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Abstract—Simultaneous localization and mapping (SLAM) is
one of the core tasks of mobile autonomous robots. Looking
for power-efficient and embedded solutions for SLAM is an
important challenge when building controllers for small and agile
robots. Biological neural systems of even simple animals are
until now unprecedented in their ability to localize themselves
in an unknown environment. Neuromorphic engineering offers
ultra low-power and compact computing hardware, in which
biologically inspired neuronal architectures for SLAM can be
realised. In this paper, we propose a low-power on chip approach
for one of the components of SLAM – path integration. Our
solution takes inspiration from biology and uses motor command
information to estimate the orientation of an agent solely in a
spiking neural network. We realise this network on a neuromor-
phic device that implements artificial neurons and synapses with
analog electronics. A robotic agent receives visual input from an
event-based camera and uses this information to correct the on-
chip spiking neurons’ estimate of orientation. This system can be
easily integrated with other localization and mapping components
on chip and is a step towards a fully neuromorphic SLAM.

I. INTRODUCTION
Foraging in unknown, dynamically changing environments

is a crucial skill for the survival of every animal. One of the
tasks of foraging animals, as well as mobile robots, is to use
self-motion cues in order to compute the direction and distance
from the navigator’s current position to some reference point,
e.g. the nest. This process, called path integration, is prone
to accumulated error. In robots, this error is due to wheel
slippage, uneven terrain, and fabrication mismatch. In humans
and animals, drift in the estimated position occurs when
navigating in the dark. In order to maintain an accurate position
estimate, path integration can be corrected based on visual or
other external cues.

Biological neural networks of even simple animals can
perform the task of path integration effortlessly. Drawing
inspiration from these networks could therefore lead to par-
ticularly efficient solutions in robotic navigation. A biological
neural network that plays a key role in spatial navigation is
composed of orientation selective head direction (HD) neurons.
HD neurons have been found in many animals and have been
referred to as a neural compass, as they spike in relation
to the orientation of the head with respect to the outside
environment. Contrary to a magnetic compass that can directly
measure the orientation, neural circuits in the animal’s brain
compute the orientation based on internal motion cues and
external sensory input from the environment. Simulations of
these neuronal circuits have been conducted [1], [2], however,
emulating a neuronal architecture with its dynamics in software

is computationally expensive and is therefore not suitable for
a real-time robotic application.

Neuromorphic hardware, to the contrary, offers a physical
computational substrate for directly emulating the biophysics
of neurons and synapses in real time [3]–[6], enabling low
latency through massively parallel, event-based computation.
In robotics, analog neuromorphic hardware has proven itself
capable to achieve better time complexity and power savings
in path planning [7].

In this work, we present a neural head direction architecture
implemented on a neuromorphic device and tested with a
robotic agent. We use the neuromorphic processor Reconfig-
urable On-Line Learning System (ROLLS) [8] that comprises
hybrid analog/digital circuits to emulate the biological pro-
cesses of spiking neurons and synapses with ultra low-power.
Similarly to biological neural networks that face the problem
of individual neurons and synapses being driven by stochastic
processes, neuromorphic silicon neurons are noisy due to the
variable nature of analog circuits and exhibit mismatch due to
fabrication imperfections.

Inspired by existing models of HD cells [1], [2], we
implement a HD network on a neuromorphic device. In our
network, the recurrent connectivity in a population of HD
neurons gives rise to a localized activity “bump”. Together
with an angular velocity cue this activity induces a shifted
localised “bump” in a second population of neurons, which
feeds back into the HD population, making the activity bump
in this latter population move in the correct direction. The
implemented neural architecture demonstrates that the rotation
of the robot shifts the HD activity according to the robot’s
speed. In order to correct the accumulated error that is due to
device mismatch, as well as to odometric drift, a visual cue
can reset the activity of the HD cells to the correct location.

