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Abstract—Robotic researchers face fundamental challenges
when designing autonomous humanoid robots, which are able to
interact with real dynamic environments. In such unstructured
environments, the robot has to autonomously segment objects,
detect and categorize relevant situations, decide when to initiate
and terminate actions. As humans are very good in these tasks,
inspiration from models of human sensory-motor and cognitive
processes may help design more flexible and autonomous robotic
control architectures. Recently, we have extended a neurally-
inspired model for sequential organization with a representation
of hierarchies of behaviors. Here, we implement this model
on a robotic platform and demonstrate its functionality under
constraints of a real-world implementation. The architecture
generates hierarchically organized behavioral sequences on the
Aldebaran’s humanoid robot NAQO. The key dynamic components
of serial organization — such as the intention, condition of
satisfaction (CoS), and interactions within the hierarchy - are
coupled to robotic sensors and motors and bring about flexible
and autonomous behavior. We also demonstrate how continuous
in time neural-dynamic parts of the controller may be seamlessly
integrated with preprogramed algorithmic behaviors, introducing
flexibility, autonomy, and ability to learn, while avoiding unnec-
essary complexity of the architecture.

I. INTRODUCTION

Control of a humanoid robot with many degrees of freedom
is a challenging engineering task, which has been advanced
recently due improvement in hardware and software (e.g, [1],
[2]). However, the robotic systems often fail in unconstrained,
real-world environments shared with a naive human user. Such
environments have rich perceptual structure and dynamics,
which means that the robotic controller has to be flexible and
adaptive. On the perceptual side, the robot must be able to
autonomously detect relevant states of the environment and
transitions between them. On the motor side, the system must
decide autonomously when a particular action is appropriate
and coordinate activation and deactivation of the respective
internally represented behaviors. The engineering solutions to
the robotic control today do not show the desired flexibility,
which leads to a demand on new approaches to robot control
[3].

As humans are very good in dealing with complex dynamic
environments, one obvious strategy is to gain inspiration
from how human central nervous system solves the control
problems. While the artificial perceptual and motor system
are fairly advanced nowadays and in some domains outperform
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humans, the immense flexibility, with which humans make use
of their abilities is still not matched by robotic systems.

In this paper, taking inspiration from a neural-dynamic
framework that is used to understand human cognitive func-
tions in a close link to perception and action, we apply
a neurally inspired model for generating serially ordered
behaviors [?] to control the behavior of a robot. We increase
the complexity of the tasks to be executed by introducing a
hierarchical structure in the serial order architecture.

The architecture is based on dynamic neural fields (DNFs)
— a mathematical framework that bridges continuous in time
and space sensory-motor processes and the discrete cognitive
entities, such as objects’ representations and representations
of the states of the motor system [?]. This framework is
a variant of the dynamical systems approach to cognition
and robotics [4]. In this approach, attractors of a continuous
time dynamical system correspond to behaviorally relevant
states. The dynamic neural fields defined over continuous
dimensions such as color, location, or motor command extend
the traditional dynamical systems framework and enable link
to unprocessed sensory information. Instabilities of the neural
fields’ dynamics account for segregation of visual features into
objects and stabilizing spatial representations of objects and
events [?].

Within the DNF framework, behavior of a human, or a
robot, may be understood in terms of elementary behaviors
(EBs), which may be activated and deactivated in a sequence.
This principle is similar to the classical behaviorist modular
architecture, proposed by Brooks and followed up in the field
of behavioral robotics [5], [6], [?]. However, EBs in our
framework are inspired from modelling human cognition and
are featured by two elements — a representation of the intention
of an actions and the action’s condition of satisfaction as
stable states of a neural dynamics. Because of their attractor
properties, both these structures may be linked to the sensory-
motor system of the robot and control its action even in noisy
environments [?]. Each activated intention shapes attractors of
sensory-motor dynamics and eventually results in generation
of an overt action. When the behavioral goal of an action is
completed, the condition of satisfaction system is activated
and inhibits the active EB. Here, we demonstrate how this
model of sequence generation in humans may be extended



to sequences with hierarchical structure and implement it
on the humanoid robot NAO. Hierarchies are fundamental
mechanism to embrace complexity of the real-world tasks
[?] and to generalize to new task domains. Importance of
hierarchical representations has also been emphasized in the
robotic context [?], [?], [?].

In this paper, we demonstrate functioning of the neural-
dynamic architecture that implements hierarchically organized
sequences. This is a first, proof-of-concept robotic implemen-
tation of our model and will be extended through learning
in subsequent implementations. The paper is structured as
follows. First, we present the robotic scenario and implemen-
tation details of our neurally-inspired architecture. Then we
proceed with description of the architecture, present the results
of robotic experiments, and finish with a short conclusion.

