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Abstract—Neuromorphic electronic systems exhibit advanta-
geous characteristics, in terms of low energy consumption and
low response latency, which can be useful in robotic applications
that require compact and low power embedded computing
resources. However, these neuromorphic circuits still face sig-
nificant limitations that make their usage challenging: these
include low precision, variability of components, sensitivity to
noise and temperature drifts, as well as the currently limited
number of neurons and synapses that are typically emulated
on a single chip. In this paper, we show how it is possible to
achieve functional robot control strategies using a mixed signal
analog/digital neuromorphic processor interfaced to a mobile
robotic platform equipped with an event-based dynamic vision
sensor. We provide a proof of concept implementation of obstacle
avoidance and target acquisition using biologically plausible
spiking neural networks directly emulated by the neuromorphic
hardware. To our knowledge, this is the first demonstration of a
working spike-based neuromorphic robotic controller in this type
of hardware which illustrates the feasibility, as well as limitations,
of this approach.

I. INTRODUCTION

Collision avoidance is a key task for mobile robotic systems
to ensure safety of both the robot itself as well as humans
and objects in its environment. Navigation in an unknown
environment in many robotic applications — rescue missions,
space exploration, or work on remote construction sites — re-
quires autonomy and optimised power consumption. Although
current machine learning and computer vision systems allow
autonomous navigation in real-world environments, power
consumption of both the computing and sensory systems
currently used in successful applications is enormous, draining
the robot’s power and generally taking away resources from
other tasks.

Neuromorphic engineering aims to achieve efficient real-
time low-power computation using principles of biological
neural networks, implemented directly in hardware circuits
[6L 13l [14]. These neuromorphic circuits feature massively
parallel processing, co-location of computation and memory,
and asynchronous data-driven (event-based) real-time comput-
ing. As these properties make real-time processing of large
amounts of sensory information possible in an energy-efficient
way, they are particularly interesting for autonomous robotic
systems.

In terms of power consumption and area usage, analog

circuit implementations of neural and synaptic dynamics are a
very promising solution [21]]. In large networks, this difference
makes low-power on-board computation possible for tasks that
would otherwise require power-hungry GPUs in more classical
neural network implementations.

However, analog neuromorphic electronic circuits are
known to be hard to control since their properties are sensitive
to device mismatch and, e.g., thermal fluctuations [18]. We
solve this problem by using a well-established neural-dynamic
framework [23] that allows us to implement robust computing
architectures on this hardware. Specifically, we implement
a small neural architecture in neuromorphic hardware that
controls an autonomous robotic system to perform reactive
obstacle avoidance and target acquisition in an unknown
environment. All computation for this system is done on
the neuromorphic processor ROLLS (Reconfigurable On-Line
Learning System) [22]. ROLLS is connected to the miniature
computing platform Parallella, which is used to direct the real-
time flow of spike events between the ROLLS and the robotic
platform PushBot. Sensory input is provided by a Dynamic
Vision Sensor (DVS) [12] and an inertia measurement unit of
the robot. In this paper, we focus on verifying robustness of the
developed architecture in different conditions and improving
target representation by an allocentric memory mechanism.

II. METHODS
A. Hardware

Fig. (1] shows the neuromorphic chip ROLLS on the Paral-
lella board and the PushBot robot, used in this work.

1) ROLLS: The neuromorphic processor ROLLS is a mixed
signal analog / digital neuromorphic platform [22]. The ana-
log part includes 256 adaptive-exponential integrate-and-fire
neurons. Each neuron exhibits biologically realistic neural
behavior including a refractory period, spike frequency adap-
tation, and biologically plausible time constants of integration
(e.g., tens of milliseconds). Connections between neurons —
synapses — are also implemented using analog electronics and
have biologically plausible activation profiles [8]. Each neuron
has 256 programmable (non-plastic) synapses, 256 learning
(plastic) synapses, which can be used to connect neurons
to each other or to receive sensory signals, and 4 auxiliary
(“virtual”) synapses used to stimulate neurons directly.
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Fig. 1: The robotic setup used in this work: the neuromorphic
processor ROLLS is interfaced wirelessly to the PushBot using
a miniature computing board Parallella.