By functioning in a robotic sensory loop, the proposed
neural architecture provides a sensory-motor embodiment for
existing models of biological HD cell networks. A neural
network implementation on neuromorphic hardware reduces
dramatically the power consumption for embedded systems
that require real-time processing.

We proceed with a brief introduction to the ROLLS neu-
romorphic processor and the robotic agent that was used for
this work. We then introduce the proposed HD network and
the visual reset mechanism. Finally, we validate the results of
path integration using the IMU data as a ground truth.



II. MATERIALS AND METHODS
The setup used in this work consists of the ROLLS

neuromorphic processor and the Pushbot robotic vehicle1 with
an embedded event based DVS camera (eDVS) [9]. Communi-
cation between the Pushbot and the ROLLS is coordinated by
a Parallella board [10]: the Pushbot communicates through a
dedicated wireless connection to the Parallella board receiving
motor commands and sending address-events produced by the
eDVS. The ROLLS chip is interfaced with the Parallella with
an embedded FPGA which is used to configure the network
connectivity and to stimulate neurons.

A. Neuromorphic processor
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Fig. 1: Block-diagram of the chip architecture.

The ROLLS neuromorphic processor [8] is a full-custom
mixed signal analog/digital VLSI device. It comprises analog
neuromorphic circuits that emulate the biophysics of spiking
neurons and dynamic synapses in real-time and asynchronous
digital circuits that manage the transmission and routing of
spikes, using the Address Event Representation (AER) [11].
The chip comprises a column of 256 neurons, an array
of 256x256 non-plastic programmable synapses, an array of
256x256 plastic synapses, and 8x256 time-multiplexed “vir-
tual” synapses that can be used to provide direct external input
to neurons.

A block-diagram of the chip architecture is shown in Fig. 1.
Peripheral input-output AER circuits for receiving and trans-
mitting off-chip spikes in real time can be used to stimulate
individual synapses or neurons on the chip. Silicon synapses
process spikes as they arrive, and produce output currents
with biologically plausible temporal dynamics. Silicon neurons
integrate these currents to generate and transmit spikes in real
time. The on-chip programmable bias generator [12] allows
programming the properties of the synapses and neurons (time
constants, pulse widths, etc.). The neuron circuit integrated in
the ROLLS chip exhibits biologically realistic neuronal behav-
iors, such as spike-frequency adaptation, adjustable refractory
period, and spiking threshold [13]. The neuron equations
derived from the circuit closely resemble those of the adaptive
exponential integrate-and-fire neuron model [14].

B. Neuromorphic robot and eDVS
The robot used in this work is a mobile autonomous

platform called Pushbot, which consists of a 10x10 cm chassis
with two motors driving two independent tracks for propulsion

1https://inilabs.com/products/pushbot/
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Fig. 2: The pushbot with the eDVS (right), the ROLLS (left),
and the visual beacon (center).

(left and right). It comprises an embedded dynamic vision
sensor (DVS) – an event-based camera, inspired by the mam-
malian retina [15], [16]. Each pixel of the DVS is sensitive
to the temporal change in luminance and sends out an event
using the AER protocol. The robot has an integrated 9 DOF
IMU which reports changes in velocity and orientation, which
is used here to obtain the ground truth of robot’s orientation.
The eDVS camera is configured to detect a high frequency
LED, filtering out the noise that arises from stochastic spiking
and movement of the robot. A high frequency LED (3kHz) is
used as a visual landmark in order to reset the bump of activity
in the HD neural network. In our implementation, when the
visual landmark is observed within a set area of the visual
array, the bump of activity is reset to the correct value.

III. HEAD DIRECTION NETWORK

In the past 20 years, HD cells have been characterized
biologically [17] and modeled extensively. An individual HD
cell has a maximum firing rate at one particular orientation
and its firing rate decreases monotonically moving away from
this ‘preferred direction’. In a population of HD cells with all
directions equally represented, head direction is represented by
a stable and localized activity bump [18]. Despite the strong
visual component, HD cells also use inertia to update the
representation of head direction in total darkness, presumably
by integrating self motion information.

