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Abstract

Depth estimation is an important task in many robotic
applications. It is necessary to understand and navigate an
environment and to interact with objects. Different active
and passive sensing solutions can be used for depth esti-
mation, with different tradeoffs in accuracy, range, latency,
dealing with challenging light conditions, power efficiency
and price. Event-based dynamic vision sensors (DVS) are
particularly well-suited for situations in which low latency
and low power vision are needed, e.g. on a fast mobile
robot. In this work, we present an event-based depth esti-
mation method with a single DVS using a novel depth from
motion algorithm targeting neuromorphic hardware. The
system first computes the optical flow on the neuromorphic
chip and then computes the depth by combining optical flow
with the camera velocity. The method assumes only transla-
tional motion and it successfully reconstructs the depth from
the measured flow. The method can achieve low-latency
depth estimation (<0.5ms) while maintaining a small net-
work size, allowing for better scalability. We tested the al-
gorithm on Intel’s neuromorphic research chip Loihi 2.

1. Introduction

Depth estimation is an important task in many robotic
applications. It is necessary to estimate distances to ob-
jects in an environment and is an important component
of the problem of simultaneous localization and mapping
(SLAM). Different visual methods for depth estimation in-
clude active sensing using lasers (lidar) or structured light
setups, passive sensing using multi-view geometry (stereo)
or monocular camera solutions using depth-from motion or

Figure 1. Depth measurements over a 4 seconds period reprojected
in 3D space.

parallax, as well as deep neural networks trained on anno-
tated image-depth datasets. All methods have their pros-
and contras, but the passive camera-based solutions often
win due to their simplicity, low cost and applicability both
in indoor and outdoor settings. However, in challenging
scenarios, camera-based solutions may fail. For instance,
fast motions often cause motion blur in the images, making
depth estimation harder. The fixed sampling rate of the cam-
eras also makes them less suited for latency-critical applica-
tions. Furthermore, they often fail to produce good images
in low light conditions and have a relatively low dynamic
range. Event-based dynamic vision sensors (DVS), on the
contrary, deal well with these scenarios [|2]. Here, we pro-
pose a novel method to efficiently compute depth from a
moving event-based camera using neuromorphic hardware.

Event cameras are bio-inspired vision sensors that fea-
ture asynchronous pixels. They do not work at a fixed sam-



pling rate like conventional cameras. Instead, every pixel
independently detects brightness changes. When a large
enough change is detected, an event is triggered and sent out
to the computer. Each event carries the address of the pixel
it was emitted from. The DVS output then consists of an
events stream, representing local brightness changes. This
output is sparse and informative, offering several advan-
tages over traditional cameras: event cameras offer lower
power consumption, low latency, and high dynamic range.
These are all important characteristics for robotics applica-
tions.

Conventional image processing techniques cannot be
easily used on event data, since there are no images or
frames leaving the sensor. Image processing methods are
not designed to take advantage of the asynchronous and
sparse characteristics of the DVS. New approaches are re-
quired to take full advantage of these sensors.

Several novel methods have been proposed to process
events and extract relevant information. The majority of
these run on conventional hardware: CPUs or GPUs. This
usually leads to bottlenecks as traditional hardware is not
designed to handle the sparse output of event cameras.
Events are usually accumulated onto frames and then pro-
cessed as a batch. In this case, algorithms are typically not
designed to process each incoming event individually.

Hardware specifically designed to handle sparse and
asynchronous data is necessary to take full advantage of
the event cameras. Neuromorphic processors use a com-
putational model that leverages the same concepts of sparse
and asynchronous communication. They receive, send, and
process information with the use of spikes in a similar fash-
ion to event-based signal stream of the DVS (and similar to
how our eye samples and our brain processes visual infor-
mation). Both analog and digital neuromorphic platforms
have been developed, each with its advantages. Some of
such neuromorphic platforms are: Spinnaker [!1], IBM
TrueNorth [20] and Intel’s neuromorphic research chips
Loihi 1 and 2 [7] [8].