The programmable on-chip routing on the ROLLS that
supports all-to-all connectivity allows us to implement arbi-
trary neural architectures. However, the plastic synapses can
assume only one of 4 possible synaptic weight values that can
be programmed via a 12-bit temperature compensated bias-
generator.

2) PushBot and eDVS: The PushBot is a mobile platform
with a differential drive. The robot is equipped with an
inertial measurement unit (IMU), an LED at the top, and an
embedded DVS silicon retina [[17]. Each pixel of the 128x128
sensor array of the eDVS reacts asynchronously to a local
change in luminance and sends out an event. Every event
contains the coordinates of the sending pixel, the time of event
occurrence, and its polarity (“on-event” or “off-event”). Due
to the asynchronous sampling, the DVS is characterized by an
extremely low latency, which results in us time resolution, as
well as low power consumption [11]. The embedded version
of the DVS has an ARM Cortex microcontroller that initializes
the DVS, captures events, sends them to the wireless network,
and receives and processes commands for motor control of the
robot.

The DVS produces a continuous stream of events in high-
contrast areas, usually objects’ boundaries, where changes are
induced by sensor, or object motion. Additionally, we use the
IMU sensor to get sensory feedback about the robot’s heading
direction (compass) and its angular velocity (gyroscope) and
process signals from this sensor on the neuromorphic chip.

3) Parallella: The Parallella computing platform [19] is a
18-core credit-card sized computer, of which we only use one
of its ARM-cores to run a simple software that configures
ROLLS and integrates different parts of the hardware setup:
it receives events from the eDVS and signals from the IMU,
stimulates neurons on ROLLS according to the camera events
and IMU signals, collects spikes from ROLLS, and sends drive
commands to the robot. The only computation done on the
Parallella is computing spike rates from different groups of
silicon neurons and sending them as commands to the robot.

B. Neuronal architecture

The core of this work is a neuronal architecture that allows
the robot to navigate in an unknown environment based on
the output of its sensors (DVS and IMU). This neuronal
architecture amounts to a connectivity matrix, set between the
silicon neurons of the ROLLS chips that is shown in Fig. [3]
Next, we describe different parts of this neuronal architecture.

1) Robot control: We model the desired PushBot move-
ment a with forward velocity v and an angular velocity ¢.
We encode both variables with the average firing rates of
populations of neurons on the ROLLS. To encode the sign of
¢, we use two populations of equal size that inhibit each other
and represent turning right and turning left, respectively. The
decision of turn direction is “taken” in ROLLS, since only one
of the turning populations can be active at the same time. The
turning velocity is proportional to the average activity rate in
the winning neuronal population. We use three populations of
16 neurons each to represent ‘angular velocity (left)’, ‘angular
velocity (right)’, and ‘speed’ (forward velocity).

On Parallella, the firing rates are computed by counting the
number of spikes from the respective neuronal population —
Niefts Mright, AN Ngpeeq — in Tegular sampling intervals. These
counts determine the velocities:

v~ nspeed7 50 ~ Mieft — Tlright,

normalized for the size of the neural population and the
sampling time. To improve the reaction time, a first order low
pass filter is implemented to update an estimate for spike rates:

Nestimate = O * Mold_estimate 1 (1 - a) * Mcounty

where the desired time constant 7 of the time-continuous
low-pass filter and the sampling time 7' determine « as
o = exp (—L). We used a sampling time of 50ms and a time
constant of 100ms resulting in o = 0.6. The current firing rate
per neuron and second, multiplied by a user-defined scaling
factor, is sent to the robot (every 50ms).

2) Obstacle Avoidance: The first goal of our neural ar-
chitecture is the reactive obstacle avoidance. We used a
Braitenberg-vehicle principle [3] to realise obstacle avoidance
based on the DVS output, which can also be cast as an attractor
dynamics approach [1]].

We only consider the lower half of the DVS field of view
(FoV) for this task, since objects in the upper half are either
above the robot or far away and therefore will not cause
collisions. A population of 32 neurons on ROLLS represents
obstacles. Columns of 4 x 64 DVS pixels are mapped to
one neuron each. For every event in a column, the respective
neuron is stimulated. After sufficient stimulation, the neuron
will spike and therefore signal the detection of an obstacle.

