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ABSTRACT
Vector Symbolic Architectures (VSA) were first proposed as con-
nectionist models for symbolic reasoning, leveraging parallel and
in-memory computing in brains and neuromorphic hardware that
enable low-power, low-latency applications. Symbols are defined in
VSAs as points/vectors in a high-dimensional neural state-space. For
spiking neuromorphic hardware (and brains) particularly sparse
representations are of interest, as they minimize the number of
costly spikes. Furthermore, sparse representations can be efficiently
stored in simple Hebbian auto-associative memories, which pro-
vide error correction in VSAs. However, the binding of spatially
sparse representations is computationally expensive because it is
not local to corresponding pairs of neurons as in VSAs with dense
vectors. Here, we present the first implementation of a sparse VSA
on spiking neuromorphic hardware, specifically Intel’s neuromor-
phic research chip Loihi. To reduce the cost of binding, a delay line
and coincidence detection are used, trading off space with time.
We show as proof of principle that our network on Loihi can per-
form the binding operation of a classical analogical reasoning task
and discuss the cost of different sparse binding operations. The
proposed binding mechanism can be used as a building block for
VSA-based architectures on neuromorphic hardware.
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1 INTRODUCTION
Vector Symbolic Architectures (VSA) [8, 11, 19], also known as hy-
perdimensional computing [12], have been proposed as a computing
framework for emerging hardware such as spiking neuromorphic
hardware [4, 14].

VSAs allow a connectionist (neural network) implementation of
symbolic computation. Therefore, they make symbolic computation
compatible with the parallel and in-memory computing that comes
with the large number of simple computing elements (neurons), and
that makes neuromorphic hardware intriguing for low-power, low-
latency applications. In VSAs, symbols and functions are defined
as vectors in a high dimensional state-space. Each element of the
vectors can be seen as a neuron and information is distributed
throughout the population of neurons. The high dimensionality of
vectors in VSA makes randomly chosen vectors almost orthogonal,
in other words they are dissimilar to each other.

VSAs define two main operations on pairs of these vectors which
keep the vector length and dimensionality constant: "Bundling" (⊕)
allows the representation of sets of symbols by creating a new vec-
tor that is similar to all elements of the set. "Binding" (⊗) takes two
vectors and generates a new unique vector that is dissimilar to each
original component. This new vector represents the conjunction of
the two original symbols. Binding can be regarded as a compressed
outer product [6, 28], where every possible combination of origi-
nal values has its own unique representation (of fixed length and
dimensionality). These operations are used to associate different
symbols (e.g. filler with a role or object with a location) to create
data structures (variables, trees, lattices) and to solve cognitive
reasoning tasks (such as analogies).

For neuromorphic hardware, sparse representations (few non-
zero elements) are of interest, as they minimize the cost associated
with spikes. Furthermore, sparse representations can represent
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larger sets of symbols and show increased capacity for learning
[7, 10, 25]. Presumably for similar reasons, biological neural activity
is often sparse [17].

However, spatially sparse representations in VSA require a bind-
ing operation that is not local to corresponding pairs of neurons,
which is more expensive in terms of synaptic resources compared
to dense VSA binding operations. This issue we address on neuro-
morphic hardware in this work. In particular, we examine binary
sparse block codes [6, 15, 21] that have been proposed as a sparse
VSA. Block codes could be regarded as a compromise between dis-
tributed and sparse localist representations, combining the best of
both worlds. The binary block code VSA has been shown to be
one of the most efficient VSAs for representing and computing on
large sets (bundling) [26], and it is also cost efficient and easy to
implement on digital hardware due to its binary encoding [15]. The
binding operation for block codes is local circular convolution (LCC)
[6], which corresponds to modulo addition of the active neuron
indices within blocks – e.g. if neuron 0 and neuron 2 are active in
the first vector and neuron 2 in the second vector, then in the bound
vector, neuron (0 + 2) mod 5 = 2 and neuron (2 + 2) mod 5 = 4 are
active (see Fig. 1).

Here, we present the first implementation of a sparse VSA bind-
ing operation on spiking neuromorphic hardware, specifically In-
tel’s neuromorphic research chip Loihi [2]. To reduce the memory
cost of binding, we propose a model that trades off space against
time, where delay lines and coincidence detection are used to com-
pute the binding operation. We also show, as proof of principle,
that our network on Loihi can perform the binding operation of a
classical analogical reasoning task and discuss the cost of different
sparse binding operations.