In this work, we use the Loihi 2 chip. It allows the defi-
nition of custom neuron processes and it also introduces the
possibility to send graded spikes between neurons. These
features allow us to have a simpler network that uses fewer
spikes for the communication between neurons.

2. Related Work

Previous research on monocular depth estimation using
event-based cameras focuses on methods that run on con-
ventional hardware, such as CPU and GPU. The work in
[19] estimates the 3D scene structure and the 6-DoF camera
motion from a single event camera. The method runs on a
standard PC with a GPU and it can process up to 1M events
per second. This is enough for slower camera motions that
trigger fewer events, but it is not able to run in real-time

with very high event rates.

The EMVS method [25] leverages the sparsity and the
high temporal resolution of event cameras. It can recon-
struct a sparse depth map of the environment from the event
stream and the camera groundtruth position. Their im-
plementation can process 1.2 million events/s on a single
core on a standard laptop CPU. Similarly, [13] uses contrast
maximization to find the best depth value that fits the event
stream and a given camera motion.

More recent methods use ANNs to predict monocular
depth from event data [14, 18]. In this work, simulated data
is used to train the network. The data was recorded us-
ing the CARLA simulator [9]. The simulator provided a
groundtruth depth that was used to supervise the training.

Few methods explore the use of neuromorphic chips to
extract depth information from the event stream on the chip
directly. The work in [16] determines the distance of objects
by varying the camera focus and observing the appearance
of the objects with an event camera. They implemented the
method in simulation and they were able to reconstruct the
structure of the scene.

More work has been done on optical flow estimation on
neuromorphic hardware from a stream of events. The work
in [23] was one of the first methods to compute optical flow
from event cameras with a spiking neural network. The au-
thors implemented coincidence detectors using synaptic de-
lays creating units sensitive to different speeds. The down-
side of this method is that it can only measure the optical
flow at discrete pre-defined velocities.

The works in [1,3,24] define a biologically plausible ar-
chitecture for estimating the optical flow. In [24] a 3-layer
structure was used, inspired by the stages of visual process-
ing in biological brains. The authors implemented a set of
spatio-temporal oriented filters to process the event input.
The response of each filter was combined and used to esti-
mate the magnitude and direction of the optical flow.

The work in [10] uses the same energy-based approach
but is implemented on hardware and takes advantage of the
characteristics of the Loihi 2 chip using resonate-and-fire
neurons. These methods are good at estimating the flow,
especially in areas of the image with complex textures. One
downside is that they require a larger number of events to
obtain an estimate compared to other methods [1].

In [15,17,21], a correlation-based approach was imple-
mented on neuromorphic hardware. In these works, the
same time-to-travel approach was used. They measure the
time it takes for an edge to travel from one pixel to the next,
the correlation is established thanks to the high temporal
resolution of event cameras.

In [15], the authors use a mixed analog/digital neuromor-
phic processor implementing a network that measures the
time-to-travel using LIF neurons. The work in [17] uses the
same approach, but they implemented it on the IBM True



North neuromorphic processor [20].

The work in [21] uses a similar approach but with a dif-
ferent implementation. The output spike rate here is not
constant like in [15], it depends on the time measured. Un-
like before, a neuron only starts spiking when the second
input spike is received. Conceptually similar work in [5]
measured time-to-travel on a microcontroller. This allowed
the researchers to encode the information as a fixed-point
integer, making the optical flow easier to process. On the
other hand, a microcontroller is not suited to process all the
parallel information coming from an event camera.

Most methods for monocular depth estimation take into
consideration events from a larger time window. On the
other hand, measuring the instantaneous depth usually re-
quires two or more cameras [ |2]. Furthermore, the compu-
tation is usually performed on CPU or GPU, introducing a
latency. Our method focuses on low-latency and low-power
depth estimation running on neuromorphic hardware.

