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Abstract—Highly efficient performance-resources trade-off of
the biological brain is a motivation for research on neuromorphic
computing. Neuromorphic engineers develop event-based spiking
neural networks (SNNs) in hardware. Learning in SNNs is a
challenging topic of current research. Reinforcement learning
(RL) is a particularly promising learning paradigm, important
for developing autonomous agents. In this paper, we propose a
digital multiplier-less hardware implementation of an SNN with
RL capability. The network is able to learn stimulus-response
associations in a context-dependent learning task. Validated in a
robotic experiment, the proposed model replicates the behavior
in animal experiments and the respective computational model.

Index Terms—Neuromorphic engineering, spiking neural net-
works, reinforcement learning, context-dependent task.

I. INTRODUCTION

Brain-inspired computing systems offer massively parallel,
event-driven, dedicated computing substrate for spiking neural
networks [1]–[5]. During the past few years, hardware SNNs
have received considerable attention in the artificial neural net-
work community because of their performance-resource trade-
off [6], [7]. On the other hand, the neuroscience community
is also interested in neuromorphic hardware for acceleration
of large-scale models of biological neuronal circuits [8], [9].

Similar to conventional neural networks, the capability to
learn is an important feature in SNNs. Since conventional
supervised learning methods cannot easily be used in SNNs
due to the non-differentiable event-based nature of their
activation, neuromorphic systems often experiment with
unsupervised learning [7], [10]. Reinforcement learning
is another powerful learning paradigm, well-suited for
neuromorphic realisation, that is particularly important for
learning how to make a correct decision in an autonomous
agent [11]. In this paper, we present a digital prototype
for a neuromorphic implementation of RL. We use the
Field-Programmable Gate Arrays (FPGAs) because of their
flexibility, reliability, and reconfigurability [12]–[16].
In particular, this paper proposes a digital circuit
implementation of an event-driven spiking neural network
with RL capability. The SNN is composed of leaky integrate-
and-fire (LIF) neurons and spike-timing-dependent plasticity
(STDP) based synapses. We use this circuit to demonstrate
reinforcement learning of a context-dependent task [17],
suitable for online learning on an autonomous agent. We
implement the network on an FPGA chip and compare the

hardware model results during learning with the computational
model developed based on a rat experiment. Moreover, we
implement the behavioral experiments using a robot to show
that learning in hardware works in a closed sensorimotor loop.

II. SYSTEM ARCHITECTURE

The proposed architecture implements spiking neurons con-
nected by plastic and static synapses through a synaptic
crossbar. The developed network architecture is parallel and
event-driven without using multipliers. All cores use simple
basic operations (add, shift, etc.) in their building block. Fig. 1
shows the architecture of the proposed fully digital SNN.

In this network, the synaptic crossbar connects all neurons.
Besides neurons, synapses, and synaptic crossbar, several
peripheral cores manage the network behavior [18]. Thus, the
system consists of four different parts:

Neuron core: In this architecture, all neurons are located
in the neuron core. The neuron model used in this hardware
is based on a low-complexity LIF. The operation of the LIF
is expressed in four basic states: 1. Resting, 2. Waiting, 3.
Integrating, 4. Firing. The state diagram of the proposed
system is depicted in Fig. 2. Neuron in the Resting state is not
active. Based on the Table. I, the neuron’s membrane potential
(Vm) in this state is equal to reset voltage (Vreset). Whenever
the neuron is active but there is no input, it stays in the Waiting
state. While waiting for new input, there is a constant leakage
(Vleak) in the neuron’s membrane potential. When an input
spike arrives, the neuron’s state switches to the Integrating-
state. In this state all inputs are accumulated according to
Table. I and Fig. 2. After integrating all inputs, a barrel shifter
produces the total exitatory post synaptic potential (EPSP)
for the neuron. Based on the membrane voltage value, the
neuron goes to the Firing (if Vm > Vth) or Resting states (if
Vm < Vreset) or returns to the Waiting state (if Vm < Vth).
In the Firing state, the neuron emits a spike and goes to
the Waiting state. Importantly, there is no multiplier in the
neuron’s building block, which simplifies hardware synthesis
of this block.

Synapse core: In this network there are two types of
synapses: inhibitory static synapses and excitatory plastic
synapses. For plastic synapses, STDP-based learning rules are



Behavior-mode

History of 

sequence

Initializing  

weights

Replay-mode

MUXMUX

Scheduler

Controller Unit

Reward

Synapses core

Run

Start-trial

E
-le

arn
in

g

n

Neurons core

1 2

Synaptic-crossbar

Neuron  
# n

Input from 

Synaptic crossbar

Output 

spikes

Input Firing Rate

Exitatory plastic synapse Inhibitory static synapse MUX:Multiplexer

Fig. 1: System level architecture of the digital multiplier-less event-driven SNN with reinforcement learning capability.
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Fig. 2: The state diagram of the LIF neuron. Every circle
represents the state in the upper part and the output of the
neuron in the lower part. Operation of the LIF neuron model
is simplified in four basic states: 1. Resting, 2. Waiting, 3.
Integrating, 4. Firing. Vm is given in circuit level.

employed. The STDP algorithm adapts the weight of a synapse
according to the timing difference between the pre- and post-
synaptic spikes arrival times. In the synapse model of the pro-
posed system, synaptic modifications depend on the previous
strength of the synaptic weight. For maximum simplification
and to keep the dependence on timing differences and previous
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Fig. 3: Circuit level block diagram for calculating the mem-
brane voltage of neuron in each state. Vth, Vreset, and Vleak

are neuronal parameters. Based on the neuron state, Vm is
running in different ways.