The obstacle population is connected to the velocity pop-
ulations described in section II-B1 (Robot control). The
half of the obstacle population representing obstacles on the
left/right have excitatory connections to the ‘angular velocity
(right/left)’ population, respectively. Following the reactive
architecture of a Braitenberg vehicle, the robot turns away in
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Fig. 2: Overview of the obstacle avoidance architecture, im-
plemented on the neuromorphic chip ROLLS.

response to obstacles: if there is more input left than right, the
robot turns right, otherwise left. Connections to the velocity
populations from neurons representing obstacles in the center
of FoV are stronger than for obstacles on the periphery (note
the arrow thickness in Fig. [2). This makes obstacles avoidance
smoother.

In the absence of obstacles, the robot drives straight forward.
In order to represent the “default” speed for this case, we
implement a constantly excited population of 8 neurons that
excites the speed population. All neurons in the obstacle
population, in their turn, have inhibitory connections to the
speed population (Fig. [2), causing the robot to slow down
in the presence of obstacles (with a stronger deceleration for
bigger/more obstacles, which cause more DVS events).

Since the number of available weight values on ROLLS is
limited (see section [[IFAT]), we achieve the graded connections
between neuronal populations by varying the number of con-
necting synapses to the respective population. Thus, neurons
representing obstacles in the center of the FoV are connected
to all 16 neurons in the velocity populations, whereas neurons
representing obstacles on the pheriphery of the FoV are con-
nected to only one (randomly selected) neuron in the velocity
population; the number of connections decreases linearly when
approaching the periphery of the FoV.

Because of the nature of the DVS camera, the robot detects
more obstacle events when turning than when moving forward
and the rate of the DVS events increases proportionally to the
angular velocity. To compensate for this effect, we inhibit the
obstacle detecting neurons while turning. This inhibition is
realized using the gyroscope of PushBot. The implementation
is described in more detail in section II-B4 (Proprioception).

In conclusion, we were able to implement obstacle avoid-
ance using raw DVS input with just 88 artificial neurons
by carefully grouping them and linking the different neuron
groups in order to distinguish obstacle positions and react
accordingly: strong reactions for obstacles in front of the robot,
weaker reactions for more peripheral obstacles. Inhibition of
the obstacle populations during robot turning was critical for
robust obstacle avoidance, as well as slowing down in the
presence of obstacles.
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Fig. 3: Connectivity matrix of the full neural architecture
with obstacle avoidance, target acquisition, and proprioception
(input from gyroscope).

3) Target Acquisition: We simplified target perception in
this work, because of the limited number of neurons on
ROLLS in the current realization (256 neurons). More ad-
vanced architectures for target detection can be implemented
in neuromorphic hardware [15], but were not the focus of this
work. The target in our experiments is an LED of the second
PushBot, blinking at 4kHz. The LED generates DVS events at
a high rate, thus being a salient input even with a high number
of distractors and sensor noise. Our goal is to detect this target
and keep it in memory if the target vanishes for short periods
of time. In particular, we would like to keep it in memory in
allocentric coordinates, doing the coordinate transformation on
the ROLLS chip, eventually.

We realized target acquisition with two populations of 64
neurons each. The first population is used as a filter for the
DVS input. Similar to obstacle avoidance, every neuron in
this population receives input from columns of 2 x 64 DVS
pixels, this time from the upper half of the image. Since
the neurons require a steady stream of events to emit spikes
themselves, this population effectively filters out sensor noise.
Additionally, neurons are connected with a local winner-takes-
all (WTA) kernel amplifying local maxima of activity.

The second layer represents the target position (working
memory for target position). Every neuron in the filter pop-
ulation excites exactly one neuron in the target memory
population. In the target memory population, we use a global
WTA dynamics: every neuron excites its close neighbors while



inhibiting all other neurons in the population. This connectivity
‘selects’ the global maximum out of the local maxima that the
filter layer produces and also creates a “working memory” for
the angular position of the target if it is lost from sight [25].
Similar mechanism has been used previously in the attractor
dynamics approach to robot navigation [2].