3. Method

The presented network consists of two layers: the opti-
cal flow layer and the depth estimation layer. The optical
flow is obtained by measuring the time-to-travel: the time it
takes for an edge to move between pixels of the visual array.
The general approach is inspired by the Time Difference
Encoder (TDE) from [21]. The implementation, however,
is significantly different.

The TDE in the original work encodes the time-to-travel,
or more generally the time difference between two spikes,
into a rate-coded spike output. By measuring the time dif-
ference between events in adjacent pixels, it is able to de-
termine the direction and velocity of a moving edge.

The method presented in this work measures the same
time-to-travel but encodes it using graded spikes. Typically,
spikes carry only binary information, but on Loihi 2 spikes
can also carry a value. We use this feature to send the mea-
sured time difference as a single spike, allowing for efficient
encoding and low latency. This results in fewer spikes be-
ing sent and lower latency compared to rate encoding. The
time difference is then used together with the camera veloc-
ity, which is assumed to be known, to calculate the distance
to objects in the scene.

3.1. Normal flow computation

Due to the aperture problem, we can’t measure the op-
tical flow directly by observing a moving edge. Additional
information is necessary to estimate the full optical flow.
What we measure instead is the normal flow, which depends
on the orientation of the edge.

A single time difference unit can measure the time-of-
travel in a single direction. 4 units are combined together to
obtain an x-y normal flow measurement.

3.1.1 Motion Detector in one direction

Similarly to the TDE in [21], a single motion-sensitive unit
takes two inputs: a facilitating and trigger spikes. The unit
measures the time between the two spikes and is sensitive
to motion in a single direction. The facilitating spike has to
come before the trigger, otherwise, no output is produced.

The Loihi 2 chip allows us to define custom neuron mod-
els defined in microcode. We can use this feature to imple-
ment a model that measures the time difference between the
two inputs. The model is implemented as a simple counter
that starts when the facilitating spike is received and stops
once the trigger is received. The value of the counter is then
sent as a graded spike. Additionally, the model also checks
that the polarities of the two spikes match. The logic is de-
fined in Algorithm 1.

Algorithm 1 Simple logic of a motion detection unit

trigger < getTrigger()
facilitating < getFacilitating()
counter < getCurrentCounter()
polarity < getStoredPolarity)
if trigger & polarity(trigger) = polarity then
sendSpike(counter)
counter < 0
end if
if counter # 0 then
counter < counter + 1
end if
if facilitating then
counter < 1
polarity = polarity( facilitating)
end if

3.1.2 A full time-of-travel unit

A full unit capable of measuring the optical flow in x-y is
made by combining 4 motion detectors. Each detector is
sensitive to a different direction. Each pixel has a full unit
centered around it. Figure 2 shows the structure of a sin-
gle unit. As mentioned before, the measurement is affected
by the aperture problem thus only the normal flow can be
measured.

Each motion detector is sensitive to a single direction.
When an opposite direction is presented to it, the trigger
spike will receive an event before the facilitating. This does
not result in any spikes. Only when the motion matches the
direction the unit is sensitive to, an output is produced.

Noise and complex textures could cause more than two
motion units to spike at the same time. In that case, there
could be an inconsistency, e.g. both a leftward and right-
ward motion present at the same time. To solve it, we apply
a simple heuristic. When such inconsistencies are detected,
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Figure 2. Structure of a full motion sensitive unit. The input pixels
are represented with squares, while the time-of-travel units — with
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" Facilitating
) " Trigger
TOE
O ToE
)

the smaller time difference is kept and the larger one is dis-
carded.

In general, each event produces two measurements. A
vertical and a horizontal time-of-travel. This is true as long
as other events have been received previously in the neigh-
boring pixels. At least two events are needed to measure a
time difference and consequently to measure depth.

