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S E N S O R S

Neuro-inspired electronic skin for robots
Fengyuan Liu1†, Sweety Deswal1†, Adamos Christou1, Yulia Sandamirskaya2,  
Mohsen Kaboli3,4, Ravinder Dahiya1*

Touch is a complex sensing modality owing to large number of receptors (mechano, thermal, pain) nonuniformly 
embedded in the soft skin all over the body. These receptors can gather and encode the large tactile data, allowing 
us to feel and perceive the real world. This efficient somatosensation far outperforms the touch-sensing capability of 
most of the state-of-the-art robots today and suggests the need for neural-like hardware for electronic skin (e-skin). 
This could be attained through either innovative schemes for developing distributed electronics or repurposing the 
neuromorphic circuits developed for other sensory modalities such as vision and audio. This Review highlights 
the hardware implementations of various computational building blocks for e-skin and the ways they can be inte-
grated to potentially realize human skin–like or peripheral nervous system–like functionalities. The neural-like sensing 
and data processing are discussed along with various algorithms and hardware architectures. The integration of 
ultrathin neuromorphic chips for local computation and the printed electronics on soft substrate used for the devel-
opment of e-skin over large areas are expected to advance robotic interaction as well as open new avenues for 
research in medical instrumentation, wearables, electronics, and neuroprosthetics.

INTRODUCTION
The sense of touch is crucial to cope with the everyday challenges re-
lated to interaction with objects, to safely manipulate and explore 
them to understand their physical properties (1), and for perception 
and self-awareness (2). When deprived of reliable tactile information 
[e.g., through the numbness of anesthetized or cold fingers (3, 4)], 
people become clumsy, and accidents are prone to occur. Similarly, 
tactile sensing or haptics also has a vital role in the development of 
cognitive and intelligent robotic systems because it allows them to 
autonomously explore their surroundings. Robotic systems of the 
future thus need touch sensing to safely interact in dynamic, un-
structured, and often uncertain environments. As a result, during the 
past several decades, researchers have explored numerous ways to 
create an artificial sense of touch through various types of sensors in 
bendable and stretchable form factors (5–8) [e.g., resistive (9), piezo-
resistive (10, 11), capacitive (12), optical (13), piezoelectric (14, 15), 
acoustic (16)]—either individually or as a stack (17), and yet, we are 
far from the tactile sensing capabilities possessed by humans. Some of 
the key developments for tactile sensing or electronic skin (e-skin) in 
robotics are shown in Fig. 1.

For a robot to have human-level perceptual capability, it is im-
portant to associate the tactile sensors with a similar data processing 
system in the way that receptors work in the peripheral nervous sys-
tem (PNS). This requires physically distributed computing hardware 
on soft substrates, along with tactile sensors. Although tactile sensors 
have received substantial attention in the past, the data encoding and 
processing using dedicated hardware has not been explored as much. 
The tactile information processing in robotics so far has mainly in-
volved analytical or data-driven approaches, using a software plat-
form (18). Analytical approaches exploit physics-based models to 

obtain tactile information, such as object properties and action com-
mands, from the raw tactile data. However, these models often rely 
on structured interactions and do not provide accurate information 
needed for control or robust perception. The alternative is to use 
data-driven methods that learn mappings from raw sensory data, or 
lower-level features, to high-level object properties and action com-
mands. In this regard, supervised, unsupervised, and reinforcement 
learning can be explored. Hierarchical representations, such as neural 
networks, are often used to learn multiple levels of features (19, 20). 
Flexible representations allow the robot to adapt the learned model to 
the specific task based directly on data. The analytical, data-driven, or 
algorithmic approaches can be more effective with distributed com-
puting in tactile skin (21). The neural-like hardware developed for 
other sensory modalities, such as vision and audio, or the chips 
developed to imitate the working of central nervous system (CNS) 
(22–24) can be repurposed for tactile data processing. However, 
such solutions are not ideal for tactile sensing, because unlike other 
sensory modalities, tactile sensing is physically distributed all over 
the body and requires mechanical softness to interact with other 
objects.

Robotics has considerably advanced from using few sensors in the 
hands to using large numbers of sensors all over the body (Fig. 1) to 
meet the requirements of emerging tasks that exploit the large-area or 
whole-body contact to manipulate objects or navigate through un-
structured or cluttered environments. With increasing numbers of 
sensors, the amount of tactile data they generate can rapidly approach 
practical limits, such as occupying the communication bandwidth. As 
such, it is impractical to send all of the data to the robot’s centralized 
computing hardware (an equivalent of the brain). Likewise, the power 
requirements can be considerably high. This calls for e-skin to have 
efficient data handling capability, and it could be achieved through 
distributed low-power electronic hardware for computing. This no-
tion aligns with the way the PNS complements the CNS.

