure 14 for details), the robot
makes an initial selection of the shortest, north, path in
almost all cases. If a fully obstructing obstacle appears
within 200 \ t \ 500, the robot switches from the
north to the south route (red). The robot is, however,
more persistent in continuing on the north (green)
route compared to runs where the obstacle appeared
before t = 200, that is, the robot waits longer for the
obstacle to disappear if the obstacle appears after

execution started. For runs where the obstacle appears
after t = 500, the robot always selects the north route.
In these cases, the robot has already passed the location
of the obstacle at the time it appears, and it therefore
does not interfere with the executed plan.

6 Discussion

6.1 Related work

Commonly, ‘‘global’’ planner algorithms revolve
around classical graph- and tree-based search algo-
rithms (LaValle, 2006; Russell & Norvig, 1995).
Typically, graph-based approaches entail a search and
an execution component. The particular application
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Figure 10. Field plots from the run displayed in Figure 11. The top four plots present activity from motivation fields at four
locations the robot visited during execution. The bottom plot presents maximum activity in intention fields.
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requirements constrain the choice of the approach; for
example, where robust performance (avoiding colli-
sions and maintaining accurate path integration) is
concerned, constructing a Voronoi diagram that
reduces likelihood of obstacle interference may be
desirable. Alternatively, if the emphasis for perfor-
mance is on finding optimal paths to targets, dividing
the state space appropriately for computing the short-
est possible path may be desirable, e.g. Distance
Transform (DT) methods. In the latter case, algorithms
exist that are capable of finding viable and optimal
paths at low computational cost. They are used for
‘‘offline’’ planning, e.g. through a standard AI method
for search such as A*, that is then followed by an exe-
cution phase, or updated ‘‘online’’ according to per-
ceived changes in the environment, as is the case for D*
and Anytime D*, see Siegwart, Nourbakhsh, and
Scaramuzza (2011) and Russell and Norvig (1995) for a
summary of approaches. Following the search/planning
phase, execution typically follows path extraction
according to the desired optimality criteria. Such a
graph-based approach is here used as a baseline refer-
ence, see Section 5.1 and Appendix B for details.

An alternative approach to graph construction/
search for dealing with reactive-global navigation prob-
lems is that of potential field planning (Khatib, 1986).
In this case, gradient valuations that cover the entirety
of the state space are composed, allowing the robot to
react to unexpected obstacles or changes in the environ-
ment while still being able to navigate towards the goal
by following the gradient in relation to the new state it

finds itself in. Gaussier and colleagues (Gaussier et al.,
2000; Gaussier and Zrehen, 1995; Hirel et al., 2013)
have produced much work in the area of sequential
behavior planning in relation to navigation including
adopting a potential field guided perspective. The gen-
eral approach followed by this group is that of planning
the back-chains potential navigable routes (sequences
of spatial behavioral transitions) from a goal state to
the current state. Using this approach, the robot may
explore the environment and identify landmarks, corre-
sponding to place cells (O’ Keefe & Nadel, 1978), with
an activation level reflecting the robot’s distance from
the identified place. By propagating activity from a
goal, through the network of identified landmarks, a
potential field is generated, allowing the robot to navi-
gate towards the goal by following the gradient. This
approach is shown to afford performance-wise robust
responding to obstacles and temporary occlusions as
robot navigation is guided by the potential field
(Gaussier et al., 2000).

In contrast to potential fields that implement a static
attractor basin centered at the goal, the approach pre-
sented here relies on dynamic attractors forming as
activity propagates from the goal to the agent’s current
state. Furthermore, while potential fields use the gradi-
ent for action selection, the framework presented here
relies on several discrete elementary behaviors, compet-
ing for activation. Potential fields may produce local
minima in complex environments. Although not free
from local minima, the competing actions approach
used here appears less prone to these problems. We aim

Figure 12. Activity plot over motivation fields at t = 210. The
pattern of supra-threshold activity (red) can be seen as the plan
of moving north, west, south, and, finally, east from the starting
point (white circle) to the goal (white cross).