The neurons in the target memory population are connected
to the velocity populations: neurons representing a target on
the left excite the ‘turn to the left’ population, and vice versa.
To make the robot turn faster for the target on the periphery of
the FoV than for a target in the center, neurons that represent
targets in the center are connected to a single neuron in the turn
population and neurons representing targets on the edge excite
all neurons in the turn population. The number of connections
linearly increases towards both edges of the target memory
population.

Both target memory population and obstacle population are
connected to the angular velocity populations. To ensure that
obstacle avoidance is always prioritized over following the
target, the connections from target acquisition are weaker than
those from obstacle avoidance.

With this architecture, we enable the robot to follow the
target and avoid an obstacle if necessary. While we can keep
the target in memory, we are not able to adapt the ‘remem-
bered position’ while the robot is turning, which can lead to
undesired behavior (described in section III-F). One approach
how this problem can be solved with neuronal populations is
described in section

4) Proprioception: As described above, we receive many
more events from DVS while turning, which can lead to
turning movements being longer than necessary, since the
additional events are recognized as obstacles and keep the
robot turning. Therefore, we need proprioception to recognize
that the robot is turning and inhibit the neurons receiving
DVS events as a countermeasure, similar to how saccadic
suppression works in the mammalian eye [3]].

We are using the gyroscope output to determine when
the robot is turning. In contrast to DVS events, this sensor
outputs integer numbers sampled every 50ms, which can not
be directly used to stimulate ROLLS. Therefore, using the
range of the sensor output, we transform the sensor output
value into a number of spikes for stimulating ROLLS.

On ROLLS, we define two populations of eight neurons
each to represent ‘turning to the left’ and ‘turning to the right’.
Every sampling step of the sensor, they receive the number of
stimulations, proportional to the output value of the gyroscope.

Finally, we use these populations to inhibit all populations
that receive input from the DVS, i.e. the obstacle and the DVS-
filter populations. In this way, we successfully adjust sensitiv-
ity of the perceptual neural populations on ROLLS depending
on the sensed turning to compensate for the additional events.

5) Extension of Target Memory: As the experiments in
section show, our first target acquisition architecture from
section fails if the target is out of sight. Since the
target representation is stored in image-based coordinates, the
memorized location of the target becomes invalid as the robot

turns without updating the target memory.

To address this problem, we suggest a mechanism to store an
absolute target position in memory instead of the relative (i.e.
image-based) position, making use of the compass sensor and
a neuronal architecture for reference frame transformations
[24], realized in the ROLLS device.

This mechanism allows us to combine the absolute heading
direction of the robot, which can be obtained from the com-
pass of the IMU, with the relative target position found by
processing DVS events, to obtain the absolute (“allocentric’)
angular position of the target with respect to a fixed rotational
coordinate frame.

The target position in a world-fixed angular reference frame
is updated as long as the target is in view and is held in a
memory mode if the target is lost from view. The memorized
position is transformed back into the image-based target repre-
sentation through the same reference-transformation network
and can be used to drive the robot back towards the target.

Using 108 neurons, we realized a version of this trans-
formation on ROLLS that distinguishes 6 different heading
directions (see Fig.[d). It was possible to tune this architecture
such that the memory was updated as long as the target was in
the FoV and the memory was kept if the target was lost. The
transformation between coordinate frames is accomplished in
a 6 x 6 matrix (see [24] for details of a continuous version
of this mechanism), where 2 neurons on ROLLS represent
each entry (cell) of the matrix. Only one matrix cell where
heading (0-5) and memory (a-f) directions intersect is active
at a time, “predicting” the relative position of the target (I-VI).
If the target is detected with the camera, a strong input on the
heading direction of the robot (I) overwrites the memory.

In Fig. @ we show the mechanism at work. Here, the input
from the IMU inhibits the target detection when the robot is
turning; the representation in memory is used then to update
the target position. The number of neurons on ROLLS did not
allow us to implement this architecture together with DVS
processing to filter out noise from cluttered backgrounds and
could therefore not be used in our experiments.