II. METHODS
A. The scenario and resources

Aldebaran’s humanoid platform NAO was used for the
implementation of hierarchical sequences. NAO may be con-
trolled using Aldebaran’s Naoqui framework, which enables
access both to low-level sensors and motors of the robot
as well as predefined behavioral modules. One of the goals
we pursue in this implementation is to demonstrate that in
the DNF framework, the neural-dynamic parts of the ar-
chitecture may be seamlessly integrated with algorithmically
implemented behaviors, which do not rely on the low-level
sensory input.

In the presented architecture, we used two low-level com-
ponent of NAO: 1) the visual input from the top camera and
2) the control of the yaw motion of the NAO’s head, and
several built-in behavioral modules, such as walk-to, stand-
up, approach, and point. The complete set of elementary
behaviors (EBs) used in the implementation for the assembly
of higher order sequences are listed in Table I. The built-in
behavioral modules, such as Walk, Stand-up, Approach, and
Point, were activate and deactivate by the dynamical nodes of
the architecture.

The higher-order task, which the robot had to accomplish,
was to retrieve a sequence of colors, whereas each of these
color-seek behaviors entailed a sequence of EBs from the
lower-level of the hierarchy, e.g. stand-up, approach, point,
return. Dynamical nodes of the architecture activated and
deactivated these behaviors in appropriate moments in time.
We describe the architecture in detail next.

B. Sequence generation with neural dynamics

In our architecture, a sequence is comprised of elemen-
tary behaviors. Each elementary behavior features three main
components — an intention node, a condition of satisfaction
(CoS) node, and a memory node. Each node is characterized
by its activation, which follows a continuous-time equation
with a bistable dynamics (with an ”“on” and an “off” state).
If a node is active (in an “on” state), it sends activation
through weighted connections to other nodes, to which it
is coupled. Within EB, the intention node provides input to

TABLE I
ELEMENTARY BEHAVIORS USED TO CONSTRUCT HIERARCHICAL

SEQUENCES.

Behaviors Dynamics Callback

Stand up Discrete Blocking
Search Continuous | Non-blocking

Approach/walk toward Discrete Blocking
Point/reach Discrete Non-blocking

Return/walk backward Discrete Blocking

Sit down Discrete Blocking

CoS node, which is however not enough to activate the CoS
node and to the memory node, which gets activated. The
intention node also impacts on the intention field, described
below and/or on the sensory-motor systems, shaping their
dynamic to produce the action, which the EB encodes. When
the action is completed, the CoS node detects the respective
perceptual state and inhibits the intention of the EB. When the
intention is inactivated, the memory node sustains its activation
and provides input to the intention node of the next EB. A
global inhibition between the intentions that cannot be active
simultaneously ensures that only one of them is active at a
time. Please, refer to our previous publication [7] and [?] for
mathematical details of the model.

Some of the EBs also have an intention dynamic neural field
(DNF) and a CoS DNF. DFNs are variants of the dynamical
systems that are defined over continuous dimensions, such
as color, orientation, or location in space. The intention field
encodes dynamically a perceptual or motor parameter of the
action, which then may shape the sensor-motor dynamics in a
graded fashion. The CoS field detects a match between the
preactivating input from the intention field and input from
perception and thus signals successful accomplishment of an
action [?].

Next we describe how hierarchies of sequences of EBs are
built in this framework and provide details of our robotic
implementation.

C. The hierachy

The hierarchy in our implementation is composed of two
layers: the top layer consists of EBs representing a sequence
of colors to search, and the bottom layer consists of a group of
EBs representing the motor actions. Each EB in the top layer
activates a sequence in the bottom layer, Fig. 1.

The intention nodes of the EBs in the top layer activate
a single intention field, defined over color dimension. The
matching CoS field detects when the color is “found”. This
state corresponds to two conditions that have to met: first, the
sought color is centered in the camera image and, second,
the lower-level sequence of EBs is completed. The second
condition is detected by the CoS nodes of the EBs at the
lower level, summed-up by the dynamics of the CoS node of
the upper level.

At the lower level, only the Search EB includes a dynamic
field to represent the intended orientation of the head and the
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respective CoS dynamic field. Other EBs, e.g. Approach, Walk
backward, or Point, do not make use of the graded dynamic
neural fields and are simply activated and deactivated by the
intention nodes. In a more general architecture, where these
EBs would have to be more flexible and open to learning,
the implementation of motor parameters and perceptual pre-
conditions could be done using DNFs, which are subject to
neurally-inspired learning algorithms. This will require a more
efficient implementation of the model in C/C++ which falls out
of the scope of the present work, which is based on a Matlab
prototype of the architecture.