Figure 11. Path plot over a single run from test case 3. Red x
marks positions that the robot passed during execution. The
black x marks the goal. The grey area represents the location of
a fully obstructing obstacle introduced at t = 336.
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to conduct a direct comparison with the potential fields
approach in future work.

Further alternatives to classical path planning
approaches include reaction-diffusion methods
(Adamatzky, De Lacy Costello, Melhuish, & Ratcliffe,
2003; Trevai et al., 2002; Vazquez-Otero, Faigl, &
Muñuzuri, 2012) and the so-called activation-diffusion
(Martinet, Passot, Fouque, Meyer, & Arleo, 2008). In
the case of reaction-diffusion, a typical approach is for
the path planner algorithm to generate diffusive waves
of (e.g. neurochemical) activation in a map, according
to the interaction of two or more variables, as guided
by mapped obstacles. Some such approaches use highly
biologically focused algorithms (Adamatzky et al.,
(2003), others seek rather to profit from certain princi-
ples of reaction-diffusion dynamics. In the latter case,
Vazquez-Otero et al. (2012) used an algorithm that
firstly generated diffusive activity from a start state
over a map of a maze (propagation phase) and sec-
ondly, on arriving at the goal state, activated a contrac-
tion phase (dissipation of activity), and finally, prior to
action execution, a path extraction phase using a stan-
dard search algorithm. They compared their approach
to classical approaches - Distance Transform (DT) and
Voronoi diagrams - to assess the optimality and safety-
value of the paths selected. A benefit of the approach
was the creation of smooth paths that permit more effi-
cient online behavior.

A general problem for reaction-diffusion mechan-
isms concerns finding appropriate mechanisms for per-
mitting online reaction to changes in the environment
(Adamatzky et al., 2003) and, relatedly, the dependence
on explicit path extraction methods to guide online
behavior. Martinet et al. (2008) put forward an
activation-diffusion method by which simulated
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Figure 14. Velocity plots from four representative conditions in Case 3, where an obstacle is introduced during early planning, late
planning, early execution, and late execution, in order from top to bottom. The grey area represents the time that the obstacle was
present. Solid and dashed lines represent the velocity over time, with low and high noise, respectively. Lines are colored according
to selected path, same as Figure 13.

Figure 13. Path plots over runs from Case 3, where an
obstacle was introduced at a random time. Left and right plots
represent partly and fully obstructing obstacles, respectively.
Upper plots show runs with high noise, and lower display runs
with low noise. colors represent path selections: green
represents a direct route north of Z (shortest), blue represents
a direct route south of Z (when the north path is blocked), and
red represents an initial selection of the north path with a
change to the south.
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cortical columns propagate back-chained activity from
a ‘‘motivation’’-gated column to one associated with a
start state. The activation of the latter column is then
forward propagated as a path representation. This
activation-diffusion approach has several similarities
with ours in that activation is back-chained from goal
to start state and that action choices compete for acti-
vation. However, the approach presented here does not

require forward propagation or the extraction of an
explicit path signal.

6.2 Relation to existing planning and search
methods

The properties of the neural-dynamic Elementary
Behaviors, which are the building blocks of the SPA

Figure 15. Path length plot over runs in Z-maze with low noise, where a partly obstructing obstacle was introduced at a random
time (x -axis), for a random duration (y -axis). Bars are colored according to the selected path, as illustrated in Figure 13.

Figure 16. Path length plot over runs in the Z-maze with low noise, where a fully obstructing obstacle was introduced at a random
time (x -axis), for a random duration (y -axis). Bars are colored according to the selected path, as illustrated in Figure 13.
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framework introduced here, are put in relation to exist-
ing planning and search algorithms:

1. Wavefront search. The neural dynamic nature of
planning may be compared to a wavefront (i.e.
multi-directional) approach. The planner is ‘‘sys-
tematic’’ (LaValle, 2006, p. 32). The neural dynamic
nature of our planner algorithm ensures, given
enough time, that all reachable states will be
searched and not re-searched (it is not redundant).

2. Shortest path search. Initial search is Dijkstra-like.
Whilst neural dynamic search is carried out, multi-
ple candidate paths are evaluated in parallel. A short
path stochastically receives greater activation faster,
compared to longer paths, which leads to the inhibi-
tion of competing paths.