3.2. Depth estimation

There are a couple of key assumptions that we have to
make in order to measure the depth of the scene: (1) The
scene is static, without dynamic objects; (2) The camera
moves with a known velocity; (3) The camera is only sub-
ject to translation and no rotation. The relationship between
the optical flow, the scene structure and the camera velocity
is well known [4, 6], and it is given by:

i 1
(v> = At + Bu, (1)

where u and v represent the horizontal and vertical compo-
nents of the optical flow, Z is the depth at the considered
position, t = (t, t, t.)" is the translating camera ve-
locity and w = (w; w, w.)' is the rotational camera

velocity,
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Here, f is the focal length of the camera and x,y are the
pixel position.

The normal flow is defined as the projection of the opti-
cal flow onto the direction normal to the edge. Let’s define
the vector u as the 2D optical flow and the unit vector i

as the normal direction. Projecting w onto 7 is equivalent
to taking the dot product, so the normal flow magnitude is
equivalent to: |n| = 7 - u. See [2] for more details.

By multiplying both sides of Eq. (1) by o we get:

1
|n|:§At~ﬁ+Bw~ﬁ. 4)

By rearranging we can solve for Z:

At -7 5

~ n|-Bw- -7’ )

The flow computed previously, however, is not a velocity

in pixels/s. It is a time difference representing the time it

takes for the edge to move by one pixel. Converting the time

difference to the velocity requires a value inversion. Given

the fixed point representation available on Loihi 2, this is

not easily done on the chip. Instead, we can reformulate

the solution to make use of the time difference directly and
avoid doing more complex computations.

3.2.1 Computing depth with the time difference

For a more detailed analysis on optical flow measurement
using event timing, see [3]. In short, the 2D time difference
is a vector with the same direction as the normal flow: 1 =
td, but the magnitude is the inverse: |n| = \Tld\' Where td
is the time difference vector measured.

We substitute these in Eq. (5) and get:

At -t
P t-td ©)

1 .

We also know that: td = %:
At - td

=
1— Bw-td

)

This definition uses the time difference directly, but still
has a division that we would like to avoid. The translational
motion is necessary to estimate the depth of the scene, but
the rotational motion is superfluous. We assume then that
the camera doesn’t have any rotational motion. This way
the solution can be simplified to:

7 =td- At (8)

We can assume that the vector At is known, as it will be
computed off-chip and depends purely on the camera mo-
tion. The solution then consists of a simple dot product,
which involves only multiplication and addition that can be
easily computed on Loihi.



4. Implementation

The method is implemented on Loihi 2 and uses graded
spikes and custom neuron models. A single Loihi 2 chip is
made up of multiple (128) neuromorphic cores. Each core
updates the internal values for some neurons and handles
the computation and transmission of spikes.

In order to fit all the neurons necessary for the depth esti-
mation, we divide the input image into patches. The dimen-
sion of a patch is chosen to fit inside a single neuromorphic
core. Each core then handles the events coming from that
patch and the computation associated with it.

The network can be seen as a two-layer network. One
layer measures the time-of-travel and the second one esti-
mates depth. Half the cores implement one layer while the
other half implements the other.

The method assumes that an edge triggers only one event
per pixel. This makes it easier to establish the correspon-
dence between events and measure the time difference. To
enforce this, we use a refractory period on the input events.
This could be implemented as part of the network, but we
implement this as pre-processing on the input events.

4.1. Time-of-travel measurement

The model for the time difference measurement is rel-
atively simple, it is defined in microcode and follows the
logic expressed in Algorithm 1. Each neuron only stores
two values: a counter, and a sign. The first one keeps track
of the time between spikes. The second stores the polarity
of the last event received.

Each unit has two inputs: the facilitating input and the
trigger input. This means that each one requires 2 accu-
mulators to store the incoming spikes. An accumulator is
responsible for storing the input values for a neuron. In this
case, we need to distinguish between two different inputs
and we need two different accumulators.

This is important as each core has a limited number of
accumulators available. This determines the dimension of
the patch that each core can handle.

