
Porting Deep Spiking Q-Networks to neuromorphic chip Loihi
Mahmoud Akl

mahmoud.akl@tum.de
Technical University Munich

Munich, Germany

Yulia Sandamirskaya
yulia.sandamirskaya@intel.com

Intel Labs
Munich, Germany

Florian Walter
florian.walter@tum.de

Technical University Munich
Munich, Germany

Alois Knoll
knoll@in.tum.de

Technical University Munich
Munich, Germany

ABSTRACT
Deep neural networks (DNNs) set the benchmark in many tasks in
perception and control. Spiking versions of DNNs, implemented
on neuromorphic hardware can enable orders of magnitude lower
power consumption and low latency during network use. In this
paper, we explore behavior and generalization capability of spik-
ing, quantized spiking, and hardware implementation of deep Q-
networks in two classical reinforcement learning tasks. We found
that spiking neural networks have slightly decreased performance
compared to non-spiking network, but we can avoid performance
degradation from quantization and in-chip implementation. We
conclude that since hardware implementation leads to lower power
consumption and low latency, neuromorphic approach is a promis-
ing avenue for deep Q-learning. Furthermore, online learning, en-
abled in neuromorphic chips, can be used to compensate for the
performance decrease in environments with parameter variations.

CCS CONCEPTS
• Computing methodologies→ Reinforcement learning.

KEYWORDS
Spiking neural networks, reinforcement learning, neuromorphic
hardware

ACM Reference Format:
Mahmoud Akl, Yulia Sandamirskaya, Florian Walter, and Alois Knoll. 2021.
Porting Deep Spiking Q-Networks to neuromorphic chip Loihi. In Inter-
national Conference on Neuromorphic Systems, July 27–29, 2021, Virtual
Conference. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
1122445.1122456

1 INTRODUCTION
Spiking neural networks (SNNs), sometimes referred to as the third
generation of neural networks [14], mimic the behavior of biolog-
ical neurons more closely than the more common analog neural

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICONS ’21, July 27–29, 2021, Virtual Conference
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

networks (ANNs) that are prevalent in the state-of-the-art machine
learning. In particular, the neuron model in SNNs has an explicit
temporal dynamics and the activation levels are communicated in
the network using asynchronous pulses called spikes. SNNs not
only offer the potential to better understand computing in the brain,
but also to benefit from its unique computational properties in AI
applications. In particular, the communication through spikes en-
ables asynchronous computation without a shared clock and can
be implemented extremely efficiently in hardware [5, 6, 20].

Thus, SNNs hold the potential of building AI systems that are
more brain-like in terms of online learning, low latency, fast in-
ference, and energy efficiency. Until recently, the focus of SNN
research has been on either converting trained ANNs to SNNs [24],
or on training SNNs using biologically plausible local learning
rules such as spike-timing dependent plasticity (STDP) [23]. In
the past few years, new techniques to approximate gradients for
SNNs were developed [11, 26]. These make gradient-based learn-
ing applicable to SNNs. SNN performance on benchmark datasets
such as MNIST [4, 7, 10, 25, 29, 32, 34], CIFAR-10 [12], or Ima-
geNet [21, 22, 28] is constantly improving, which inspired us to
study their performance in the deep reinforcement learning setting.

Deep Reinforcement learning (RL) is particularly promising
learning framework for robotics and autonomous systems [9]. For
many robotic tasks, large datasets that are required for classical
supervised learning and would capture the peculiarities of the re-
quired robot or scenario are lacking, but a simulation of the robot’s
physics is usually available and can be used to generate the required
data using the RL paradigm. This approach has recently shown im-
pressive results with convincing sim-to-real transfer of challenging
behaviors (drone racing, quadruped control) learned in simulation
with RL [8, 27].