6) Implementing the Architecture: Internally, our neural
architecture amounts to a connectivity matrix. We developed a
simple C++ library to fill-in this matrix, connecting neurons or
neuron groups in various ways (e.g., all-to-all, winner-take-all,
random, weighted). The software allows to define and connect
neural populations, as well as to link them to inputs / outputs.

III. EXPERIMENTAL RESULTS

The robustness of our obstacle avoidance setup as well as
its limitations were tested in a wide range of experiments. We
tested it against different types of obstacles and in different
lighting conditions. All experiments were run for at least three
times. However, the actual trajectories and neural activities dif-
fer between experiments too much to show a useful synthesis
of different experimental runs, we thus show one of the runs
for each experiment.

Most of our experiments are set in a controlled ‘arena’
environment with both white floor and walls. To make the
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Fig. 4: Mechanism for transformation of the target position
memory into an allocentric reference frame. Top: Spikes of
neurons on the ROLLS chip in the neural populations, involved
in transformation of the target position. Middle and bottom:
transformation matrix and visualisation of its inputs (black
squares) for the two points in time marked with the vertical
lines in the respective Top plot (middle plots for the left line
in the respective Top plot, bottom plots for the respective
right line). Two experiments are shown here: Left: the robot
is turning counterclockwise with a fixed target, the heading
direction switches from position “2” to “1”, but the memory
of the (allocentric) direction to the target stays constant. Right:
the whole setup with the robot and the target in front of it is
turned on a platform; both the heading direction of the robot
and the memorised allocentric direction towards the target
shift.

walls visible to the DVS, we attached a high-contrast tape
to the top of the walls. We had several runs in the office
environment, which will be reported elsewhere. Next, we
present a number of results that highlight properties of the
architecture.

A. Different Obstacle Positions

Fig. 5] shows the robot’s response to different obstacle
positions. The robot starts with the same initial position and
heading. The obstacle is an ordinary cup. Initially, it is placed
directly on the robot’s path and it is shifted to the right
from the initial heading direction of the robot by 5cm per
experiment.

The experiment qualitatively shows the expected difference
in the magnitude of the robot’s response. For an obstacle that
is less in its way and therefore closer to the edge of the DVS’s
FoV, both the turn command and the slowdown are weaker.

We also observe that not only the position of the obstacle,
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Fig. 5: Response of the robot to different obstacle positions.
Left: Overlays of the overhead camera images at fixed time
intervals. The red line marks the initial heading direction of
the robot. When the obstacle is on the robot’s pathway (top),
it causes a stronger deviation from the initial trajectory than
when the obstacle is positioned 15cm to the right from the
line of the initial heading (bottom). Right: Activity of neurons
on the ROLLS chip for the neural populations involved in
generation of the avoidance maneuver.

but also the size of the obstacle on the DVS image is of
importance. Activity of neurons in the top row of Fig. [5| shows
that a single neuron in the obstacle population (red spikes) is
not enough to excite the turn population (blue spikes). Only as
the robot gets closer to the obstacle and therefore the obstacle
occupies more columns of the DVS image and excites more
obstacle neurons, the activity is strong enough to start a turn.

We can conclude that our architecture indeed leads to the
intended weaker response to obstacles that are not directly
in front of the robot. However, our setup will also avoid
wider obstacles with a stronger response than small, narrow
obstacles.

B. Different Colors

Different colors of obstacles lead to different contrasts to
the background and thus to different amounts of DVS events
as the edge of the obstacle moves in the FoV. Fig. [6] shows
the behavior of the robot moving towards a black, red, and
yellow obstacle (approx. 5cm height and 3cm diameter).

We observe that although the obstacle populations detect
obstacles of all three colors, the distance to the obstacle at the
time of the first spike decreases from the black to the red and
to the yellow obstacle. Thus, with the ROLLS’s biases used,
the neural activation threshold is too high to avoid yellow
obstacles. They provide a sufficient number of DVS events to
activate the turn population only when the robot is already too
close and their input is too weak to cause a turn strong enough
to avoid the obstacle at this point.