3. Uni-directional. The search is uni-directional in the
sense that an active region of one motivation field is
partly self-sustaining and will inhibit competing transi-
tions, i.e. re-evaluations, as long as that location is
active. The self-sustainability is however dependent on
neighbouring regions being active. The introduction of
an obstacle, cutting of an active path, will consequently
lead to a spreading deactivation of remaining parts of
that route. Deactivation also releases the inhibition of
competing transitions, allowing for re-evaluations of
that part of the search space. This spreading activa-
tion/deactivation mechanism results in continuous
adaptation to changes in the environment.

4. Partial updates. Search is also online and can be
compared to D*. When changes in the environment
occur (see Section 5.2), neural dynamic planning is
updated locally (in relation to the changed aspect of
the environment). This means that the robot is not
required to completely replan when a path is
required to be modified rather than ‘‘catastrophi-
cally’’ altered. This is very much a feature of the
SPA nature of the neural-dynamic architecture. This
property shows up in the relatively short replanning
times (visible as periods of low velocity in
Figure 14), compared to the initial planning phase
(i.e. the initial propagation of activity from the goal
to the starting location of the robot).

5. Safety. It was found that the architecture generated
navigable paths equidistant between obstacles/walls.
The path search, therefore, can be seen as an emer-
gent Voronoi diagram. This can be put in relation to
the reaction-diffusion algorithm of Vazquez-Otero
et al. (2012), which produced navigable trajectories
that were not purely dedicated to shortest-path
exploration, but also included aspects of smoothness
and a safe distance to obstacles. The approach pre-
sented here shows similar properties in that a path
with longer distance to walls is selected, when that
space is available. The south (blue) route depicted in
Figure 13 shows a relatively long distance to all
walls, compared to the north routes (green) of Case

3A where the partial obstacle only leaves a narrow
corridor. Furthermore, the narrow passage leads to
a reduction in velocity (Figure 14).

6. Gradient search. Search implicitly follows a gradient
(in relation to the Euclidean distance from the goal
state to feasible intermediate states to the current
state). However, there is no explicit gradient valua-
tion over state space, from which potential fields can
be derived. One advantage of this approach is that
long paths do not suffer from low gradient valua-
tions that are susceptible to noisy evaluations or oth-
erwise fading memory of paths that may lead to
execution problems.

6.3 Biological mechanisms for planning and
navigation

Ever since the work by O’Keefe and Nadel (1978), pyr-
amidal neurons in hippocampus with firing patterns
that correlate with the physical location of the rat, so-
called place cells, have been a hot topic in cognitive
neuroscience. A growing body of literature tells an
increasingly complex story that involves not only place
cells, but also cells in postsubiculum that are sensitive
to direction (head direction cells) (Taube, Muller, &
Ranck, 1990a, 1990b) and cells in medial entorhinal
cortex with place sensitive firing patterns arranged in
hexagonal grids (grid cells) (Fyhn, Molden, Witter,
Moser, & Moser, 2004; Hafting, Fyhn, Molden, Moser,
& Moser, 2005; Sargolini et al., 2006). Hok, Save,
Lenck-Santini, and Poucet (2005) have also provided
evidence for cells in medial prefrontal cortex (mPFC)
that reflects the motivational salience of places (goal
cells).

Experimental research on rodents has inspired a
large body of computational investigations, e.g.
Burgess, Recce, and O’Keefe (1994) and Redish and
Touretzky (1997). These are also models, inspired by
research on place cells, directed towards robotic appli-
cations targeting the problem of simultaneous localiza-
tion and mapping (SLAM). A biologically inspired
model, RatSLAM (Milford & Wyeth, 2008), has shown
impressive results in mapping 66 km of urban roads
using only a single camera. An algorithm like
RatSLAM could potentially be linked with the archi-
tecture presented here via the Place sense and Head
direction fields (Figure 4).