TABLE I: Equations for the membrane potential in each state.

Resting No-spike
V j
m[n] = Vreset

Integrating No-spike
V j
m[n] = V j

m[n− 1] +
∑all

i=1 AiW [i][j] + V j
in[n]

Waiting No-spike
V j
m[n] = V j

m[n− 1]− Vleak

Firing Spike
V j
m[n] = Vreset

synaptic weights, we propose the following learning rule:

∆W =

{
A+(WMax −W ) if ∆t > 0 and Elearning = 1,
A−(W −WMin) if ∆t < 0 and Elearning = 1,

(1)
where the ∆W is the synaptic modification, W is the synaptic
weight and WMax and WMin determine the dynamic range
of its variation, ∆t is the timing difference between arrival
time of the pre- and post-synaptic spikes and A+ and A− are
amplitudes of positive and negative synaptic modifications. By
sending a signal to enable the learning phase (Elearning = 1),
the synapse is eligible to change. Taking advantage of these
simplifications, the hardware model synapse avoids using
multipliers.

Synaptic crossbar: As shown in Fig. 1, in this network all
neurons are sorted in a row and are connected through the
synaptic crossbar. The value of each node in the synaptic-
crossbar is directly determined by initializing weights of
plastic synapses core. Black and red circles in Fig. 1 show
the excitatory and inhibitory synapses. In this system, it is
possible to create arbitrary connectivity schemes, for instance
Winner-Take-All (WTA) networks by assigning positive and
strong negative synaptic weights.

Controller-unit: The controller unit is responsible for con-
trolling the behavior of the system, sequences, data stor-
age, and preparing initial weights for synapses. This block
contains several sub-blocks. The scheduler as the main sub-
block decides to enable the other sub-blocks in different



sequences. During a network run, at first all synaptic weights
are initialized. Each network run includes several trials in order
to converge. Each trial consists of a behavioral phase which
is a typical network operation and a replay phase which is the
learning mode based on the reward. When the network is in the
behavior mode, the neurons’ states are stored in history and
provide the required information for the learning mode. The
controller unit manages system operation in different phases.

III. NETWORK MODEL FOR A CONTEXT-DEPENDENT TASK

A context-dependent choice task was designed to study the
activity of rat’s hippocampal neurons when the animal learns
to chose different rewarded items dependent on context [19]. In
this experiment, there are two distinguishable contexts –A and
B– and two different places in each context. Hence, there are
four spatial locations: A1, A2, B1, B2. For example, A1 refers
to position 1 in context A. Based on the position of two items
X and Y and the contexts, eight different triplets appear. For
example, triplet A1X means that item X is located in position
1 in context A. Rats learn to choose item X in context A and
item Y in context B, independent of their position. Thus, the
rewarded triplets are A1X, A2X, B1Y, and B2Y. The non-
rewarded group contains A1Y, A2Y, B1X, and B2X [19].
The spiking neural network model for learning the context-

Fig. 4: The spiking network, used to model the reinforcement
learning in the context-dependent task. All to all excitatory
synapses connect layers in this feed forward network. In-
hibitory synaptic connections among all neurons create WTA
networks (one neuron’s inhibitory synapses are shown in this
figure).

dependent task is depicted in Fig. 4. The feed-forward SNN
network is composed of input, hidden and output layers. There
are excitatory all-to-all connections between layers. Lateral
inhibitory synaptic connections in the middle and output layers
are strong and construct winner-take-all (WTA) networks.
In this model, the resting membrane potential and threshold
voltage values of all neurons are -70 and -50 mV respectively.
There is a concurrent small leakage in membrane voltage
at every time-step. Synaptic weights have different, initially
random values between 0 and 1.

We let the network run for 100 trials. In each trial, the
network has random initial weights and starts from a randomly
selected input stimulus. Each trial consists of two different
modes: behavior and replay. Maximum required time based
on the system clock for completing each trial and replaying

TABLE II: Details of selected parameters. For FPGA imple-
mentations numbers are in fixed-point 32 bits digital format.