Overall, we could find that PushBot in our setting reliably
avoids obstacles of black, red, green, and blue color, while
it regularly ignores yellow obstacles. Regardless of the bias
setting, our principle of detecting an obstacle by rate of DVS
events, and only using the filtering capabilities of spiking



Top View

black

red

yellow

speed

turn left

| turn right

| obstacle right

obstacle left

speed

turn left

Aturn right
obstacle right

obstacle left

speed

turn left

turn right

i obstacle right

obstacle left

time [s]

Fig. 6: Response of the robot to different obstacle colors. Left: Overlays of the overhead camera images with fixed time
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the avoidance maneuver.

neurons, requires to determine an arbitrary threshold that
balances the robustness against noise vs. the sensitivity to low-
contrast colord]]

Additionally, we could show that reliable avoidance of
yellow obstacles is also possible by changing the connection
weights with which the obstacle population excites the turn
and inhibits the speed populations, but this leads to the robot
navigating slower (it decelerates stronger and more often) and
turning stronger for obstacles with high contrast.

C. Different Lighting Conditions

In this set of experiments, the robot is placed in the same
initial position for all experiment runs. The experiment was
done in the evening, so there was no sunlight, and we used
different office lights to simulate varying lighting conditions.
Several obstacles were put on the robot’s path to test the
response to obstacles both when driving straight and while
turning.

Fig. [7] shows the robot’s trajectory for 2 different lighting
conditions, both being darker than daytime experimental setup.
They are representative examples for the general robot behav-
ior at these lighting conditions as we tested each condition for

! This threshold can be changed by changing the ROLLS bias setting
for the stimulating synapses, changing the number of synapses used for one
stimulation, or changing the number of stimulations per DVS event.

Fig. 7: Overlayed images of the robot trajectory in the arena at
different lighting conditions. Left: Dark, robot fails to perceive
an obstacle. Right: Lighter, but still less light than at day time,
the robot avoids obstacles successfully.

at least 3 times. The obstacle does not get recognized below a
certain level of brightness, as the contrast of obstacles in front
of a background is obviously dependent on lighting conditions.

D. Moving Obstacles

Moving obstacles are of special interest for implementations
of obstacle avoidance as they are very common in real
world navigation problems and require the ability to react
to changing environments. The robot is placed in the same
initial position for all experiment runs. Initially, there is no
obstacle present in its FoV. After the robot starts moving



forward, an obstacle is moved in its way. This procedure is
repeated with different distances between the robot and the
obstacle and different speeds of the obstacle. The robot is
successfully avoiding the moving obstacle without difficulties,
since a moving obstacle, in general, generates more DVS
events than a static one.

E. Cluttered environment and the proprioceptive feedback

We show that our architecture enables the robot to navigate
in a cluttered environment. The robot is placed in the arena that
is populated with black cylinders, roughly Scm high and 3cm
in diameter, as obstacles. The cylinders are placed arbitrarily.

We find that the robot is able to avoid most obstacles ‘on-
the-go’, i.e. without stopping, and is also able to drive through
relatively narrow gaps (~ 1.5x the robot’s width).

Fig. [§] shows the robot avoiding obstacles in a cluttered
environment using proprioception (right) and without propri-
oception (left), which inhibits sensory events when the robot
is turning. Comparing Position I on both sides of Fig. [§] the
greater activity in the obstacle population without gyroscope
shows the lacking inhibition from the gyroscope populations.
This leads to keeping the robot turning while it actually could
pass between the two objects. Without inhibition from the
gyroscope, the avoidance maneuver is much longer and the
gap between the two cylinders in front of the robot (although
big enough) is not used. In addition, the forward velocity of
the robot is lower.

Nevertheless, the robot is able to navigate the cluttered
environment without collisions with and without gyroscope,
but we conclude that by using the gyroscope (proprioception)
the robot is able to drive faster and go through narrower gaps
while turning more smoothly.

F. Target Acquisition

The experiment was conducted with a static target that was
an LED of the second PushBot blinking at 4 kHz with 75% on-
time. The navigating PushBot was placed in the same position
for all experiment runs with the target to the left of the initial
heading direction. On the line between the two robots, we
placed a small black obstacle.