While place cells as a mechanism for self localization
and mapping appear to be relatively well understood,
their role in path planning and goal pursuit is still puz-
zling (Jeffery, Gilbert, Burton, & Strudwick, 2003;
Poucet, Lenck-Santini, & Hok, 2004). Computational
models of navigation based on place cells typically for-
mulate the problem using reinforcement learning, using
both classical artificial neural networks (Kulvicius,
Tamosiunaite, Ainge, Dudchenko, & Wörgötter, 2008)
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and spiking networks (Strösslin, Sheynikhovich,
Chavarriaga, & Gerstner, 2005). Available paths have
been modeled as transitions from one place (repre-
sented by a place cell’s firing field) to another, and
coded as transition cells, corresponding to CA3 pyrami-
dal cells (Banquet, Gaussier, Quoy, Revel, & Burnod,
2002; Gaussier, Revel, Banquet, & Babeau, 2002). The
present work takes inspiration from this view of place
cells, reflected in our definition of elementary behaviors
as leading to a transition in a particular direction (see
Section 3 for details).

The work presented here can also be put in relation
to the parallel view of perception and action proposed
by Cisek and Kalaska (2010). Cisek and Kalaska sum-
marize a large body of neurophysiological evidence
speaking for a view where action selection and parame-
terization are processed in parallel to perception.
Neural activity related to different decisions (action
responses) builds up as a function of motivational
value and perceptual evidence, speaking for or against
different responses. While the architecture presented
here is not aimed at closely resembling the biological
mechanism, it constitutes one example of a computa-
tional model that captures many of these properties.
Not only selection of short term action responses but
also planning is in this view seen as preparation of
competing actions, continuously influenced by percep-
tual evidence and motivational value.

6.4 Effects of noise

In the gradient-based approach to planning sequential
behavior used by Gaussier et al. (2000) it has been sug-
gested that long paths may be difficult to plan –‘‘if we want
our animat to learn paths that need more than several tens
of subgoals then the slope of the gradient [from goal repre-
sentation to representation of current state] will be very
low . and will be very difficult to use . There is a need
to be able to structure the plans .’’ (p. 86). In general, it
has been suggested (Koren & Borenstein, 1991) that poten-
tial field approaches to robot navigation tasks suffer many
limitations. For example, robots may a) get stuck in local
minima, b) get stuck between non-passable objects/obsta-
cles, c) oscillate/dither in the presence of obstacles or nar-
row passages.

Some of these limitations appear to be, at least
partly, present in the architecture presented here. The
robot does, on a few occasions, get stuck in local
minima (see Section 5.1 for details). One such example
is displayed in Figure 9, the red colored run with low
noise. In this case, there are two competing attractors,
one from the south transition network and one from
the east. Since the distance to the goal happens to be
almost exactly the same at the point of the junction,
the two attractors are equally strong and, in combina-
tion with the inhibitory inflow from the obstacle avoid-
ance, a local minimum appears.

One common way to handle local minima problems
in potential fields is by introducing noise. As has been
demonstrated in Section 5, the architecture presented
here appears to be very robust to noise. Even though
the high noise level did not lead to 100% successful
runs in all cases, it did reduce the number of unsuc-
cessful runs. The fact that no significant effect of noise
was found in Cases 1 and 2 indicates that noise can be
introduced with a very small cost in terms of naviga-
tion performance. These results should however be
taken as preliminary, a deeper analysis of the system’s
behavior in response to noise is necessary to provide a
full understanding of this potentially beneficial
property.

6.5 Learning and development

While learning is not studied experimentally here, it is
still an important aspect of the proposed architecture.
The architecture has many parameters and it is there-
fore desirable to show how these could emerge from
learning. In the present context, learning can be consid-
ered on at least three levels of abstraction: (1) learning
individual EBs; (2) learning relations between EBs; and
(3) learning the constraints imposed by a particular
environment.

The first problem may be addressed by combining
reinforcement learning with the DNF framework.
Based on the same principles as the ones used in the
architecture presented here, Kazerounian, Luciw,
Richter, and Sandamirskaya (2012) demonstrated one
such example. Outside the DFT framework, we have
also studied learning of EBs in a navigational context.
Billing, Hellström, and Janlert (2015) applied the TD-
algorithm Predictive Sequence Learning (PSL) to sen-
sor and motor data from a Robosoft Kompai robot,
allowing the robot to learn and generalize goal directed
actions demonstrated via teleoperation.