Since work on using SNNs in RL is much less developed than in
supervised-learning settings, we explore this combination here. In
particular, we applied recent backpropagation-based learning algo-
rithms for SNNs to train deep spiking Q-networks (DSQNs) with re-
inforcement learning on two classic control problems from the two
OpenAI Gym environment [3]. We trained a DSQN with quantized
parameters for deployment on the Intel’s neuromorphic research
chip Loihi [5]. Comparisons with a DSQN running on a standard
processor and a baseline DQN in environments with random initial-
ization seeds revealed that the network runs on Loihi without loss
in performance in terms of accumulated over an episode reward.
To assess the robustness of the models, we also evaluated them

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ICONS ’21, July 27–29, 2021, Virtual Conference Mahmoud Akl, Yulia Sandamirskaya, Florian Walter, and Alois Knoll

Figure 1: Schematics of the system used in our experiments.
The OpenAI Gym environments run in closed-loop with the
Intel neuromorphic research chip Loihi. The networks used
in our experiments consist of two fully connected hidden
layers. The detailed network architecture used for each ex-
periment is listed in Table 2.

on randomized environments from the Sunblaze library [17], in
which the physical parameters of the environment are drawn from
different distributions.

Our study shows that the DSQN method can be used to train
spiking networks that run on neuromorphic processors without loss
in training and test performance. Performance of both DSQN and
DQN degrades when the environmental parameters are perturbed
during inference. Online learning on neuromorphic hardware can
be used to cope with the problem of such environment change,
e.g. in transition from simulation to real world, although we don’t
address this challenge in this paper.

2 RELATEDWORK
Reinforcement Learning with SNNs has been previously explored
through biological learning rules like reward-modulated STDP (R-
STDP). An SNN was trained with R-STDP in [2] to make a vehicle
keep its lane and in [33] for target reaching with a robotic arm.
However, R-STDP only works with shallow networks and may not
be as powerful as modern deep reinforcement learning methods in
more complex tasks.

More recently, after ANN to SNN conversion techniques yielded
more stable results in supervised learning tasks, the same tech-
niques were tried out for DQNs. In [19], a DQN trained to play the
Atari Breakout game was converted to an SNN and showed im-
proved robustness against perturbations, e.g. when obscuring a part
of the game screen. We haven’t observed this increased robustness
in our experiments.

In another work, a spiking version of the Deep Deterministic
Policy Gradient (DDPG) algorithm was trained and deployed on
the Loihi neuromorphic chip [31]. Here, only the actor network
was an SNN, while the critic network was a regular DNN. In our
implementation, we considered spiking networks both for the policy
and target networks of the Q-learning algorithm.

Table 1: DQN algorithm hyperparameters

Hyperparameter Value

replay memory size 10000
discount factor 0.999
learning rate 0.001
target network update frequency 100
initial exploration 1.0
final exploration 0.05
batch size 128

Table 2: SNN parameters

Hyperparameter Cartpole-v0 Acrobot-v1

𝛼 1 1
𝛽 1 1
threshold 0.1 1.5
quantized threshold 64 128
simulation time 10 4
network architecture [4, 64, 64, 2] [6, 256, 256 ,3]

3 METHODS
In this section, we describe the Q-learning algorithm used to train
the DQN, the CartPole and Acrobot problems, the details of training
a DSQN, and the adjustment to training procedure required to
enable the deployment on Loihi.

3.1 Q-Learning
Q-learning is a model-free off-policy reinforcement learning algo-
rithm that estimates the optimal action-value function

𝑄 (𝑠, 𝑎) = max𝜋E[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ... |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋] (1)

that defines the expected discounted future reward when taking
action 𝑎 from state 𝑠 . The Q-values are updated iteratively after each
interaction with the environment by moving the current Q-value
towards the experienced reward plus the (discounted) maximum
Q-value over all actions in the next state 𝑠 ′:

𝑄 (𝑠, 𝑎) := 𝑄 (𝑠, 𝑎) + 𝛼 (−𝑄 (𝑠, 𝑎) + 𝑟 + 𝛾max𝑎′𝑄 (𝑠 ′, 𝑎′)) . (2)

When using this approach to solve problems with continuous obser-
vation spaces, it becomes intractable to maintain an action value for
each state. The Deep Q-Learning algorithm [15], instead, represents
the optimal action-value function as a neural network.