Design choice
# Input neurons NInput 6
# Hidden neurons NHidden 8
# Output neurons NOutput 2
Long term potentiation amplitude (LTP) A+ +2−10

Long term depression amplitude (LTD) A− −2−11

Maximum time interval for a trial Ttrial 30000 Tclk

Maximum time interval for replay Treplay 130 Tclk

Input voltage for input neurons Vinput 1.28 mV
Input voltage for hidden neurons Vhidden 1.48 mV
Input voltage for output neurons Voutput 1.64 mV

phase are reported in Table II. During the behavior-mode in
this task, the network starts from a randomly selected binary
input triplet. Based on the value of the synaptic weights, the
behavior phase can include a few movements between the
two triplets (if “move” output neuron is active) and ends
up with digging on one of them (whenever “dig” output
neuron is active)1. After receiving events from the “dig” output
neuron, the scheduler switches to the replay mode. During the
behavioral phase the states of all neurons for each “move” or
“dig” are sampled in the history-of-sequences. In the replay
phase, a controlling signal makes the plastic synapses eligible
to learn. Furthermore, according to the obtained reward and the
sampled action sequences, the controller unit provides suitable
inputs for all neurons during replay phase (see Table II).

TABLE III: Overview of FPGA device utilization plus maxi-
mum frequency for the implemented SNNs.

Resource [14] [20] [21] [12] Proposed
Slice Registers 1023 50228 - 1676 -
Flip flops - - - - 8906
Slice LUTs 11339 86032 - 6214 19059
DSPs 0 1112 - 32 0
FMax(M Hz) 189 63.389 75 25 148.4
Device Virtex6 Virtex7 Spartan6 Spartan6 Kintex7

Fig. 5: Overview of the digital event-driven SNN model
for learning context-dependent task implemented on the
Opalkelly XEM7360 board and connected to the Pushbot robot
setup [18].

1“Dig” in the experiment is an action that the rat takes to get the hidden
reward.
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Fig. 6: Behavioral performance during successful learning of the context-dependent task: (a) The proposed digital event-driven
hardware model. (b) The animal experiment [19]. (c) The computational model [17].

IV. ROBOTIC EXPERIMENT

In order to verify the proposed system, we interfaced the
digital neuromorphic system on FPGA to a neuromorphic
dynamic vision sensor (DVS) mounted on a robotic vehicle
and developed an autonomous neuromorphic agent that is able
to learn the context-dependent task. As shown in Fig. 5, the
experimental setup used in this work consists of the Pushbot
robotic vehicle with an embedded DVS camera (eDVS [22])
and the Opallkelly XEM7360 board. Furthermore, a computer
is used to direct the flow of events between the robot and
the SNN on FPGA. The computer runs a simple program
that manages the stream of events between the neuromorphic
system on FPGA and the robot. The supplementary movie
shows the robot’s behavior during the first trials and also after
complete training2.

V. RESULTS AND DISCUSSION

The proposed digital spike-based neural network with
RL capability is described using the standard top-bottom
digital ASIC design flow with separate fully-synthesizable
synchronous modules. As a multiplier is a high-cost core
in terms of area utilization and power consumption, the
proposed architecture does not contain any multipliers. In
order to achieve a fair balance between accuracy and cost,
the proposed spiking neural network model performs data
transformation using 32-bit fixed-point numbers with 31
fractional bits. To minimize silicon area utilization, neuron
and synapse blocks are designed as simple as possible.
As a proof of concept we implement the network on Kintex-7
XC7kt160t FPGA. This FPGA device contains 101400 slice
LUTs and 202800 slice Flip Flops. Table III reports the FPGA
device utilization of the proposed SNN and a collection of
previous studies on implementing different SNN models, in
which spiking neural networks are implemented on similar
hardware platforms. The proposed SNN uses a total of 4.39
and 18.80 percent of the available Slice FFs and slice LUTs,
respectively. Please note that other networks in Table III
are not applied in the same task. Furthermore, different
FPGA devices and synthesizer versions have been used for
implementations. Therefore, the device utilization results

2Shared video: https://www.dropbox.com/s/vokdma10j5z763m/experiment-
clip.mp4?dl=0

presented in this table should not be used for comparison but
act as an overview of similar research.

We propose an event-driven hardware model which is able
to learn the same task as in the biological experiments and
previous computational studies, within 100 trials. The pro-
posed network with randomly initialized synaptic weights is
simulated using the Xilinx Vivado Design suite. Performance
within 80 % to 90 % was reached (see Fig. 6(a)). As shown in
Fig. 6(b), the experimental study of the context-dependant task
was learned in about 100 trials where rats reached about 80%
to 90% correct behavioral response [19]. The computational
model was able to learn the task in 100 trials with a mean of
80% to 90% correct detection rate [17] (Fig. 6(c)). Thus, the
proposed digital event-driven network shows a performance
that is more similar to animal behavior in the experiment.

VI. CONCLUSION

This paper proposes a digital, event-driven spiking neural
network with the capability of reinforcement learning. Due
to hardships in multiplier implementations in hardware, both
neurons and synapses avoid using multiplier cores in their
building blocks. As a proof of concept, we implement the
proposed model on the Xilinx Kintext-7 FPGA device. For
validating the network ability of online learning on hardware,
we connect the proposed network to a robotic vehicle in
a closed sensory-network-motors loop. The proposed model,
both on hardware and in the robotic experiment successfully
learns a context-dependent task and shows performance close
to the computational model and also to the animal experiment
of previous studies. This work facilitates research to employ
reinforcement learning for autonomous agents using neuro-
morphic systems.
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