Other solutions are also possible. Weighted inputs could
be used for the distinction between inputs. This could re-
duce the number of accumulators needed making the net-
work smaller.

4.1.1 Timestep and synchronization

So far we have discussed how the time measurement is
done by increasing a counter value at each timestep. This
assumes that the updates happen at a constant rate. Nor-
mally the neuromorphic cores implement a barrier synchro-
nization mechanism that keeps them operating at the same
time scale. In other words, a neuron does not start the next
timestep update until all the relevant neurons have also been
updated.

This mechanism alone does not guarantee a constant
timestep duration. It is possible to use the embedded x86
on Loihi to advance the computation at a constant rate. For
our tests, we used a timestep duration of 1ms. This effec-
tively introduces a small discretization in the optical flow
measurement and in the depth estimate. See Sec. 5 for more
details. In our implementation, the input is sent to the net-
work at a constant rate. This provides constant timestep
progression.

4.1.2 Full time of travel unit

A single time-of-travel unit can only measure the time dif-
ference in one direction. To compute the flow, four units
are necessary, one for each direction: up, down, left, and
right. Figure 2 shows the structure of a single unit. There
is one such unit centered around each pixel. In other words,
for each pixel, we have 4 time-of-travel units, each with 2
inputs requiring two accumulators.

In other words, measuring the time difference requires 8
accumulators per pixel. On a single core, we can have up
to 8192 indexable accumulators. This means that a single
core can take care of 1024 pixels, or a patch of 32x32. For
simplicity, we divide the input into patches of 30x30, which
divides nicely the chosen input resolution of 240x180 px.
In total, 48 cores are needed to implement the flow layer for
the mentioned input resolution.

When the trigger pixel receives an event, all 4 units (if
they have an active counter) send the current counter value
as a graded spike to the corresponding neuron in the depth
estimation layer.

4.2. Depth estimation

The same idea of dividing the image into patches applies
to the depth estimation layer. The neuron model used in the
depth layer is more complex and requires more resources
compared to the previous model. There is, however, only
one neuron for each pixel. This, overall, reduces the total
number of resources required for the depth estimation layer
compared to the flow layer. As a result, larger patches could
fit inside a single core, but for simplicity, we use patches of
the same dimension as before: 30x30. Implementing the
depth estimation layer requires then another 48 cores for a
total of 96 cores. This means that with the input resolution
of 240x180, the network can fit on a single chip.

Each neuron in this layer has 6 inputs in total. 4 are for
the time difference measurements from the previous layer
and 2 are for the known camera velocity. This is the At term
in Eq. (8). The other term is the time difference measured.

In an ideal situation, only two of the four directions will
output a spike, one horizontal and one vertical. However,
due to noise or multiple edges close to each other, all four
units could send a spike. In other words, at the same time,
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(b) Plot showing the mean and median estimation errors over the whole
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Figure 3. Plots of the camera position and the depth error over time.

we could have both a leftward and rightward motion. We
apply a simple heuristic to solve this conflict. When two
values are received, only the smaller one is considered. This
reduces the time differences to only two measurements.
The model then simply performs the dot product of Eq. (8)
which can be easily implemented with multiplication and
addition operations.

Note how the value of At depends on pixel position.
When the camera motion comprises only of horizontal and
vertical motion, the value is the same for every image posi-
tion. However, when it moves along the z-axis, each pixel
would have to receive a different position.

This value is updated at fixed time intervals with the
ground truth position of the camera. The value is stored in-
side the neuron to have it available at every timestep. This
means that when the velocity is updated, a spike would need
to be sent for every pixel at the same time. This is some-
what inefficient and could cause occasional slowdown. To
reduce the number of spikes sent, the image area is divided
into patches that share the same value for At. This does
not affect the quality of the results when there is only mo-
tion along the x and y-axis. It has a minor impact when
the camera is moving along the z-axis. However, in gen-
eral, the motion along x and y is more important for depth
estimation.