The Deep Q-Learning algorithm consists of two parts: a sampling
and a learning part. During sampling, the agent interacts with
the environment and collects experience tuples that consist of the
current state, the action taken, the reward achieved, and the next
state: {𝑆,𝐴, 𝑅, 𝑆 ′}. The experience tuples are stored in a finite replay
memory buffer. In the learning step, experiences are randomly
sampled from the memory buffer, and the following quadratic loss
function is minimized:

𝐿(𝑠, 𝑎 |𝜃𝑖) = (𝑟 + 𝛾max𝑎′𝑄 (𝑠 ′, 𝑎′ |𝜃−𝑖) −𝑄 (𝑠, 𝑎 |𝜃𝑖))2, (3)

where 𝜃𝑖 are the parameters of the Q-network, and 𝜃−
𝑖
are the

parameters of the target network. The target network parameters

Porting Deep Spiking Q-Networks to neuromorphic chip Loihi ICONS ’21, July 27–29, 2021, Virtual Conference

(a)

(b)

Figure 2: Training: as sum of rewards over training episodes
for the CartPole (a) and the Acrobot (b) environments. The
solid lines are rewards (window size of 100 episodes) aver-
aged over 5 runs with random initialization seeds. Shaded
areas show the standard deviation. The vertical solid lines
represent the episode at which the best trained model was
achieved.

𝜃−
𝑖
are set to the Q-network parameters every few episodes. This is

also known as the target network update frequency and improves
stability during training.

3.2 The CartPole and Acrobot Problems
3.2.1 CartPole. The CartPole problem is a classic problem in the
reinforcement learning literature [1] and consists of an un-actuated
rigid pole hinged to a cart. The cart can move left and right on
a one-dimensional track and the pole is free to move only in the
plane vertical to the cart and track. The task is to keep the pole
balanced by applying a force of +1 or -1 to the cart. At each time
step, the agent is given four observations from the environment: the
cart’s position, the cart’s velocity, the pole’s angle, and the pole’s
velocity. The agent receives a reward of +1 for every time step
that the pole remains upright. In our experiments, an episode is

terminated when the pole falls beyond 15 degrees from the vertical,
or when the maximum time step 200 is reached.

3.2.2 Acrobot. The Acrobot problem is also a classic reinforce-
ment learning problem [30]. It consists of a two-link robot, with
an actuated joint between the two links. The task is to swing up
the lower link to reach a certain height as fast as possible. At each
time step, the agent is given six observations from the environment:
(𝑐𝑜𝑠 (𝜃1), 𝑠𝑖𝑛(𝜃1), 𝑐𝑜𝑠 (𝜃2), 𝑠𝑖𝑛(𝜃2), ¤𝜃1, ¤𝜃2), where 𝜃1 and 𝜃2 are the
joints’ angles, and chooses to either apply a positive, negative, or
no torque on the joint between the two links. The agent receives
a reward of -1 for each time step. In our experiments, an episode
is terminated when the lower link reaches the required height, or
when the maximum time step 500 is reached.

3.3 Training a DSQN
To train a DSQN with backpropagation and surrogate gradients, we
used the SpyTorch framework [16], which is based on the PyTorch
deep learning library [18]. In SpyTorch, the synaptic currents (in-
put to the neurons) are calculated according to a standard leaky
integrate-and-fire model:

𝑢𝑖 (𝑡) = 𝛼𝑢𝑖 (𝑡 − 1) +
∑
𝑗

𝑤𝑖 𝑗𝑠 𝑗 (𝑡), (4)

where 𝛼 ∈ [0, 1] is the current decay factor, 𝑤𝑖 𝑗 are synaptic
weights, and 𝑠 𝑗 (𝑡) is a binary function, representing the emission
of a spike from neuron 𝑗 . The membrane potential dynamics is in
turn calculated using equation:

𝑣𝑖 (𝑡) = 𝛽𝑣𝑖 (𝑡 − 1) + 𝑢𝑖 (𝑡 − 1), (5)

where 𝛽 ∈ [0, 1] is the membrane potential decay factor. If the
membrane potential exceeds the threshold, we set the potential
back to zero. We chose the reset-to-zero mechanism since it is
utilized by Loihi. The details of implementation of neuronal model
on Loihi can be found in [13].

The system architecture used to solve both problems is shown
in Figure 1, while the network shape and parameters are listed in
Table 2. The observations from the environments are multiplied by
the first weight matrix (input to hidden layer 1), and the resulting
vector is injected as current in the first hidden layer. We set the
threshold of the output layer to infinity, i.e. remove the spiking
mechanism from the output neurons, and read out the membrane
potentials of the output neurons as the Q-values (note, spike-rate
or inter-spike interval could be used as the output as well). We
reset the network state after every inference step: since temporal
dynamics is not part of the original DQN network, we aim at a
more clear comparison this way. Taking temporal dynamics into
account could potentially improve performance of the SNN in tasks
with temporal contingencies.