Focusing on the computing hardware for e-skin, this Review com-
plements previous review articles that have presented topics such as 
various types of tactile sensors (25–28), techniques, and materials (for 
example, using liquid metal and hydrogel) to realize sensors in soft 
and flexible form factors (29, 30), identification of object properties 
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and interactions (31), and distributed energy (32, 33). This article 
also complements previous reviews covering neuro-/bio- inspired 
e-skin (34–36), providing a systematic and comprehensive discussion 
on the computing element in tactile sensing. In this regard, this Re-
view is distinct and timely. The discussion starts from a biological 
perspective, summarizing the state-of-the-art viewpoints related to 
tactile data encoding and processing in PNS. The discussion also 
highlights the key message for the hardware implementation of 
neural-like processing in e-skin. This is followed by the discus-
sion on various building blocks for hardware implementations. 
Although some of these building blocks are not developed for 
e-skin, they can be repurposed to develop one to address the challeng-
es stated above. The pathways for the integration of these building blocks 
with possible algorithms, leading to the development of computation-
al e-skin, are discussed afterward. We then present how the imple-
mentation of large-area computational e-skin could gain from the 
advances in flexible and printed electronics technologies. The intelli-
gent robotic skin capable of extracting low-level information from 
the abundant tactile data could also open new application avenues 

in areas such as medical instruments, wearables, and neuroprosthetics, 
and therefore, researchers working in these diverse areas will benefit 
from this article.

TACTILE SENSATION AND PERCEPTION IN HUMAN SKIN
Constructing a robust perceptual system for robots based on the tac-
tile sensory information is a critical but challenging task. Because hu-
mans manage this almost effortlessly, the human body is an excellent 
reference to follow. This section presents some fundamental but vital 
features in the tactile sensation and perception in human body, espe-
cially at the PNS level with a view to realizing computational e-skin 
for the next generation of robots.

The human body acquires the tactile sensory information through 
thousands of mechanoreceptors distributed over the skin (Table 1), 
as shown in Fig. 2A. This large number of receptors ensures a reliable 
sensation but poses challenges in data transmission. The biological 
solution is to use action potentials, sometimes with adaptation, to 
encode, communicate, and control the body (37). Such a manner is 

Fig. 1. The tactile sensation and perception in human skin and the evolution of artificial tactile skin in robots. Skin is the major component of human PNS (left), which 
has inspired robotic tactile skin research over the years. The tactile sensing technologies have advanced from single-touch sensor to large-area skin (middle) covering the whole body 
of a robot (right). This poses challenges in data handling and energy consumption. The images (from bottom to top) in the timeline (middle) are adapted from (146, 147, 184–187) with 
permissions. Distributing computing in tactile skin can further boost the interaction capabilities of robots. The block diagram below shows the key steps to attain the same 
and outlines the structure of this paper. The image of the robot on the right-hand side is an adaptation from the image “iCub Humanoid platform,” created by “antoni gràcia.” Link of the 
original image: https://www.behance.net/gallery/17635773/iCub-Humanoid-platform Link for the license: https://creativecommons.org/licenses/by-nc/4.0/legalcode. 
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highly beneficial in terms of reducing power consumption and data 
latency.

Reverse engineering to develop the e-skin requires knowledge 
beyond neuroscience principles. For example, from a structure 
viewpoint, the skin is soft and present over a large area. With a large 
number of receptors (of varying thresholds) distributed at different 
depths, the skin can respond to the stimuli of various frequencies 
[fast adapting (FA) and slow adapting (SA)] (38). Moreover, each 
subtype of receptors shows a different size of receptive field; they 
overlap with each other and are interconnected locally (39–41). Such 
an intricate nature forms the foundation of the fine spatial sensitivity 
of the skin. Toward this, several works have reported various sen-
sors that provide similar functionalities as SA and FA receptors and 
also suggest their stacking to mimic the mechanoreceptor arrange-
ment in the skin (Fig. 2A) (17, 42, 43).

Compared with tactile sensation, the understanding of the tactile 
perception is far less developed. The general view is that the percep-
tion starts at the cuneate (second-order tactile) neuron (in the spinal 
cord), while the first-order neuron (sensory neuron) is solely re-
sponsible for the tactile sensing (38). However, it is also argued that 
the mechanical properties such as the softness of skin may also be 
related to the perception process. Some level of computing takes place 
in the skin itself owing to the location-specific tactile sensing char-
acteristics inside the receptive field of sensory neuron and the soft 
nature of the skin, which deforms during contact (Fig. 2B) (44, 45). 
In this regard, the spiking pattern from the first-order neuron could 
contain some information of the edge orientation. Although more 
similar studies are needed to unravel the perceptual element of tac-
tile sensing in biological skin, hardware implementation of some level 
of computation in the artificial skin will be beneficial. It is because, 
unlike biosystem where hyperconnectivity is regular, the electronic 
system usually has a much lower fan-out/fan-in ratio, with one fan-in 
leading to three to four fan-out on average in digital electronics 
(46). The realization of a hyperconnected electronic system is chal-
lenging from both a design and a fabrication perspective. Another 
reason is that the flexible, stretchable nature of the artificial skin 
poses a major hurdle to reliable data transmission. The large num-
ber of receptors confined in a limited area could markedly increase 
the difficulty of data transmission without losing fidelity. Instead, 