D. The sensory-motor system

The sensory-motor dynamics of the architecture is com-
prised of a two-dimensional color-orientation field. This dy-
namic field receives visual input from the robot’s camera. The
hue component of each frame of the NAO’s top camera pro-
vides input into the dynamic field along the color dimension.
This input, however, is not sufficient to activate this field.
The active intention field of the higher level in the hierarchy,
provides a localized in color input to the color-orientation
field as a sub-threshold ridge along color dimension. When
this input overlaps with the visual input from the camera, an
activity peak (bump) is built in the color-orientation field.
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Schematics for the implementation of the hierarchical serial order model.

This peak produces an activation output, which is projected
along the orientation dimension, spanning the pan angle of
the NAO’s head. The intention field of the Search EB in the
lower level of the hierarchy receives input from the perceptual
color-orientation field, summed along color dimension. When
activated, this intention field induces a motor action in the
pan/yaw motor of NAQO’s head setting an attractor for the
dynamics that controls pan/yaw of the robot. This dynamics
leads the camera head to center the object in the camera
image. The CoS field for the Search EB receives input from
the current state of NAO’s pan motor and is tuned to create
a peak when the object in the center of the field of view.
When this state is detected, the Search behavior is completed
and the system transitions to the next EB, as defined by the
connection weights from the memory node of the Search EB
to the intention node of the next EB at the lower level.

The NAO has then oriented toward the block of the sought
color and it proceeds with the sequence at the lower level
of the hierarchy. Each of the motor EBs at the lower layer
is a software module, activated by the intention node of
the EB and, when finished, activating the CoS node, which
triggers a sequential transition. When the lower-level sequence
is accomplished, the CoS node of the higher level is activated
and the robot proceeds with the motor sequence associated



with the next color.

III. RESULTS

In the robotic experiments, NAO is positioned in the Sit
down position in front of a wall with three colored pieces
of paper sticked to the wall. NAO’s task was to approach
the wall and to point to the pieces of paper following the
sequence encoded in the top layer of the hierarchy, and using
the respective sequence of motor actions from the bottom layer
of the hierarchy.

The order of the colors in the sequence can be observed in
the traces of positive activation in the intention field of the
higher-level of the hierarchy, Fig. 2 top-left. The activation
traces correspond to three different EBs, which induce local-
ized activation in the intention field of the higher-level of the
hierarchy, defined over color dimension. The bottom-left plot
shows the time-course of activation of the correspondent CoS
field for colors. The similarity of traces comes from the fact
that color is provided as information to the color-segmentation
dynamics of the perceptual dynamic field.

A. Integration of sensory-motor behaviors

The right column of Fig. 2 shows the activation of the
intention field for the Search EB at the bottom level of the
hierarchy. The intention field of this EB is defined over the
dimension of orientation of the robot’s head. On the plots, one
may observe movement of the activation in the intention field,
produced by movement of the NAO’s camera head, tracked by
activation in perceptual color-orientation field, Fig. 1.

On the bottom-right plot, offset of red regions mark mo-
ments in time, when the CoS field for orientation of NAO’s
head is activated after receiving enough input from: 1) the
orientation sensor in the robot, and 2) the intention field of
the Search EB (top-right plot). Activation in the CoS field
represents the completion of the Search behavior, i.e. when the
object with the current color is located in the center of NAO’s
field of view. The combination of these dynamical elements
exemplifies the use of DNFs in a complete sensori-motor loop
implementation on a robotic platform.

B. Temporal stabilization and robustness of the EBs

The encircled activations in the right-hand side plots of Fig.
3 show the persistence of activity of the EBs of the high level
through the execution of motor actions of the lower level, as
well as persistence of the Search EB of the lower level, which
takes different amounts of time depending on the geometry of
the visual scene.

A zoom over the activation during the execution of the
sequence correspondent to the last EB in the top layer is
shown in the bottom plot of Fig. 5. Due to the nature of
this robotic platform some behaviors such as Stand up or Sit
down can generate jerky motions from the sudden contact with
other surfaces; and Approach or Walk back does not always
occur in straight lines due to the smooth contact between
NAO’s feet and the floor. Moreover, among NAO’s repertoire
of motor primitives (bottom layer’s EBs) there are several
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Fig. 3. Activity of memory nodes through time. Each active color (top) starts
a chunk of sequential actions (bottom).

discrete actions that block the flow of information from sensors
and into motors. The main drawback of this constraint being
the loss of continuity in the computation of dynamic fields.
Such jumps can be observed in the last group of activations
of the righthand side plots of Fig. 2 and its detailed analysis
presented in Fig. 5.