3.4 Model Quantization
To be able to deploy the trained SNN on Loihi, we need to take the
Loihi model constraints into account. Since Loihi only accepts 8-bit
quantized weights, we quantized the weights for the forward pass
during training, i.e. during action selection, and kept the floating
point weights for the backward pass of the training. Quantizing the
weights was done according the to following formula:

ICONS ’21, July 27–29, 2021, Virtual Conference Mahmoud Akl, Yulia Sandamirskaya, Florian Walter, and Alois Knoll

(a)

(b)

Figure 3: CartPole evaluation on normal (a) and random (b)
environments. Average accumulated rewards over 500 runs
with random initialization seeds.

𝑤𝑞𝑢𝑎𝑛𝑡 = ⌊
𝑤 𝑓 𝑙𝑜𝑎𝑡

𝑠𝑐𝑎𝑙𝑒
⌋, 𝑠𝑐𝑎𝑙𝑒 =

𝑚𝑎𝑥 (𝑤 𝑓 𝑙𝑜𝑎𝑡) −𝑚𝑖𝑛(𝑤 𝑓 𝑙𝑜𝑎𝑡)
𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛

, (6)

where 𝑞𝑚𝑎𝑥 and 𝑞𝑚𝑖𝑛 are the maximum and minimum bits. Since
we are using mixed sign weights on Loihi, we set 𝑞𝑚𝑖𝑛 = −256 and
𝑞𝑚𝑎𝑥 = 254.

Additionally, we multiply the quantized weights by 26 statically,
since we inject the observations as current, and the Loihi compart-
ment current is calculated according to:

𝑢𝑖 (𝑡) = 𝑢𝑖 (𝑡 − 1) · (212 −𝛿𝑢) · 2−12 + 26+𝑤𝑔𝑡𝐸𝑥𝑝 ·
∑
𝑗

𝑤𝑖 𝑗 · 𝑠 𝑗 (𝑡), (7)

where 𝛿𝑢 parametrizes the decay term of the input current 𝑢𝑖 (𝑡),
and𝑤𝑔𝑡𝐸𝑥𝑝 is an additional weight exponent that is set to zero by
default.

4 RESULTS AND EVALUATION
We trained a DQN and a DSQNwith the same feed-forward network
architecture that consists of two fully connected hidden layers
(Table 2), and the same DQN hyperparameters (Table 1) for the

(a)

(b)

Figure 4: Acrobot evaluation on normal (a) and random (b)
environments. Average accumulated rewards over 500 runs
with random initialization seeds.

Table 3: Random Environment Details

Environment Parameter Default Random

CartPole Force 10 [5,15]
Length 0.5 [0.25,0.75]
Mass 0.1 [0.05,0.5]

Acrobot Length 1 [0.75,1.25]
Mass 1 [0.75,1.25]
MOI 1 [0.75,1.25]

same number of episodes to solve the CartPole-v0 and the Acrobot-
v1 tasks. Furthermore, we trained a quantized DSQN model for
both problems and deployed it to the Loihi neuromorphic chip.
In each case (DQN, DSQN, and quantized DSQN), we trained five
different models and measured the mean rewards during training
and evaluation. Training results for both environments are shown
in Figure 21.

1All experiments were run on a NUC computer featuring Intel® Core™ i7-8559U CPU
2.70GHz × 8 with 32GB RAM running Ubuntu 18.04, python 3.6.9, and version 0.9.9 of
the Intel NxSDK. All performance measurements are based on testing as of April 2021
and may not reflect all publicly available security updates.

Porting Deep Spiking Q-Networks to neuromorphic chip Loihi ICONS ’21, July 27–29, 2021, Virtual Conference

(a)

(b)

Figure 5: Output neuronal activity for CartPole (a) and Acrobot (b) recorded for one episode on Loihi. Horizontal axis: the
number of time steps of the episode multiplied by the simulation time of each trial, listed in Table 2. The dots indicate which
action was selected at each time step, based on neuron with the higher membrane potential. In the example runs shown here,
the CartPole episode lasted 200 time steps (reward = 200); the Acrobot episode lasted 72 time steps (reward = -72).