achieving edge computing at the skin level itself could greatly lower 
the data transmission burden. Like the audio and vision, it is also 
argued that the tactile sensory data are processed via time division: 
The firing pattern of several neurons at the same time would trigger 
the firing of the next-level neuron and, in turn, strengthen the afferent 
synapse (Fig. 2C) (47). By doing so, the tactile sensation aroused by 
an object is correlated with the firing of one (or multiple) second- 
order neuron(s), and the generated spiking patterns are sent for fur-
ther processing (Fig. 2C). This lays the foundation for tactile signal 
computing using the spiking time–dependent plasticity (STDP) learning 
rule. Nevertheless, this is not the only rule available. Other possible 
learning rules, whether or not they are biomimetic, can be implemented 
in the e-skin to enable the intelligent data processing. This is discussed 
in the “Neural system implementation and algorithms” section.

COMPUTATIONAL BUILDING BLOCKS AND THEIR  
HARDWARE IMPLEMENTATIONS
To fully mimic the functionality of the biological skin and the asso-
ciated PNS, the building blocks that can function as sensors, neu-
rons, and synapse are required (Fig. 2A). This section reviews the 
hardware devices mimicking sensory neurons and cuneate neurons 
and the synaptic devices needed between these two sets of neurons. 
The functionalities required from the individual building blocks, 
along with their preliminary integration in a neural pathway for 
robotic applications, are discussed in the subsequent subsections.

Artificial neuron
The neuron is the basic processing unit in the biological neural sys-
tem, where analog incoming signals are integrated and converted 
into action potentials when the spatiotemporal summation exceeds 
the firing threshold of the neuron. Previous studies have identified 
approximately 20 typical spiking features in the biological system, 
such as tonic spiking, tonic bursting, and phasic spiking (48). Among 
them, some features have been widely observed and play important 
roles in somatosensation. The capability of delivering such spiking 
features, for example, frequency adaptation, should be one of the 
criteria for the hardware implementation of neuron block for the 
e-skin. Here, we review the state-of-the-art strategies that have been 

Table 1. Typical properties of human skin (78, 194–204).  NA, not available. 

Location Relative area (%)
(78, 194, 203)

Strain (%)
(196–201)

No. of mechanoreceptors
(195, 202)

Spatial acuity (cm)*
(204)

Finger ~1.3 35–45 ~13,350 ~0.2

Foot ~6.1 <30† 1,000–5,000 0.8–1.8

Chest ~12.8 <30† ~13,000 ~3.2

Back ~13.9 <30† 2,000–14,000 ~1.3

Shoulders ~1.9 NA ~4,000 ~3

Abdomen ~3.6 NA ~4,000 ~3.6

Thigh ~18.3 <30† ~30,000 ~2.3

Wrist ~0.7 10–40 ~1,500 ~4.2

Knee ~1.2 30–40 ~2,000 ~4.7

Elbow NA 60 NA ~4.2

*Spatial acuity denotes the two-point discrimination threshold.   †Data are anticipated according to the value from other areas of the skin.
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developed for sensory neuron (that is, neuromorphic sensors) and 
then the neuron circuits in general, which can be used for the reali-
zation of the second-order tactile neuron.
Sensory neuron (neuromorphic sensor)
The sensory neuron is the first-order neuron in the tactile neural 
pathway. The sensors designed for the computational e-skin should 
output the spiking signal, and to this end, the two hardware imple-
mentation approaches have been explored so far. One is to integrate 
the sensor with oscillating and edge-detection circuits, as illustrated 
in Fig. 3A (49–52), and the second is to interface the sensor with the 
neuron circuits, as shown in Fig. 3B (53, 54). Both approaches could 
provide biological features such as spiking rate dependency (class 1 

excitable) and event-driven sensing. How-
ever, the shape of the spiking signal they 
generate is different. Because the first 
strategy uses an AND gate, it generates 
square-shaped spikes (Fig. 3A); in con-
trast, the conventional neuron circuits 
using Si complementary metal-oxide semi-
conductor (CMOS) can deliver biologi-
cally plausible spiking patterns including 
the hyperpolarization and depolarization 
stages, refractory period (Fig.  3B). Be-
cause the shape of the spike governs the 
plasticity-based learning of artificial syn-
apses, the synaptic devices need to be 
identified and designed carefully along 
with the associated neurons. From the 
engineering point of view, the first strategy 
relies on the digital circuit and can be 
more robust to disturbance. In this re-
gard, some parts have been successfully 
demonstrated on flexible substrates using 
printing techniques. However, consider-
ing the whole neural system, the sim-
plified spiking signal generated by the 
oscillating circuits cannot offer some of 
the vital spiking features observed in 
biology. To realize a system with rich 
neural dynamics, the second strategy may 
be required.