2 MODEL AND RESULTS
A vector of a binary block code [6, 15, 21] has 𝑁 neurons and is
segmented into 𝐾 blocks of equal length 𝐿 = 𝑁 /𝐾 . In its sparsest
form, each block has a single non-zero element (corresponding to
a spike). The binding operation for the block code is local (block-
local) circular convolution (LCC). It is denoted by ⊗, and𝐶 = 𝐴 ⊗ 𝐵
is defined so that activations (spikes) in each block of vector A are
circularly shifted by the active indices in B [15]. Assuming a single
activation in B, this is equivalent to the modulo sum of the indices
of the two operands.

The neural implementation of LCC usually requires an "outer
product" circuit for each block as illustrated in Fig. 1A (see [29] for a
Loihi implementation of a single such circuit). The two input layers
feed into a middle layer of simple coincidence neurons along the
diagonal and vertical directions, and themiddle layer activity is then
summed in the horizontal direction. Neurons in the middle layer
only reach the firing threshold (black) if they receive coincident
input from both input layers.

For each block, this outer product layer requires 𝐿2 neurons and
3𝐿2 synapses. The implementation proposed here, as illustrated in
Fig. 1B, uses time instead of space in the middle layer to realize the
outer product. For this, each neuron in the input layers is connected
to the middle layer (of length 𝐿 instead of 𝐿2) with a delay line
replicating the pattern shown in Fig. 1B. The neurons in the middle
layer that receive coincident inputs from the two input layers fire

and send their spikes to the output layer, which integrates its input
over time. At the end of an iteration, The output layer gets “queried”
by an additional sub-threshold input. This query input triggers all
neurons in the output layer that have received inputs from the
middle layer during the last iteration to fire.

Figure 1: Schematic that visualizes the mechanisms of cir-
cular convolution (calculating the sum of the indices). Here,
the sum of (0,2) and (2) is calculated, resulting in an output of
(2,4). Neurons that fire are shown in black, neurons that only
receive sub-threshold input in gray, and neurons that receive
no input at all in white. A. Full outer product in space that
needs N2 neurons but allows immediate readout of the result
in the horizontal direction. The diagonal lines that pass be-
hind neurons signify separate connections from the source
to each connected neuron in the middle layer. B. Outer prod-
uct in time that only needs N neurons in the middle layer.
The connections from the input layers to the middle layer
are delayed in order to produce the same pattern as in A. To
avoid clutter, only the synapses with a delay of 1 and 2 are
shown between the first input vector and the middle layer.

This circuit could be implemented as described, however, we
added some additional improvements to save connectivity and
timesteps in the on-chip implementation, which we show in Fig. 2A.
Each block is first encoded into a single neuron (’inter’) by trans-
forming activity in space (i.e., which neuron in the layer is active)
into activity in a time window. The first neuron is connected with
a delay of 1 timestep, the second with a delay of 2 timesteps, and
so on. Furthermore, we split the middle layer into two parts with
opposite delays, one analogous to the neurons below the diagonal
in Fig. 1 and the other one on and above the diagonal. The full
connectivity of the module is shown in Fig. 2A and the spikes that
are generated during the binding process are shown in a raster plot
in Fig. 2B.

The neuron model on Loihi is a current-based integrate-and-fire
model (see Eq. 3 and 4). Apart from the output neurons, which
integrate inputs from the middle layer over the whole cycle, the
current and voltage decay time constants were set to 1 timestep,
such that there is no memory, and coincidences are detected in the
same timestep (see Methods section for details).

To demonstrate the functionality of our binding module imple-
mented on the Loihi chip, we performed binding of a larger VSA
vector of 𝐾 = 80 blocks, and 𝐿 = 20 neurons per block. We imple-
mented the example from the well-known tutorial "What’s the Dol-
lar of Mexico?" [13], which demonstrates how analogical reasoning
is performed with VSA. Here, data vectors of role-filler pairs are cre-
ated representing concepts for different countries, e.g.𝑈𝑆𝑇𝐴𝑇𝐸𝑆 =
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Figure 2: A. One block of the optimized LCC binding module
as implemented on Loihi. Synapses without delay (Δ𝑡 = 1) are
shown in black and delayed synapses are shown in shades of
blue (lighter blue means longer delay). Note that Δ𝑡 = 5 − 1
labels a group of synapses with delays ranging from 5 to
1 timesteps (with a decrement of 1). B. Raster plot of the
neurons of the module shown in A. In timestep 0, the two
input layers fire, and in the last timestep, the output layer is
triggered and fires according to the modulo L addition of the
input indices: (3 + 2) mod 5 = 0 and (1 + 2) mod 5 = 3.