Moreover, we evaluated the trained models on 100 randomly
initialized environments from the Sunblaze library to further test
the generalization ability of the trained models. The randomized
environments vary some physical parameters, e.g. the mass and
length of the pole and the strength of the applied force in case of
the CartPole environment and the length, mass and moment of
inertia in case of the Acrobot environment. The values for these
parameters are sampled from specific intervals provided in Table 3.

Figure 2 shows the results of the training phase for both environ-
ments. In the CartPole environment, we observed that there was
no significant difference between the DQN, DSQN and the quan-
tized DSQN (Figure 2(a)). The most notable difference is that the
DQN requires fewer episodes to reach the best reward (indicated
by the vertical lines in the figure). The evaluation results of the

trained CartPole models are shown in Figure 3. In the non-altered
environments, all four models act very similarly and achieve the
best possible reward, in that case 200. In the randomized environ-
ments, however, we notice a slight degradation of performance and
increased variability.

During training on the Acrobot task, we observed that the spik-
ing models were more noisy and learned slower than the DQN.
Here, quantization also contributes to higher variability and slower
learning as visible in Figure 2(b). This can be attributed to the in-
creased units per layer for the Acrobot environment (256 vs. 64),
which increases accumulation of discretization errors. However, all
models reach a similar reward by the end of the training episodes.
The evaluation results of the trained Acrobot models are shown in

ICONS ’21, July 27–29, 2021, Virtual Conference Mahmoud Akl, Yulia Sandamirskaya, Florian Walter, and Alois Knoll

Figure 4. Here we observe that the DQN outperforms the spiking
models.

A consistent result from both experiments is that there is no
loss of performance between the quantized DSQN simulated on
SpyTorch and the DSQN running on Loihi.

Figure 5 shows an exemplary run of an episode on Loihi for
both environments, depicting activity in the output layer and the
selected actions. In both examples, the neuromorphic RL agent
could successfully solve the task.

5 DISCUSSION AND CONCLUSION
In this work, we successfully trained SNNswith the deep Q-learning
algorithm using backpropagation and surrogate gradients to solve
classic control problems from OpenAI Gym. With some additional
considerations, we were able to deploy the trained weights to the
Loihi neuromorphic chip and run the simulated environments in
closed-loop with the hardware without accuracy loss. Measure
energy consumption or latency was not practical in out RL setup,
but we can expect that neuromorphic implementation can bring
significant advantages here [6].

Furthermore, we tested the trained DSQN models for robustness
against perturbations in the physical parameters of the environ-
ments. Unlike results from [19], we observed a slight degradation
of performance when testing the DSQNs with perturbed environ-
ments (see Figures 3). However, backpropagation provides a good
starting point that can be further fine-tuned with the online learn-
ing capabilities of SNNs. This can be a potential solution for better
generalization abilities, which is a current problem in reinforcement
learning.

Due to the additional parameters in SNNs, e.g. the membrane
threshold, the simulation time and the voltage and current decay
factors, training SNNs with backpropagation requires a more ex-
tensive hyperparameter tuning phase, as changing the values for
those parameters can have a substantial impact on the results.

This work paves the way for exploring training deep reinforce-
ment learning algorithms with SNNs and deploying them to neu-
romorphic hardware. With the rising popularity of deep reinforce-
ment learning in fields like robotics, we believe that neuromorphic
implementations will lead to an energy-efficient and potentially
more robust alternative and will broaden the application domains
of neuromorphic hardware.

ACKNOWLEDGEMENT
We thank Intel’s Neuromorphic Research Community for fruitful
discussions and Andreas Wild and Philipp Plank for their help with
porting the networks on Loihi.