Considering the open and unpredict-
able environment the skin typically ex-
periences, the sensors need to exhibit 
excellent specificity/selectivity, particularly 
because the e-skin requires multimodal 
sensing to detect various parameters such 
as stress, pressure, and temperature. This 
can be challenging because the electronic 
systems themselves are temperature sen-
sitive. Nevertheless, there are many 
encouraging works showing excellent 
specificity regardless of ambient varia-
tions (55–59). Alternatively, one could 
use low-specificity sensors and calibrate 
later, for example, at the second-order 
neuron stage.
Cuneate neuron
This subsection discusses the strategies 

for the hardware implementation of spiking neuron and their eval-
uation in terms of the biological plausibility, that is, the number of 
the biologically observed spiking features, and the implementation 
cost measured by the active devices required in the design. The neu-
ron circuit discussed here can be used to realize the second-order 
tactile neuron for the computational e-skin. From the model point 
of view, several mathematical equations have been proposed to de-
scribe the neuron spiking process. These include leaky integrate-and-fire 
model (60), Hodgkin-Huxley (61), and Izhikevich model (62). These 
neuron models can be implemented using one or two capacitors 
with leaky resistors to emulate the important features observed in 
biological neurons (63) (Fig. 2A), such as spatiotemporal integration 

Fig. 2. The neural pathways for tactile data processing in human skin and their simple implementation schemes 
using basic devices and circuits. (A) Neural pathway for tactile data processing. The sensing data are collected in 
the sensory neuron (first order), passed to the cuneate neuron (second order), and finally sent to the higher levels of 
the nervous system. The key components (mechanoreceptors, neurons, and synapses) of human body involved in 
tactile sensing and data encoding are shown with the illustrations of their simple implementations through electronic 
devices and circuits. The SA and FA mechanoreceptors are usually mimicked by a stack of capacitive and piezoelectric 
sensors (17) (i). The RC circuit (ii) emulates the action potential of the spiking neuron (63). Memristors or similar devices 
(iii) can be used for the implementation of various synaptic functions such as time- and rate-based learning rules. The 
rate-based learning rule refers to BCM (Bienenstock, Cooper, and Munro) learning rule. (B) Possible tactile data pro-
cessing at the first-order neuron (44, 188). Reprinted with permission from (188). (C) Possible tactile data processing 
at the second-order neuron. Reprint from (47) with permission. 
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and all-or-none rule. In this regard, the components showing a 
leaky resistance are the key to the hardware implementation of neu-
ron circuits.

One way to emulate the leaky component is to use phase-change 
devices (Fig. 3C). The resistance of such a device remains high under 
a low voltage bias, owing to an insulating phase, and shows an abrupt 
transition to a low resistance state (metallic phase) when sufficiently 
high bias voltage is available. Such a transition is reversible depend-
ing on the voltage bias. A highly biomimetic neuron circuit can be 

realized with only two leaky phase-change devices: Each controls a 
capacitor, thus mimicking the neuron’s opening and closing of the 
sodium and potassium channels gated by voltage. Such a design can 
emulate almost all the spiking features found in biological neurons—
including tonic and phasic spiking, tonic and phasic bursting, and 
frequency adaptation (Fig. 3C) (64)—and thus can be used to real-
ize a neural system with rich neural dynamics. It is also possible to 
implement a neuron circuit with only one phase-change device (65–67), 
although in this case the spiking signal generated cannot fully mimic the 

Fig. 3. The hardware implementation of an artificial neuron. (A) and (B) show the strategies to develop a neuromorphic sensor. (A) An oscillating circuit–based neu-
romorphic sensor. This strategy uses digital circuits and thus is easier for the hardware implementation on soft substrates as demonstrated in (49–52). (B) A neural circuit–
based neuromorphic sensor (53). Such a strategy is able to provide a more biomimetic spiking signal. However, it is still a challenge for the hardware implementation in 
soft platforms, especially over large areas. (C) and (D) show the strategies to develop spiking neuron circuit in general. (C) The phase-change device–based spiking neuron 
(64). (D) The volatile resistive memory–based spiking neuron (69). (E) The strategy to implement the nonspiking neuron using a multigate transistor. Adapted from (78). 
(F) The performance comparison of various spiking neurons, with data extracted from (64–75, 189, 190). The criteria of the biological plausibility are based on the spiking 
patterns discussed in (48). As can be seen from the figure, the neuron circuits based on novel materials/devices require a smaller number of active devices compared with 
the CMOS-based neurons.
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biological spiking features. Overall, the phase-change device–based 
design offers the lowest hardware complexity (Fig. 3F).

The leaky resistive device can also be realized with volatile resistive 
memristors (68, 69), whose resistance switching is governed by the 
voltage bias across the device (Fig.  3D). From a fabrication view-
point, it seems relatively easier to fabricate the resistive memristors, 
and thus, they may hold more promise for the large-area implementa-
tions on soft substrates.

A more common strategy is to use CMOS circuits (70–75). In 
this case, the subthreshold behavior of metal-oxide semiconductor 
field-effect transistor (MOSFET) is used to emulate the resistance change. 
Unlike phase-change and memristive devices, the MOSFETs are three- 
terminal devices whose channel resistance is controlled by the gate 
voltage. The CMOS neuron requires a complicated layout to con-
trol the resistance of the MOSFETs channel, to mimic the leaky be-
havior. The comparison between the hardware complexity and the 
biological plausibility for each strategy has been illustrated in Fig. 3F.