Many models have been proposed on how HD cells shift
their activity according to angular movements. In the ring
attractor model for HD cells, each cell features local excitation
onto cells with similar orientation preference and global inhibi-
tion onto cells with different orientation preference [1]. Direct
evidence for such an organization was recently found in insects
[19]. The ‘hill of activity’ is moved around the ring to different
directional headings following inputs from self-motion or
external visual cues. An alternative model relies on cross-
inhibition [2] and is based on data from angular head velocity
cells that have been found in the thalamus. In this model,
neural activity is mainly driven by external excitation making
the network less prone to instability that might occur due to
runaway feedback excitation [20]. Wilson and Cowan [21], and
Amari [22] have proposed dynamic neural fields (DNFs) as
a simplified mathematical model for neural processing based
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Fig. 3: The neural network architecture with the connections
between five neural populations: head direction (HD), shift
right (SR), integrated head direction (IHD), and angular ve-
locity populations drive left (DL) and drive right (DR). The
shift left (SL) population is not shown for clarity. The IMU
and DVS populations reset the activity bump in the IHD pop-
ulation, driven by the compass- and DVS-signal, respectively.
Arrows mark excitatory, circles inhibitory synapses (only a
subset of recurrent connections is shown).
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Fig. 4: The synaptic connectivity matrix that implements
the architecture on the ROLLS chip. Colors encode synaptic
weights of the recurrent connections on the chip (red for
positive and blue for negative weights). Labels indicate the
neural populations (see Fig. 3)

on soft winner take all (WTA) recurrent interactions, which
have later been linked to representations in the HD system of
rats [18]. Attractor models based on DNFs can account for
various attributes of HD cells, e.g. neurons firing at a steady
rate when facing the preferred direction even in darkness and
shifting their activity according to self-motion.

A. Spiking Neural Network Architecture
The core of the presented system is a neuromorphic neural

network architecture that integrates the robot’s angular velocity
to compute its orientation. The architecture consists of six
neuronal populations: An angular velocity population (AV) that
is composed of a drive right (DR) and a drive left (DL) sub-
populations, the head-direction neurons (HD), the integrated

head direction neurons (IHD), and two populations that shift
the activity to the right (SR) or to the left (SL), respectively. A
schematic representation of the networks is shown in Fig. 3.
All populations are connected as ring networks. The figure
does not depict the closure of the ring in order to obtain a
better illustration of the synaptic connectivity.

HD neurons are connected in a WTA network, in which
neurons amplify their local activity by being excitatorily con-
nected to their nearest neighbors and globally inhibit each
other. As a consequence, the network “selects” the local
group that receives the strongest excitation and at the same
time suppresses the activity of all other neurons via global
inhibition, thus creating a bump of activity on the ring attractor
network. Each active HD neuron inhibits every shift neuron
except for the ones with the same index and the ones to the
immediate right and left, allowing for local activity in the shift
network when it is globally stimulated due to movement (by
the AV populations). The two distinct shift populations (SL and
SR) connect to the IHD population with asymmetric network
connectivity [1], [18], [23], shifting the bump to the right (SR)
and to the left (SL), respectively. With its one-to-one mapping
to the HD neurons, the IHD population moves the HD activity
bump to the estimated updated orientation.

When the robot turns, an angular velocity population (DR
or DL) excites the whole shift population, but will only induce
activity in the local region of the shift population due to the
inhibition from the HD population. Shift neurons excite the
IHD neurons to the immediate right or left and shift the bump
of activity relative to the HD population. Finally, the IHD
strongly feeds into the HD population and moves the activity
bump smoothly with integration or abruptly by external reset.
IMU is a neuronal population that, when activated, resets the
IHD to the true position calculated with the IMU compass on
the Pushbot. Moreover, when a visual landmark is detected, the
DVS population is stimulated by the DVS events and moves
the IHD activity bump to the correct position. The visual
landmark corresponds to a blinking beacon and is seen once
in every full rotation. Cross-inhibition between DL-SR and
DR-SL populations reduces the chance of stochastic spiking.
The excitatory WTA kernel of width two was chosen to make
the localized activity more robust and stable. The synaptic
connectivity matrix set on the neuromorphic chip is shown
in Fig. 4.