REFERENCES
[1] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. 1983. Neuronlike

Adaptive Elements That Can Solve Difficult Learning Control Problems. IEEE
Transactions on Systems, Man and Cybernetics SMC-13, 5 (1983), 834–846. https:
//doi.org/10.1109/TSMC.1983.6313077

[2] Zhenshan Bing, Claus Meschede, Kai Huang, Guang Chen, Florian Rohrbein,
Mahmoud Akl, and Alois Knoll. 2018. End to End Learning of Spiking Neural
Network Based on R-STDP for a Lane Keeping Vehicle. Proceedings - IEEE
International Conference on Robotics and Automation (2018), 4725–4732. https:
//doi.org/10.1109/ICRA.2018.8460482

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. (2016), 1–4.

arXiv:1606.01540 http://arxiv.org/abs/1606.01540
[4] Gregory K. Cohen, Garrick Orchard, Sio-Hoi Leng, Jonathan Tapson, Ryad B.

Benosman, and André van Schaik. 2016. Skimming Digits: Neuromorphic Clas-
sification of Spike-Encoded Images. Frontiers in Neuroscience 10 (2016), 184.
https://doi.org/10.3389/fnins.2016.00184

[5] Mike Davies, Narayan Srinivasa, Tsung Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
Yuyun Liao, Chit Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty,
Steven McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkataramanan,
Yi Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang. 2018. Loihi: A
Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 38, 1
(2018), 82–99. https://doi.org/10.1109/MM.2018.112130359

[6] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel
A. Fonseca Guerra, Prasad Joshi, Philipp Plank, and Sumedh R. Risbud. 2021. Ad-
vancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook.
Proc. IEEE 109, 5 (2021), 911–934. https://doi.org/10.1109/JPROC.2021.3067593

[7] Peter U Diehl and Matthew Cook. 2015. Unsupervised learning of digit recogni-
tion using spike-timing-dependent plasticity. Frontiers in computational neuro-
science 9 (2015), 99.

[8] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios
Tsounis, Vladlen Koltun, and Marco Hutter. 2019. Learning agile and dynamic
motor skills for legged robots. Science Robotics 4, 26 (2019).

[9] Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey
Levine. 2021. How to train your robot with deep reinforcement learning:
lessons we have learned. The International Journal of Robotics Research (2021),
0278364920987859.

[10] Laxmi R Iyer and Arindam Basu. 2017. Unsupervised learning of event-based
image recordings using spike-timing-dependent plasticity. In 2017 International
Joint Conference on Neural Networks (IJCNN). IEEE, 1840–1846.

[11] Jacques Kaiser, Hesham Mostafa, and Emre Neftci. 2020. Synaptic plasticity
dynamics for deep continuous local learning (DECOLLE). Frontiers in Neuroscience
14 (2020), 424.

[12] Chankyu Lee, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik
Roy. 2018. Deep spiking convolutional neural network trained with unsuper-
vised spike-timing-dependent plasticity. IEEE Transactions on Cognitive and
Developmental Systems 11, 3 (2018), 384–394.

[13] Chit-Kwan Lin, Andreas Wild, Gautham N Chinya, Yongqiang Cao, Mike Davies,
Daniel M Lavery, and Hong Wang. 2018. Programming spiking neural networks
on Intel’s Loihi. Computer 51, 3 (2018), 52–61.

[14] Wolfgang Maass. 1997. Networks of spiking neurons: the third generation of
neural network models. Neural networks 10, 9 (1997), 1659–1671. https://doi.
org/10.1016/S0893-6080(97)00011-7

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518 (2015).
https://doi.org/10.1038/nature14236 arXiv:1604.03986

[16] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. 2019. Surrogate gradi-
ent learning in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Processing Magazine 36, 6
(2019), 51–63.

[17] Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and
Dawn Song. 2018. Assessing Generalization in Deep Reinforcement Learning.
arXiv:arXiv:1810.12282

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703 (2019).

[19] Devdhar Patel, Hananel Hazan, Daniel J Saunders, Hava T Siegelmann, and
Robert Kozma. 2019. Improved robustness of reinforcement learning policies
upon conversion to spiking neuronal network platforms applied to Atari Breakout
game. Neural Networks 120 (2019), 108–115.

[20] Bipin Rajendran, Abu Sebastian, Michael Schmuker, Narayan Srinivasa, and Evan-
gelos Eleftheriou. 2019. Low-power neuromorphic hardware for signal processing
applications: A review of architectural and system-level design approaches. IEEE
Signal Processing Magazine 36, 6 (2019), 97–110.