The spiking-based computing system consumes substantially less 
power. For example, the energy required for the neuron circuit based 
on phase-change device can be as low as 100 fJ per spike (76). This 
value can be even lower for CMOS neurons (~4 fJ) (71). Assuming a 
moderate firing rate of 100 Hz, the energy required per neuron per 
second is in the order of picojoule. For a direct comparison, we use 
the power consumption of Intel Core i7-920 microprocessor as a ref-
erence. This microprocessor consumes a power of 85 W with 731 million 
transistors. This corresponds to ~100-nJ energy consumption per 
second for a single transistor or several hundreds of nanojoules for a 
single gate—this is substantially higher than the power consumption 
of a neuron circuit.
Nonspiking neuron
The nonspiking neuron is another alternative where a continuous 
function represents the firing rate and thus presents a simplified 
activation function. Both digital and analog circuits have been ex-
plored for implementation of nonspiking functionalities, although 
they usually have a complex layout and consume high power. Attempts 
have been made to seek alternatives such as on VO2-based Mott 
devices (77) and nanowire-based neural FETs (78) to achieve recti-
fied linear unit and threshold function, respectively (Fig. 3E). The 
benefits of using a nonspiking neuron include easy and highly accu-
rate training of the associated neural network. However, their rela-
tively higher power requirements compared with the spiking neuron 
are a major drawback. Thus, the selection of spiking or nonspiking 
neurons as the building block for the computational e-skin may 
vary with the application.

Artificial synapse
As the core building block of a neural network, the synapse has two 
main functionalities: the synaptic efficacy (the ability to pass the sig-
nal) and the synaptic plasticity (the ability to adapt the weight accord-
ing to various learning rules). To replicate such functionalities in 
hardware, CMOS circuits and novel electronic devices (79–83) have 
been explored, for both artificial neural network (ANN) and spik-
ing neural network (SNN).

For the proposed computational e-skin, the hardware imple-
mentation over large areas with flexible/stretchable substrates is desired, 
and the incompatibility of CMOS devices with soft and conformable 
materials raises some challenges. Alternatives such as memristive 
devices on flexible substrates have been explored to realize compact 
artificial synapse. A variety of organic and inorganic materials have 

been explored to develop resistive random access memory (RRAM) 
(84, 85), phase-change memory (PCM) (86–88), magnetic random 
access memory (MRAM) (89), and ferroelectric random access memory 
(FeRAM) (90), leading to two- and three-terminal structures. Such 
devices exploit the change in physical properties of the material in 
response to external electrical stimuli to mimic the general synaptic 
behavior (Fig. 4A). The memristive crossbar arrays (91) are a con-
cise and attractive route for implementation of synapses (Fig. 4B). 
For ANN, the operation of synapse is usually achieved by using a 
single pulse signal, with the aim to achieve a long retention time 
with multilevel weight tuning (Fig. 4C). Contrary to ANN, the SNN 
is more biologically plausible because it operates the synaptic devices 
using a pair of pulses (pre- and post-) after various biological learn-
ing rules, for example, STDP (Fig. 2A) (92–96). Figure 4D illustrates 
some examples of hardware-implemented large-scale artificial syn-
apses: They are in the rigid form factor. The future development of 
large-scale synapses for e-skin should be carried out on soft substrates.

Although crossbar arrays provide a concise architecture, they 
could lead to several potential problems as well. For example, the 
sneak path issue (current leakage through unselected cells) is a well-
known bottleneck for the large-area implementation of memristive 
crossbar arrays. In addition, the requirement of electrical forming 
process for each memristor pixel could enhance the hardware com-
plexity, which may make the filamentary memristive devices less 
suitable for the large-area implementation. Selector devices such as 
transistor (97) or self-selective (passive) memristive crossbar (98) 
have been investigated to overcome the sneak path issues. Recently, 
a passive crossbar array was directly implemented with CMOS circuit 
allowing online learning and vector matrix multiplications, thus 
providing operational neuromorphic computing hardware (99). The 
hardware implementation of high-performance, high-yield, and 
uniform one transistor–one memristor (1T1M) crossbar arrays for 
convolutional neural networks is another example of energy-efficient 
large-scale networks (100). Using transistors as selector devices 
leads to 1T1M structure (101), which may be used for synaptic 
functionality in e-skin. However, their large form factor needs to be 
considered as well. To this end, one solution is to merge the selector 
device with RRAM (102, 103), which allows a higher lateral and ver-
tical integration than the conventional 1T1M configuration.