We have also studied the second form of learning as
the learning of connection weights between EBs
(Luciw, Kaze-rounian, Lakhmann, Richter &
Sandamirskaya, 2013; Sandamirskaya & Schöner,
2010). This should be understood as learning how
behavioral consequences relate to each other and are
typically environment independent. In the present
work, we provide suitable connection weights between
EBs, as described in Section 3.

Learning behavioral constraints for a particular
environment can be seen as a SLAM problem. As dis-
cussed in Section 6.3, Milford and Wyeth (2008) pro-
pose an approach with several similarities to the
present work. The technique, called RatSLAM, imple-
ments Continuous Attractor Networks (CAN) with
similar dynamics to the DNFs used in the present
architecture. In future work, we aim to combine these
pieces of work in order to also learn the contextual
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input, i.e. the environment map, during simultaneous
planning action.

7 Conclusion

We have presented an approach to planning that
exploits Dynamic Field Theory (DFT) based attractor
networks to produce robust sequencing of elementary
behaviors with an online updating of the planned path.
The proposed approach has been implemented in an
exemplary path planning and navigation scenario. The
developed architecture consists of a tuple of Dynamic
Neural Fields (DNFs), in which activity spreads to pro-
pagate the motivational input (goal information), while
prior knowledge of the environment is represented with
an inhibitory flow to the motivation DNFs, and
between the precondition and intention DNFs. The
architecture receives direct inputs from the sensors and
controls actuators of the robot, producing a system
that performs neural-dynamic search in order to dis-
cover available paths towards the goal, whilst simulta-
neously executing selected behaviors. We refer to this
property as Simultaneous Planning and Action (SPA),
effectively a form of online search as actions and
changes in the environment perturb existing path plans.

In summary, the evaluation of our architecture in
simulated robotic experiments demonstrated the fol-
lowing advantageous properties:

� Scalability. The proposed architecture scales well
with the size or complexity of the environment. The
activation spreads with a constant speed among
DNFs and eventually reaches the current location
of the agent, creating a landscape of attractors that
leads towards the goal.

� Noise Robustness. The proposed SPA architecture
appears robust to noise. Increased noise does not
have any significant effect on navigation perfor-
mance and does not appear to affect planning.

� Performance robustness. Thanks to the stability of
attractor dynamics, transient changes and
blockages of the environment do not result in
replanning. The selected path will however be aban-
doned if an obstacle is blocking the way for a pro-
longed amount of time. Depending on the duration
and extent of the blockage, an alternative route will
be selected.

Of critical importance to the performance of the
SPA architecture is its robust online path planning
behavior. Noise and performance robustness are con-
tinuous in that minor perturbations (including partial
and/or transient obstructions) do not deter the agent
from following its goal path. Major perturbations,
however, lead to path plan updates and following of an
alternative route to the goal.

We demonstrate that the proposed architecture can
produce path planning behavior comparable to tradi-
tional methods based on search (see specifically
Figures 7 and 8). The number of successful runs in the
larger environment is notably lower for the Follow the
carrot, compared to the proposed SPA architecture.
This is a result of the Follow the carrot algorithm cut-
ting corners and therefore getting stuck at tight
turns. While this is a common problem in classical
approaches, the competition between actions that occur
in SPA does not appear to cut corners. In addition, the
high success rate for the proposed architecture partially
may be attributed to tight integration of input from the
proximity sensors, which biases action selection, delay-
ing a turn-action if a wall is blocking the path. It
should, however, be noted that there are other classical
path tracking methods less prone to cut corners, and
the problem can also be reduced using a reactive obsta-
cle avoidance layer. Hence, these results should not be
understood as a limitation of traditional search meth-
ods in general.