Fig.[9]shows a snapshot of neural activity for one exemplary
run of the experiment. The robot successfully approaches the
target while avoiding the obstacle. The ROLLS activity shows
that the single target is successfully detected and tracked by
the WTA “target” population.

The shape of the robot’s trajectory that can be seen in
Fig.[10a]is the result of an attractor-repellor dynamics between
the target acquisition and obstacle avoidance. The number of
connections from the target and obstacle representing layers
to the turn populations depend on the position of the target, or
obstacle in the FoV. Thus, the strength of the target attractor
and of the obstacle repellor increase or decrease as the robot
moves.

The main limitation we could find in these experiments is
that the robot will loose the target if it has to turn away because
of an obstacle (Fig.[I0b). Even though the target representation

on ROLLS has an “inert” (memory-like) behavior, the robot
will not update the relative target position in memory as
it turns. Keeping track of the absolute target position using
architecture presented in II-B5S would allow the robot to turn
back to the target that was lost from sight.

In addition to the presented experiments, we did success-
fully test target acquisition in the office environment. Further-
more, we did conduct tests where the target was not stable but
moved around, remotely controlled by the experimenters. We
did in general find that moving targets were followed as long
as they did not move much faster than the autonomous robot
and if they did not move outside of the FoV.

We could show here a working combination of target
acquisition and obstacle avoidance, in which the decision of
which direction to follow is taken by the competitive dynamics
between the ‘turn-left’ and ‘turn-right’ neural populations on
ROLLS. These populations receive inputs from the obstacle
and target neurons, forming an attractor-repellor system.

In our current implementation, the robot speed had to be
slow enough to detect the target (approx. 0.5 of the robot’s
maximal speed). This was necessary to reduce the events from
the image background (due to the movement of the DVS)
with respect to the signal from the blinking LED. Better noise
filtering could allow faster movement.

IV. DISCUSSION

In this paper, we demonstrated that neuromorphic hardware
can be used to implement both obstacle avoidance and target
acquisition using only 256 spiking neurons. The robot is able
to navigate cluttered environments, avoid moving obstacles,
and follow a target at the same time. All the ‘behavioral’
decisions are made in real-time directly on the neuromorphic
hardware.

When combining obstacle avoidance and target acquisition,
the limited number of weights available on the hardware
becomes a problem. Indeed, it was unavoidable to use the
same weights in different parts of the architecture, leading to
complex interference in the tuning process.

There are more limitations of the current system: we make
use of all available neurons, making it impossible to extend
our work with additional behaviors. Larger neuromorphic
processors already exist [7] and will allow us to expand the
repertoire of behaviors in our robot.

The number of neurons can not only be increased by build-
ing larger neuromorphic devices, but by connecting multiple
devices. For the architecture described here, it is actually
possible to separate the architecture in different modules: the
neural populations for obstacle position and target position do
not influence each other, they only receive inputs from the
IMU and the DVS and output to the command populations.
Therefore, in future work multiple ROLLS chips can be used
to implement different architectural modules, resembling the
classical subsumption architecture [4].

While our experiments show that obstacle avoidance and
target acquisition can be achieved by processing the raw DVS
events, this simple approach could be extended by introducing
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Activity on the ROLLS for the labeled neural populations.
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Fig. 10: Limitations of the target acquisition in image-based
reference frame.

preprocessing of the events stream. Possible solutions and
extensions to the visual processing would require more neu-
rons, and could rely on the recent progress in spiking neural

networks [13] [16].

Since we introduced a way to compensate the limited
number of weights in the ROLLS by varying the number of
synaptic connections between neural populations, we consider
the number of neurons a harder limitation than the number of
weights.

PushBot platform has shown to be well-suited for our
task, but it lacks the possibility to be directly connected to
the neuromorphic processor. We have bridged this gap in
software on Parallella, but for future implementations it will be
advantageous to have a hardware interface that can be driven
by spikes to provide a more direct link between the neuronal
activity and the robot motion, as suggested in [20].

Overall, our proof of concept implementation is an impor-
tant step, contributing to a growing field of neuromorphic
controllers for robots [26, Ol [17]], since we present
a simple yet flexible architecture for spiking neuromorphic
VLS]El devices that can easily be extended with additional
functionality.
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