Despite several reports on RRAM-based artificial synapses, their 
hardware realization is limited possibly because of challenges such 
as poor resistance tuning, spatial and temporal variability, device yield, 
and nonlinearity/asymmetry. These issues negatively affect the perform-
ance of neuromorphic computing (104). On the other hand, the 
floating gate transistors offering better uniformity are actively being 
explored for synaptic functionalities (105–108), which are considered 
as a more mature technology due to their compatibility with CMOS 
fabrication process. Emerging synaptic transistors with various working 
mechanisms like electrochemical (109), charge trapping/detrapping 
(110), and light assistive reaction (111, 112) have also been reported 
along with their application in neuromorphic tactile sensing and pro-
cessing system (113, 114). Some hardware implementations of these 
devices are worthwhile; however, efforts are needed to achieve the 
response uniformity over a large area, with desired retention and 
endurance (115). As mentioned above, for robotic skin, the flexibility/
stretchability of artificial synapse is critical, and in this regard, the soft 
synaptic transistors (116–118) and memristors (119, 120) are relevant. 
Flexible high- performance synaptic transistors have been reported 
to mimic the native biological synapses. Likewise, on the basis of 
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flexible memristors, a three-dimensional (3D) artificial synaptic 
network has been reported to enable direct correlated learning and 
trainable memory capability (121). A new class of flexible mem-
ristors based on 2D materials (122) is also very attractive, with 
compatibility of solution processing and printing technology. The 
thickness of 2D materials in subnanometer range further facilitates 
low operating voltages and switching speed (115), but it is still lack-
ing in terms of large-area scalability and uniformity. Recent reports 

on flexible (121) and stretchable (118, 123) artificial synapses are 
encouraging because these devices are suitable for large-area 
robotic skin.

The performance of an artificial synaptic device is typically 
assessed in terms of multilevel states, linearity, retention, endurance, 
dynamic range, variability, device area, device yield, and energy 
consumption. However, not all of these device metrics are critical to 
every application, and they can depend on the training algorithm 

Fig. 4. Hardware Implementation of artificial synapse. (A) Various two- and three-terminal devices as artificial synapses including RRAM, PCM, floating gate transistor, 
and Fe-FET. The schemas of the RRAM, PCM, and floating-gate transistor are redrawn based on (191). (B) Matrix vector multiplication in crossbar arrays with both active 
and passive memristive devices. Potentiation and depression characteristics of analog memristive devices. (C) Synaptic behavior as excitatory and inhibitory with long- 
and short-term plasticity. (D) Hardware implementation of some memristor-based artificial synapse in (i) ANN [reprint from (99) with permission. Copyright 2019, Springer 
Nature] with integration of memristor crossbars and CMOS chips on wire-bonded pin-grid array package (inset shows the testing setup) and (ii) SNN [reprint from (95) 
with permission] using PCB with passive memristor switching matrix (inset shows the scanning electron image of memristor crossbar). (E) Localized neural pathway for 
robots. (i) Distributed sensorimotor merging that leads to the learning of the maze exploration of the robot. Adapted from (127) with permission. (ii) Distributed sensorim-
otor correlation that leads to the acquisition of the pain reflex. Reprint from (128) with permission.

IM
A

G
E 

C
RE

D
IT

S:
 (A

) (
19
1)

/S
PR

IN
G

E
R

 N
A

TU
R

E
 (D

) (
I) 

(9
9)

; (
II)

 (9
5)

/S
PR

IN
G

E
R

 N
A

TU
R

E
D

ow
nloaded from

 https://w
w

w
.science.org at E

th Z
urich on M

ay 22, 2023



Liu et al., Sci. Robot. 7, eabl7344 (2022)     8 June 2022

S C I E N C E  R O B O T I C S  |  R E V I E W

8 of 15

and specific task. A comparison of some of the hardware-implemented 
synaptic devices is demonstrated in Table  2. The technology for 
such novel neuromorphic devices is at an infancy, and despite their 
advantages, now, they are unable to replace CMOS technology at the 
commercial hardware level. A hybrid design, for example, memristor- 
based analog computing along with CMOS-based digital computing, 
maybe the solution in the near future.

Peripheral neural pathway for robots
Robots require sensory-motor fusion and adaptive interaction with 
the environment. Specifically, skin-like tactile sensing has been used 
in robotics for tactile-based environmental exploration, physical 
human-robot interaction and collaboration, objects’ physical prop-
erties recognition, tool manipulation, and locomotion (18, 124, 125). How-
ever, most of these demonstrations are achieved by software approaches 
in a centralized computing unit, that is, the equivalent of brain. In 
addition, these platforms usually use digital circuitries, which add 
to the latency of the process. Instead, in organisms, localized sensory- 
motor coordination and integration has been widely observed (126). 
Such a decentralized, analog processing notably reduces the data 
latency for robots. For this, the building blocks discussed above 
can be used to construct the localized computing platform needed 
for tactile sensing, opening avenues for next-generation robots 
(Fig. 4E).

For example, the agent-environment interaction is required for 
the exploration and learning of robots. As shown in Fig. 4E (i), rein-
forcement learning could be done in a localized manner using dis-
tributed synaptic circuits to learn the maze exploration by the robots (127). 
Similarly, robots need to work in unknown environments with the 
potential to sense the impending hazard. This can be achieved by the 
correlation between the sensory and motor signal, allowing the robot 
to identify the pain signal and respond to it (128). Owing to the use 
of the synaptic device [Fig. 4E (ii)], the withdrawal reflex behavior 
could be mimicked in a concise manner. The above examples show 
how decentralized computing can be constructed in a simple neural 
configuration, benefiting the next-generation robots. In the next 
section, possible neural network structures are discussed, which 
could potentially be used for carrying out more complicated tasks 
for robots.