4.3. Input and Output

Currently, the method is not running with a live camera
input. The event data is pre-loaded on the embedded cores
and then fed to the neuromorphic cores during execution.
The embedded core is a small x86 processor present on the
Loihi chip. It takes care of various tasks, in this case it
is used to send data to the neuromorphic cores. The input

method is not optimized for event data. The input data is
stored on the embedded core and more memory than nec-
essary is reserved. This could cause some slowdowns. See
Sec. 5.1.1 for more details.

Once a depth measurement is computed, the graded
spike output from the network can be used to carry out fur-
ther computation on the chip. In the current implementa-
tion, the output cannot be streamed off-chip. The embed-
ded core cannot handle a large number of graded spikes and
stream them directly to a host machine. More optimized
methods for I/O should make it possible to stream the spikes
with depth information and stream the event data more effi-
ciently. At the moment, software support for the chip limits
the I/O performance.

Currently, to analyze the result of the network, the com-
putation has to be paused to probe the internal values. This
slows down the execution significantly. When the values
are not probed, the method can run in real-time.

5. Experiments

We tested the method on two datasets. A synthetic
dataset where the camera has a more general motion pat-
tern. And on real data using the slider-depth dataset from
[22]. This dataset, however, includes only a horizontal cam-
era motion. The datasets we used present very little lens
distortion, so no corrections were applied to the event data.

5.1. Synthetic Data

The synthetic data is generated with the eSim event sim-
ulator [26]. Given a virtual 3D scene and the camera mo-
tion, it generates the stream of events and the ground-truth
depth data. We use the ground-truth depth to measure the
estimation error.



T a l
0 2 4 6 8 10 12 0.00 0 2“ 4

Depths
(a) Camera moving at 0.55m/s

Depths
(b) Camera moving at 2.6m/s

Execution time per time step

* Total
2000

1500

1000 -

Time (us)

]
l l .. 6 260 460 6[')0 860 10‘00
8 10 12 Time step
(c) Timestep duration: the execution time for
each timestep when the duration is not kept con-
stant by the embedded core.

Figure 4. Histograms of depth measurements for two different camera velocities on the same scene.

12

10

—. |6

= | 0

Figure 5. Output depth measurements, accumulated over 70ms.
The values are in meters

Mean[m]
1.670

Relative[%]| Median[m]
31.937 0.854

Relative[ %]
16.926

Table 1. Depth estimation accuracy on the synthetic dataset with
camera movement along all axis.

Relative[%] | Median[m]
13.279 0.345

Relative[ %]
5.598

Mean[m]

0.810

Table 2. Depth estimation accuracy with the camera moving hori-
zontally.

Figure 3a shows the camera trajectory used in the syn-
thetic sequence. The portions of the sequence where the
camera motion is mostly horizontal or vertical are simpler
and yield better results. Figure 3b show the relative errors
over the whole sequence. The method relies on the assump-

tion that during a single timestep, the velocity is constant.
Sudden changes in direction make the estimate worse.

The relative error plot also shows that the error is lowest
when the camera is moving almost exclusively horizontally.
When the camera moves along the z-axis the depth estimate
can be very imprecise. This is likely caused by the slow op-
tical flow generated by such a motion. Objects in the center
of the field of view will appear almost static, making the op-
tical flow measurement very imprecise. Figure 5 shows the
depth measurements accumulated over a period of 70ms.

Table 1 shows the mean and median errors over the
whole sequence. This includes the high error at the end of
the sequence. Further, we run the method on a second simu-
lated sequence that has only a horizontal camera trajectory.
Table 2 shows the measurement errors for this scenario.

5.1.1 Timestep duration choice

The histograms in Figs. 4a and 4b show all the depth val-
ues measured with the camera moving horizontally for two
different sequences. In the first one, the camera was mov-
ing at a total speed of 0.55m/s. In the second, the camera
moves at a higher speed of 2.6m/s. From the histograms,
it is clear how the results from the fast-moving camera are
more discretized. The high velocity was chosen to show its
impact on the results.