𝐶𝐴𝑃 ⊗ 𝐷𝐶 +𝐶𝑈𝑅 ⊗ 𝐷𝑂𝐿, 𝑀𝐸𝑋 = 𝐶𝐴𝑃 ⊗ 𝑀𝑋𝐶 +𝐶𝑈𝑅 ⊗ 𝑃𝐸𝑆 . In
this example, the role vectors 𝐶𝐴𝑃 and 𝐶𝑈𝑅 indicate the capital
and currency, which are attached to the particular filler variables
for each country, i.e.𝐶𝑈𝑅 ⊗𝐷𝑂𝐿 indicates the currency is dollar. A
transformation vector, 𝐹𝑈𝑀 = 𝑀𝐸𝑋 ⊗ 𝑈𝑆𝑇𝐴𝑇𝐸𝑆−1 can be created
that forms an analogical mapping between the data vectors. To
answer the question "What’s the Dollar of Mexico?", the vector that
represents "dollar" (DOL) is used to query the vector that represents
the mapping from US to Mexico (𝐹𝑈𝑀 ). The output can then be
decoded with the expected result of "peso" (PES):

𝐷𝑂𝐿 ⊗ 𝐹𝑈𝑀 = 𝑃𝐸𝑆 + 𝑛𝑜𝑖𝑠𝑒 ≈ 𝑃𝐸𝑆 (1)
(2)

Fig. 3A illustrates the network for implementing the analogical
reasoning task. After the mapping vector is queried, the output
is compared to a codebook of vectors representing the relevant
concepts. The highest inner-product between the output and the
vectors of the codebook produces the answer.

3 DISCUSSION
The proposed implementation of LCC binding trades off space with
time on the algorithm level, saving chip area as the size of the
required neural network scales linearly instead of quadratically as
the outer product layer. Instead, the binding takes more time - the
response time scales with the size of the blocks and the timestep
duration on Loihi. Since the timestep can be in the lowmicroseconds
range, the binding is performed in less than a millisecond with
coincidence windows of a single timestep. For a comparison of

different methods for implementing sparse binding, including an
example calculation, see Table 1.

Table 1: Comparison of bindingmethods. For "blocks in time",
timesteps scale with L avoiding quadratic scaling of the num-
ber of neurons and synapses.

full outer product blocks in space blocks in time

neurons 𝐼 2 = 100 · 106 𝐿2𝐾 = 106 6𝐿𝐾 = 60 · 103
synapses 3𝐼 2 = 300 · 106 3𝐿2𝐾 = 3 · 106 10𝐿𝐾 = 100 · 103
timesteps 3 3 𝐿 + 3 = 103
spikes 3𝑆 = 30 3𝑆𝐾 +𝐾 = 3100 5𝑆𝐾 + 3𝐾 = 5300
I = 10000 : Total number of symbols, L = 100: Neurons per block,
K = 100 : Number of blocks, S = 10 : Bundled symbols
Encoding to block code: 𝐾 · 𝐼 = 106 synapses

Note that the approach described here is similar to another VSA,
Fourier Holographic Representations (FHRR). FHRR does not used
blocks, but dense complex vectors, however from the perspective
of binding, a single complex number (phasor) of FHRR is compara-
ble to a block of a block code. The difference is, however, that in
block codes several active elements (spikes) per block can occur,
while in FHRR (as bundling corresponds to complex addition in-
stead of a logical AND) only a single spike per neuron is allowed
(per cycle) which simplifies the binding operation significantly. We
implemented this alternative VSA and binding operation on Loihi
with spike timing-based phasor neurons in [22]). The advantage
of the block code comes in the energy efficiency of sparse repre-
sentations ( spikes being transmitted), as well as fewer memory
requirements for the sparse associative memories.

The benefit of sparse block code binding is that it can save or-
ders of magnitude of neurons and synapses compared to a full
outer product binding, but it is more resource expensive than dense
Hadamard binding. However, the sparsity has benefits in reducing
the number of spikes being transmitted, and lowering the number
of synaptic connections in the codebooks and clean-up memories
of VSA algorithms.