However, the proposed DFT-based methodology cope with
these otherwise problematic interactions with the environment
by tracking continuously and dynamically the different inputs
and generating continuous and dynamic outputs.

C. Reusing sequential chunks and processing along the hier-
archy

Figure 3 provides an overview of the interaction between
layers. In this figure, Memory nodes are used to show the
activation of the color sequence (top plot) in the top layer and
the individual sequences of motor behaviors (bottom plot) in
the bottom layer. For example the first color makes use of:
Stand up, Search, Approach, Point, Arm down, and Walk back;
whereas the second color re-uses all but the Stand up behavior
since NAO is already in a standing position. This shows one of
the attractive characteristics of the proposed hierarchical serial
model, i.e. reusing chunks of sequences, and its successful
implementation.

One of the key components of the hierarchical serial order
model is the graded inclusion of a lower layer’s CoS node
activations into the dynamics of an upper layer CoS node. For
a more detailed and complete mathematical description of this
component and the overall approach the reader is referred to
[7]. However, Fig. 4 can be used to graphically explain the
process behind these dynamics in both layers.
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Left, activity of a common Intention (top) and CoS (bottom) fields for all EBs in the top layer of the serial order hierarchy. Right, activity of the

Intention (top) and CoS (bottom) fields for the Search EB in the bottom layer of the serial order hierarchy. See text for annotations.

The curve close to the “a” tag in Fig. 4 shows the activity of
an already fulfilled step in the sequence. The tag “b” shows the
pre-activation of the CoS node within the Search EB, preparing
it to receive input from its CoS field, which in this case is
given by the orientation of NAO’s head. Around time step 95
the CoS node starts receiving a non-zero stimulus from its CoS
field, i.e. NAO is close to placing the object in the center of
the field-of-view (FOV). Tag “c” marks the moment when the
Search behavior has been completed adding a small input to
the activity of the upper layer’s CoS node. Tags “d”, “e”, “f”,
and “g” mark the completion of the other behaviors for this
sequence, each one adding a small input to the top layer’s CoS
node. However it is the last input “g” the one that drives the
dynamics of the system into a new instability finally activating

the CoS node of the current EB in the top layer, “h”.

IV. CONCLUSION

The current work presents an implementation of a previ-
ously reported model for the generation of hierarchically struc-
tured sequences of elementary behaviors, based on dynamic
field theory (DFT), [7]. The robotic platform used for this
implementation is Aldebaran’s NAO, a small humanoid robot
that provides enough basic sensori-motor functionality for test-
ing the proposed model. A two-layer hierarchical model was
created to represent a group of colors (top layer) and a group of
motor primitives (bottom layer). Experiments were performed
on a task consisting of a sequence of 3 colors, each activating a
subsequence of actions from the bottom layer. The elementary

behaviors of the architecture were linked both to low-level
sensory-motor dynamics and to algorithmic preprogrammed
behaviors, integrating continuous-time dynamics with discrete
software modules.

The current implementation in NAO shows that not only
the environmental inputs, but also the interaction of hardware
and environment generates unexpected changes in the sensori-
motor loop. Our DFT-based model demonstrates that it is pos-
sible to keep track of those changes in a dynamic and effortless
way. The current implementation validates the theory behind
the design of hierarchical serial order, which emphasizes
importance of stability of the representations of intentions
and conditions of satisfaction of the elementary behaviors, as
well robustness of transitions between EBs within and between
levels of hierarchy.

Overall, our results demonstrate how the neurally-inspired
DNF architecture for production of hierarchically organized
action sequences may be implemented in a robotic setting. The
robustness of the DNF approach, when integrating algorithmic
and dynamical components of the architecture on a rather
simple and noisy robotic platform, is verified in the exper-
iments. In our future work we will extend this framework,
implementing a neurally-inspired learning mechanism that
may autonomously shape the hierarchy of actions based on
observation. Apart from theoretical work needed to accomplish
this task, a more efficient C/C++ implementation of the
framework is envisioned in order to implement all action



Fig. 4. Time window of CoS nodes in both layers for a single color’s actions.
Each activation of a CoS node in the bottom layer adds a small input to the
CoS node in the top layer until it reaches its own instability and becomes

active. See text for a more detailed explanation.
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components with dynamic neural fields.
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