This is a consequence of time discretization, which de-
pends on the timestep duration chosen for the computation.
It also affects the maximum depth that can be measured
since the time difference counters have limited precision.
Slow movements of distant objects, cause the counters to
overflow, limiting the maximum time measurable. In the
current implementation, we are using 8 bits for the counter
representation. It is possible in theory to use more, but we
found that for the range of depths and camera velocities
used in this work, this precision works well.

If we don’t use the embedded core to control the time



(a) Time difference measured between adjacent pixels
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(b) Time difference measured between events 2 pixels apart.

Figure 6. Accumulated depth estimates over 30ms for the slider-depth sequence. Values are in meters.

progression, we can let the cores run as fast as possible and
observe the duration of the computation at each timestep.
Figure 4c shows the total duration of each timestep. The
time includes the state update of the neurons and the spike
handling. The execution time at each timestep is around
400ps. There are some timesteps where the computation
takes longer, this is likely due to the inefficient methods
used for sending the event data and the camera velocities
to the chip. At the moment, the input is limited by the soft-
ware support for the chip'.

Overall, the duration is almost always under the target
timestep duration of 1ms. This shows that it would be pos-
sible to target smaller timesteps, but it would require further
optimization of the data input. A shorter timestep duration
would also increase the precision of the flow measurement.
It would, however, require a higher precision for the time
difference counters. It would also increase the activity of
the chip, increasing the power draw. When running the net-
work on half the input resolution we notice a decrease in
the average execution time. The majority of the timesteps
take around 100us. When running at half the resolution, we
maintain the same number of neurons per core, but we re-
duce the total number of neuromorphic cores used. Again,
we believe the higher execution time in the previous exam-
ple to be caused by the input method used. Further testing
is needed to characterize the timesteps duration when better
I/O support is available.

The timestep duration also determines the latency of the
measurements. In our tests, the 1ms timestep would lead
to effectively a 1ms latency. The latency, however, cannot
be measured due to the I/O method used (see Sec. 4.3). The

Al experiments run on a machine with Intel(R) Core(TM) i7-9700K
CPU @ 3.60GHz x8, 32GB RAM running Ubuntu 20.04.2 LTS, python
3.9.7, and v.2.2.0 of the Intel NxCore in Loihi 2 hardware. All performance
measurements are based on testing as of March 2023 and may not reflect
all publicly available security updates. Results may vary.

current implementation could be used with 500.s timestep
and latency. Better I/O support could lead to even smaller
latencies.

5.2. Real Data

To test the method on real-world data, we use the slider-
depth sequence from [22]. It consists of a camera moving
along a controlled slider. This gives an accurate groundtruth
position of the camera from which we can extract the veloc-
ity. The scene presents objects placed at various distances,
it does not however provide any depth information.

Figure 6a shows the depth measurements accumulated
over 30ms. The results from the real-world data contain a
significantly larger amount of noise. Figure 6b shows the
same scene, but the network is slightly modified to mea-
sure the time difference between events two pixels apart.
The measurements appear to be more consistent, but not by
much. Measuring the time difference between larger dis-
tances improves the precision, but increases the chances of
false correspondences between events, leading to errors.

This is a problem also when measuring the time differ-
ence between adjacent pixels. The method works well for
straight edges, but it becomes less reliable when observing
complex textures.

6. Conclusion

We presented a lightweight and low-latency method for
depth estimation that can run on the Intel Loihi 2 neuro-
morphic chip. It can process the data event by event and
produce depth measurements with a theoretical latency of
Ims or lower. The method currently has some limitations on
the types of motions supported, limited only to translational
motion. The overall accuracy is lower when compared to
other monocular CPU-based methods that consider larger
windows of events. However, it achieves lower latency and
power consumption running on neuromorphic hardware.
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