From an engineering perspective, it is worth noting that delays
on neuromorphic hardware can be expensive. In digital hardware,
a shift register has to be reserved to store incoming spikes of each
neuron, limiting the maximally available delay [2] and therefore
the possible block length with the proposed binding mechanism.
This is in contrast to biological systems that can make use of the
difference in signal conduction speeds of dendrites and axons with
different properties (e.g., diameter) to realize a delay line. The kind
of coincidence detection we use here for binding is seen in a broader
context in neuroscience, e.g. delay and coincidence detection of
input from the two ears [1, 9] for sound localization (neuromorphic
implementation [16]) and for combining the inputs of the eyes for
stereo vision [18, 24].

In conclusion, the proposed binding module could serve as a
building block to enable the implementation of larger VSA archi-
tectures (such as [5]) on neuromorphic hardware with a limited
amount of neurons and synapses. Models that use the full outer
product representation e.g. for coordinate transforms [3, 20, 27]
could be redesigned into this framework and benefit from the pro-
posed mechanism. In recent work, we have demonstrated applica-
tions of VSA in spatial processing [22] and visual SLAM [23] using



ICONS 2022, July 27–29, 2022, Knoxville, TN, USA Alpha Renner, Yulia Sandamirskaya, Friedrich T. Sommer, and E. Paxon Frady

Figure 3: A. Schematic of the network that was implemented on the Loihi chip. The two block-vectors DOL and 𝐹𝑈𝑀 are bound
by K=80 instances of the binding module shown in Fig. 2. The resulting vector is then read out into a layer that corresponds to
all possible symbols. Note that DOL is a sparse vector with a single active neuron per block, while 𝐹𝑈𝑀 is a bundle with several
active neurons per block. B. Input currents to the readout neurons. PES, which is the correct answer, receives the majority of
the input. The different colors are repetitions of the same experiment with different randomly generated VSA vectors. Note
that to the right of the 9 symbols involved in the task, 51 randomly chosen and arbitrarily labelled symbols are added. C. As
only the PES neuron receives input above the firing threshold, it is the only one that fires.

FHRR, which also could be implemented with this framework and
would have gains in memory efficiency.

4 METHODS
All experiments on Loihi were run with NxSDK version 0.9.9 on
the Kapoho Bay system which contains 2 Loihi chips. Software
API and hardware were provided by Intel Labs. Random vectors
were created with numpy in python. The current-based (CUBA)
integrate and fire model as implemented on Loihi is described by
the following discrete-time dynamics:

𝑉 (𝑡 + 1) = 𝑉 (𝑡) − 1
𝜏𝑉
𝑉 (𝑡) +𝑈 (𝑡), (3)

𝑈 (𝑡 + 1) = 𝑈 (𝑡) − 1
𝜏𝑈
𝑈 (𝑡) +

∑︁
𝑗

𝑤𝑖 𝑗𝛿 𝑗 (𝑡 − 𝑑𝑖 𝑗 ) . (4)

V denotes themembrane potential, U, the current, and t, the timestep.
The last term in Equation 4 is the input to the current from presy-
naptic spikes. Each spike arrives after a synaptic delay 𝑑𝑖 𝑗 and
increases the current by a synaptic weight𝑤𝑖 𝑗 .

Delays in the delay lines range from 1 timestep to the block
length as shown in Fig. 2. Weights of all synapses are set to 2 apart
from the synapses that query the output of the binding module,
which are set to 19, just below the firing threshold of the output
layer, so that it fires if it has integrated at least one coincidence
spike from the binding layer.

A neuron fires when its threshold 𝑉𝑡ℎ𝑟 is reached and is then
reset to 𝑉 = 0. We use a threshold of 𝑉𝑡ℎ𝑟 = 3 in the binding layer,
𝑉𝑡ℎ𝑟 = 20 in the output layer of the binding module, 𝑉𝑡ℎ𝑟 = 60
in the readout layer and 𝑉𝑡ℎ𝑟 = 1 in all other layers. Both 𝜏s are
set to 1 timestep in all layers apart from the output layer of the
binding module, so that coincidence is only detected in the same
timestep. 𝜏𝑈 of the binding output layer is set to 1 ts and 𝜏𝑉 is set to
to infinity (no decay). The network shown in the results (see Fig. 3)
uses K=80 blocks and L=20 neurons per block.
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