IV. RESULTS

In our robotic experiments, we put the robot in an arena
with a blinking LED fixed on one of the walls (see Fig. 2). In
the beginning of each trial, the IMU state was read to obtain
the true heading orientation. The robot turned around its axis
and at the end of the rotation the IMU state was read again. The
difference between the orientation represented by the activity
of the HD neurons and the true orientation, given by the IMU
data was calculated. This difference represents the error of the
system and is referred to as ∆, measured in number of neurons.
The spiking activity during two example trials can be seen in
Fig. 5. It can be observed that the path integration with visual
reset (right plot) is more precise due to the correction of the
accumulated error.

The reliability of the system was tested by analyzing
the difference between the HD neurons activated through



(a) Without visual reset. (b) With visual reset.

Fig. 5: Spiking activity of neurons on chip using the DVS-based reset (right) and without visual information (left). The figure
shows how the visual correction aids the head direction network to have a more precise orientation estimation, limiting error
accumulation (see “Accumulated error” in the left plot). IMU checks in the beginning and end of the trial are marked by red
spikes of the IMU population. DVS population is activated when the visual landmark is detected (≈ 13s and 26s).

Fig. 6: The mean of the accumulated error over time with
and without visual reset. Error bars represent the one sigma
spread of error measurements over dozens of trials. Data-points
without visual feedback were shifted by one (to the right) to
avoid graphic overlaps.

integration and the neurons that were activated by the IMU
reset. Fig. 6 shows the mean error for the system with and
without visual correction, measured as the robot turns for up
to 45 seconds. We have conducted many runs of the system
(between 16 and 52 per data point in the plot) with rotations
both to the right (e.g., Fig. 6b) and to the left (e.g., Fig. 6a).
This also allowed us to estimate the standard deviation of the
error over time and revealed that it grows for trials without
visual reset.

Fig. 6 shows that the mean deviation of the neurally
estimated orientation does not diverge both with and without
visual reset, but fluctuates around zero. This means that the
neuronally estimated shift corresponded to the angular velocity
of the robot and there was no constantly accumulating error
due to bad calibration. However, using visual reset makes the
system more reliable and less prone to neuronal or missmatch
induced drift. This leads to a smaller mean error and a narrower
standard deviation. By performing a χ2 test, we assessed that

the system with visual reset is compatible with having an offset
of zero as time progresses.

V. CONCLUSION

In this work, we realized a neural head direction archi-
tecture on a neuromorphic device with spiking silicon neurons
that can path-integrate angular velocity information in order to
maintain an internal representation of orientation. The activity
of the silicon exponential integrate and fire neurons is driven in
a closed sensory-motor loop. By detecting a visual landmark,
the accumulated error can be corrected, as demonstrated in
Fig. 5 and Fig. 6.

In future work, first, we will use multiple AV (drive) pop-
ulations for different angular velocities, leading to a number
of shift populations that produce shifts of different amplitude.
Next, the visual information can be used to correct the path
integration system by making the weights between shift and
integrated head direction populations plastic and adjusting the
activity shift to better correspond to the actual angular velocity.
Finally, blinking LEDs with different frequencies can be placed
at various orientations and during the rotation of the robot,
on-chip plastic synapses of the silicon neurons can learn the
corresponding place of each LED, effectively forming a map
of the robot’s surroundings. The LEDs can be replaced by an
object-recognition system.

Combining path integration with the visual correction is the
first step towards robotic localization implemented in neuro-
morphic hardware. Future work will use a larger neuromorphic
device to add path integration for translation and to establish
a map of the environment using plastic on-chip connections,
leading towards a complete neuromorphic simultaneous local-
ization and mapping (SLAM) system.
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