[21] Nitin Rathi and Kaushik Roy. 2020. Diet-snn: Direct input encoding with leakage
and threshold optimization in deep spiking neural networks. arXiv preprint
arXiv:2008.03658 (2020).

[22] Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy.
2020. Enabling deep spiking neural networks with hybrid conversion and spike
timing dependent backpropagation. arXiv preprint arXiv:2005.01807 (2020).

[23] Saeed Reza, Mohammad Ganjtabesh, Simon J Thorpe, and Timothée Masquelier.
2018. STDP-based spiking deep convolutional neural networks for object recog-
nition. Neural Networks 99 (2018), 56–67. https://doi.org/10.1016/j.neunet.2017.
12.005

https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1109/ICRA.2018.8460482
https://doi.org/10.1109/ICRA.2018.8460482
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://doi.org/10.3389/fnins.2016.00184
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1604.03986
https://arxiv.org/abs/arXiv:1810.12282
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1016/j.neunet.2017.12.005

Porting Deep Spiking Q-Networks to neuromorphic chip Loihi ICONS ’21, July 27–29, 2021, Virtual Conference

[24] Bodo Rueckauer, Iulia Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and
Shih Chii Liu. 2017. Conversion of continuous-valued deep networks to efficient
event-driven networks for image classification. Frontiers in Neuroscience 11 (2017),
1–12. https://doi.org/10.3389/fnins.2017.00682

[25] Amar Shrestha, Khadeer Ahmed, Yanzhi Wang, and Qinru Qiu. 2017. Stable spike-
timing dependent plasticity rule for multilayer unsupervised and supervised
learning. In 2017 international joint conference on neural networks (IJCNN). IEEE,
1999–2006.

[26] Sumit Bam Shrestha and Garrick Orchard. 2018. SLAYER: spike layer error
reassignment in time. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems. 1419–1428.

[27] Yunlong Song, Mats Steinweg, Elia Kaufmann, and Davide Scaramuzza. 2021.
Autonomous Drone Racing with Deep Reinforcement Learning. arXiv preprint
arXiv:2103.08624 (2021).

[28] Christoph Stöckl and Wolfgang Maass. 2021. Optimized spiking neurons can
classify images with high accuracy through temporal coding with two spikes.
Nature Machine Intelligence (2021), 1–9.

[29] Evangelos Stromatias, Miguel Soto, Teresa Serrano-Gotarredona, and Bernabé
Linares-Barranco. 2017. An Event-Driven Classifier for Spiking Neural Networks
Fed with Synthetic or Dynamic Vision Sensor Data. Frontiers in Neuroscience 11

(2017), 350. https://doi.org/10.3389/fnins.2017.00350
[30] Richard S Sutton. 1996. Generalization in reinforcement learning: Successful

examples using sparse coarse coding. Advances in neural information processing
systems (1996), 1038–1044.

[31] Guangzhi Tang, Neelesh Kumar, and Konstantinos P. Michmizos. 2020. Re-
inforcement co-Learning of Deep and Spiking Neural Networks for Energy-
Efficient Mapless Navigation with Neuromorphic Hardware. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 6090–6097.
https://doi.org/10.1109/IROS45743.2020.9340948

[32] Amirhossein Tavanaei and Anthony Maida. 2019. BP-STDP: Approximating
backpropagation using spike timing dependent plasticity. Neurocomputing 330
(2019), 39–47.

[33] Juan Camilo Vasquez Tieck, Pascal Becker, Igor Peric, Jacques Kaiser, Mahmoud
Akl, Daniel Reichard, Arne Roennau, and Rüdifer Dillmann. 2019. Learning target
reaching motions with a robotic arm using dopamine modulated STDP. In 18th
IEEE International Conference on Cognitive Informatics and Cognitive Computing.

[34] Ruthvik Vaila, John Chiasson, and Vishal Saxena. 2019. Deep convolutional
spiking neural networks for image classification. arXiv preprint arXiv:1903.12272
(2019).

https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2017.00350
https://doi.org/10.1109/IROS45743.2020.9340948

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Q-Learning
	3.2 The CartPole and Acrobot Problems
	3.3 Training a DSQN
	3.4 Model Quantization

	4 Results and Evaluation
	5 Discussion and Conclusion
	References