NEURAL SYSTEM IMPLEMENTATION AND ALGORITHMS
The neural network structure
This section presents the possible neural system structure for the 
computational e-skin along with its training algorithms. This includes 
one layer of sensory neurons and one layer of cuneate neurons, con-
nected via synapses (Fig. 5A). As discussed in the “Tactile sensation 
and perception in human skin” section, the subtypes of mechanore-
ceptors have different sizes of receptive fields, which overlap and 
are interconnected to form the basis for the spatial sensitivity of the 
skin (40, 129). We present a similar concept for the proposed neural 
network (Fig. 5A). The stimulation of one neuron could influence 
other neighboring neurons, and thus, it is possible to map the in-
coming tactile signal to a higher-dimensional space in the first layer; 
the output is fed into the second layer for further processing. The 
proposed neural network is similar to the reservoir computing. How-
ever, owing to soft tissues, the native skin is more complex: The re-
ceptive fields of the neighboring mechanoreceptors are modulated 
by the external tactile stimuli (Fig. 2B) (130, 131). This is one of the 
unique aspects of tactile sensing (44), and mimicking the same could 
be a future direction of e-skin research. The proposed neural net-
work is capable of carrying out various tasks required by robots, such 
as local tactile feature recognition and contact/slippage detection. 
Nevertheless, it is also necessary to consider what kinds of tasks are 
suitable for localized processing at the skin level. One possible di-
rection is that a higher-level arrangement can be made in a similar 
manner to organisms in nature. For example, as discussed in earlier, 
differentiating the edge orientation of a tactile stimulus is a task 
processed in the skin level for humans (45), and similar tactile per-
ception could be realized with the computational e-skin as well.

The learning algorithms
Implementing the proposed neural network using the hardware build-
ing blocks is another important aspect to consider. Various learning 
strategies including supervised, unsupervised, and reinforcement 
learning are available. However, developing an all-hardware–based 
supervised learning system can be costly in terms of devices or cir-
cuits needed (97, 132, 133) and will thus not be discussed for the 
e-skin. On the other hand, the plasticity-based learning rule, STDP, 
is the fundamental learning rule in SNNs and leads to unsupervised 

Table 2. Hardware-integrated artificial synapse devices.  

Reference Memristive device 
configuration Cell dimension ( m2) Size of crossbar array Energy consumption Application of 

hardware system

(205) 1M 10 × 10 15 × 6 0.31 J
Recognition of printed 

digits

(100) 1T1M 0.5 × 0.5 128 × 16 371.89 pJ

MNIST (National 
Institute of Standards 

and Technology)  
image recognition

(206) 1M <0.5 × 0.5 32 × 32 719.0 J
Pattern matching and 

natural image 
processing

(99) 1M 0.5 × 0.5 54 × 108 1.12 pJ
Demonstration of 

different computing 
models

(95) 1M – 20 × 20 – Coincidence detection
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learning (Fig. 5B) (134, 135). The implementation of such a learning 
rule is hardware-friendly, especially with the previously mentioned 
synaptic devices. The change of the synaptic weight is only subjected 
to the time correlation between paired spikes from the pre- and post- 
neurons, under various pairing schemes such as “nearest neighbor 
takes all,” “nearest neighbor takes more,” or “all spike pairs count 
equally” (Fig. 5B) (135). This could be potentially promising for im-
plementation on the soft computational e-skin. For example, for 

memristor-based synapses, the pre- and post-neuron signals are fed 
into the two ends of the memristor devices. The net bias across the 
memristor device is therefore the temporal subtraction of the pre- 
and post-neuron spikes (Fig. 5D) (136). Thus, the difference in the 
spike timing between the pre- and post-neurons would lead to a net 
bias of reverse polarity and varying amplitude (Fig. 5C). Depending 
on the relationship between the potentiation/depression threshold 
and the net bias across the device, the synaptic weight is modified 

Fig. 5. The neural network structure and learning algorithms for the proposed computational e-skin. (A) The neural network structure and the potential tasks it 
should address. A network similar to reservoir computing has been proposed. However, for e-skin, it should be more complicated because the weights in the first layer 
along with the receptive fields of the sensory neurons are dependent on the mechanical stimuli. (B) Plasticity-based learning rule, STDP, for unsupervised learning. Various 
forms of STDP have been identified. Typical examples include asymmetry Hebbian learning, asymmetry anti-Hebbian learning, and symmetric Hebbian learning. Reprint 
from (135). (C) Waveform engineering is one popular strategy for achieving hardware realization of the STDP learning rule using novel devices such as memristors and 
synaptic transistors shown in [D (i)] and [D (ii)]. For this, the principle is to take advantage of the net bias across the device, Vpre-Vpost, under various timing. When the net 
bias is larger than the threshold of the device needed to trigger the synaptic behavior (potentiation or depression), the weight (conductance) of the device would be 
changed. (D) The possible circuit layout for realizing STDP learning for two-terminal memristor and three-terminal synaptic transistor. Adapted from (136). 
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accordingly. From the functional viewpoint, the implementation of 
STDP learning rule could lead to the correlation between two neu-
rons and further possible sensorimotor correlation for robots.