The approach to simultaneous planning and action
presented here shows robustness on multiple levels,
from emergent decision-making and high noise toler-
ance, to stable interactions with the world, without the
need to separate the system into a deliberative and a
reactive layer. While this approach still needs more
analysis before it can be considered as a mature alterna-
tive to traditional planning, the present work should be
seen as a proof of concept for dynamical approaches,
and specifically DFT, applied as a method for planning
and search.
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higher ground: The dynamic field theory and the dynamics

of visual cognition. New Ideas in Psychology, 26, 227–251.
Johnson, J.S., Spencer, J.P., & Schöner, G. (2009). A layered
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Appendix A. Mathematical formulation

Dynamic neural fields

The activation level u of the neural fields constituting
the M, P, I, and C components (Section 3) evolves
according to equations 4, 5, 6, and 7, respectively

t _uM x, tð Þ= � uM x, y, tð Þ+ h+Z
f uM x0, y0, tð Þð Þv x� x0, y� y0ð Þdx0dy0+

S2 x, y, tð Þ � Sg x, y, tð Þ

ð4Þ

t _uP x, tð Þ= � uP x, y, tð Þ+ h+Z
f uP x0, y0, tð Þð Þv x� x0, y� y0ð Þdx0dy0+

S1 x, y, tð Þ � S7 x, y, tð Þ

ð5Þ

t _uI x, tð Þ= � uI x, y, tð Þ+ h+Z
f uI x0, y0, tð Þð Þv x� x0, y� y0ð Þdx0dy0+

S3 x, y, tð Þ � S4 x, y, tð Þ � S6 x, y, tð Þ

ð6Þ

t _uC x, tð Þ= � uC x, y, tð Þ+ h+Z
f uC x0, y0, tð Þð Þv x� x0, y� y0ð Þdx0dy0+

S5 x, y, tð Þ+ S8 x, y, tð Þ

ð7Þ

v is a two-dimensional version of the standard
Gaussian kernel given by equation 2. Table 1 specifies
connections S1 to S8, also visible in Figures 2 and 4.

Table 1. Connectivity functions.

S1 x, y, tð Þ= c1

R
f uM x0, y0, tð Þð Þg x � x0+ dx, y � y0+ dyð Þdxdy

S2 x, y, tð Þ= c2

R
f uP x0, y0, tð Þð Þg x � x0, y � y0ð Þdxdy

S3 x, y, tð Þ= c3

R
f uM x0, y0, tð Þð Þg x � x0, y � y0ð Þdxdy

S4 x, y, tð Þ= c4

R
f uP x0, y0, tð Þð Þg x � x0+ dx, y � y0+ dyð Þdxdy

S5 x, y, tð Þ= c5

R
f uI x0, y0, tð Þð Þg x � x0, y � y0ð Þdxdy

S6 x, y, tð Þ= c6

R
f uC x0, y0, tð Þð Þg x � x0, y � y0ð Þdxdy

S7 x, y, tð Þ= c7

R
f uC x0, y0, tð Þð Þg x � x0+ dx, y � y0+ dyð Þdxdy

S8 x, y, tð Þ= c8g x � xrobot tð Þ, y � yrobot tð Þð Þ
g �x, �yð Þ= exp � �x2 +�y2

2s2

h i
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Action fields

The action field of each EB (Figure 4) is defined over
an angular dimension, from 2p to p, with a circular
mapping, such that u(x, t) = u(x + 2p, t), for all x.
The connections (12 and 13) from the action field to the
left and right wheels cause the robot to turn to the left
(mlw) and to the right (mrw) in response to a peak on the
negative and positive sides of the action field, respec-
tively. The wheel speeds are given by

mlw =qmax x,að Þ+qmin x,að Þ ð8Þ

mrw =qmax x, � að Þ+qmin x, � að Þ ð9Þ

qmax x,að Þ= max
x=�p

p
f ua x, tð Þð Þ sin x+að Þv ð10Þ

qmin x,að Þ= min
x=�p

p

f ua x, tð Þð Þ sin x+að Þv ð11Þ

where v and a are constants controlling the speed and
turning rate of the robot, respectively. f is the field out-
put function given by equation 3 and ua represents the
activation level of the action field, given by

t _ua x, tð Þ= � ua x, tð Þ+
R

f u x0, tð Þð Þv x� x0ð Þdx0

+ h+ SI tð Þ+ SH x, tð Þ � SO x, tð Þ ð12Þ

where

SI tð Þ= max
x

f uI x, tð Þð Þ½ � ð13Þ

SH x, tð Þ= f uH x0+ u, tð Þð Þv x� x0ð Þdx0 ð14Þ

SO x, tð Þ= f uO x0, tð Þð Þv x� x0ð Þdx0 ð15Þ

SI, SH, and SO are the stimuli received from the corre-
sponding I-field, the head direction field, and the obsta-
cle field, respectively. uI, uH, and uO are activation
functions for the respective fields, given by equation 1.
u is a directional constant, shifting the input in relation
to action field direction. The interaction kernel v is
given by equation 2.

Proximity sensors

The activation level of the proximity sensor field
(Figure 4) is given by

Table 2. List of variables and constants. See also Figure 4 for details on field connectivity.

Symbol Description Value

u Activation level of a neural field
x Position in a neural field
c1− 8 Amplitudes for connections (Table 1). c1:12, c2a:5, c2b:-4.5, c2c:4.5, c2d:-10, c3:10,

c4:-10, c5:3, c6:-5, c7:-15, c8:8.
t Time specified in simulation steps (64 ms/step)
τ Time constant controlling field dynamics 5
h Field resting level -5
σ Variance of ω, controlling the width of the excitatory part of the interaction

kernel
2

v Field output to speed conversion (tics/s) 500
α Constant controlling angular speed π/3
cprox Strength of e-puck proximity sensor stimuli 5
σprox Standard deviation of the e-puck proximity sensor stimuli 3
�xr Field position of stimuli to the proximity sensor field (equations 16 and 17):

�x0 = 0:1p, �x1 = 0:3p, �x2 = 0:8p, �x3 = 1:0p, �x4 = � 1:0p, �x5 = � 0:8p,
�x6 = � 0:3p, �x7 = � 0:1p. The angular field position reflects the physical
placement of sensors on the e-puck robot.

Constants dependent on field type: Motivation (M), precondition
(P), intention (I) and condition of satisfaction (C)

M P I C

cexc Amplitude of the excitatory component of ω 7 4 9 2
sexc Standard deviation of the excitatory component of ω 2 2 2 2
cinh Amplitude of the inhibitory component of ω 2 2 0 2
sinh Standard deviation of the inhibitory component of ω 4 4 4 4
cglobal Global inhibition 0 0 0 0

Constants dependent on transition direction, north (N), south (S), west (W) or
east (E)

N S W E

δx Connection shift (corresponding to the translation of the field) 0 0 5 -5
δy 5 -5 0 0
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t _uO x, tð Þ=
�u x, tð Þ+ h+

R
f u x0, tð Þð Þv x� x0ð Þdx0+

P
r

Sr x, tð Þ

ð16Þ

Sr is the stimuli from each proximity sensor r, given by

Sr x, tð Þ= log 1+ pr tð Þ=50½ �cprox exp �
x� �xrð Þ2

2s2
prox

" #
ð17Þ

where pr(t) is the sensor value of proximity sensor r at
time t. Here cprox and sprox are the constants controlling
the strength and standard deviation of Sr, respectively.
See Table 2 for details.

Appendix B. Follow the carrot

Follow the carrot (Barton, 2001) is a simple method for
path tracking. As a baseline implementation, Follow

the carrot was used as a comparison in the evaluation
of the proposed architecture.

A steering angle fftc is given by fftc = kftc(fc 2 fh),
where fc is the angle between the robot and selected
carrot point, and fh is the heading angle.

The carrot point pc is defined as

pc = min
p2P

d(p, plook)½ � ð18Þ

where P is the set of points on the path, and plook is the
look ahead point at distance klook = 1 cm, directly in
front of the robot. d(p, plook) denotes the Euclidean dis-
tance between p and plook.

The path P is given by A* over an eight neighbor
grid with a cell size of 1 cm and a minimum obstacle
distance of 4 cm. This path calculation is also used as a
reference optimal path, Section 5.
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