Although unsupervised learning has several benefits, such a learning 
strategy alone may be insufficient. A method to strengthen the de-
sired behavior and weaken the undesired behavior, based on the 
environmental feedback, for example, using reinforcement learning, 
may also be required. In terms of the hardware, reinforcement learning 
has been demonstrated in the example shown in Fig. 4E and other 
works using memristor crossbar (or synaptic transistors) and digital 
circuitry (137). However, with respect to the more biologically plausible 
scenario, SNN, the hardware implementation has not been realized. 

Possible examples may also exist in the 
biological nervous system: The synaptic 
plasticity could be influenced by a global 
neuromodulator signal. For example, 
dopamine can lead to facilitation, and 
acetylcholine can lead to depression. 
Several computational studies have shown 
that they could lead to a higher learning 
accuracy for various tasks (138–141). In 
this regard, efforts are needed in the 
hardware demonstration of the “three- 
factor STDP behavior” using the artifi-
cial synaptic devices, and the devices 
offering multiple approaches to control 
the synaptic behavior [chemical and light; 
(142)] could be beneficial.

Power consumption
Because there are a limited number of 
studies on the power consumption of 
e-skins, we try to extract data from other 
scenarios for comparison. For example, 
the neuromorphic chip “SpiNNaker” con-
tains ~250,000 neurons and 82 million 
synapses (143). It consumes 36 W in 
total or 20 nJ per synaptic event, at an 
average firing rate of 22 Hz. The chip 
“TrueNorth” contains ~1 million neu-
rons and 128 million active synapses, 
consuming an average of 26 pJ per syn-
aptic event at a firing rate of ~20 Hz (22). 
The e-skin targeting human-level tactile 
performance would require a similar num-
ber of sensory neurons in the first layer 
as in the case of human skin (~100,000; 
see Table 1), but with a much less recur-
rency as compared with SpiNNaker or 
TrueNorth. Assuming a smaller portion 
(~1/10) of cuneate neurons in the second 
layer, the power consumption of the 
proposed e-skin should be in the order 
of several watts at a moderate firing rate  
(~20 Hz).

In addition to the power consump-
tion, there are several other problems to 
consider for developing a computational 
e-skin. For example, the way to address 

and send the sensing signal is an aspect for study, because the active 
or passive matrix manner cannot support the high spatial and tempo-
ral resolution at the same time. Another aspect is the method to 
guarantee the system reliability, because the continuous interaction 
between the skin and the external environment could possibly lead 
to localized damage (144, 145).

TOWARD COMPUTATIONAL E-SKIN IMPLEMENTATION
Flexible PCB and chip thinning technology
E-skin needs to be fabricated on soft substrates to mimic the me-
chanical properties of biological skin. Initial progress has been made 

Fig. 6. The technological advances to implement large-area computational e-skin on flexible substrates. (A) 
The energy autonomous e-skin with graphene-based transparent touch-sensing layer on robotic hand and on flexi-
ble solar cells. The back side of the solar cells shows rigid off-the-shelf chips. Images adapted from (192). (B) The 
neuromorphic chip, TrueNorth, with 1 million spiking neurons implemented using digital electronics. Adapted from 
(22). (C) UTC technology could be used to obtain a flexible version of neuromorphic chips and hence the computa-
tional e-skin with greater flexibility. Adapted from (148, 193). (D) The roll-to-roll printing of various computing building 
blocks for the future e-skin. The feasibility of such e-skin is evident from the examples of printed electronic layers and 
devices: (i and ii) transfer printed Si nanoribbons and transistor made from them. Reprint from (159). (iii) Contact 
printed nanowire-based devices. Reprint from (174). 
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by integrating off-the-shelf sensors and electronic components onto 
flexible printed circuit boards (PCBs), ranging from hand-based 
manipulation to the whole-body area, as shown in Fig. 1. Similar 
approaches could be adopted for computational e-skin by interfacing 
sensors with neuromorphic chips (Fig. 6, A and B). The neuro-
morphic chips offer a platform of dense, interconnected neural network 
that can carry out various computing tasks required by robots 
(146, 147). Such an arrangement will enable “in-hardware” computing 
capability in the e-skin using deep neural networks. This is different 
from the strategy we have discussed so far to develop the “skin-type” 
tactile functionality, because the achievement of the human-level 
tactile sensation and perception relies on the intricate interplay be-
tween the softness of the skin and the spiking response of the neurons, 
using a “shallow” network of two layers.

The integration of soft and rigid materials limits the bendability. 
Furthermore, the mismatch in their mechanical properties increases 
the chances of failure during extended use. As a result, it is challeng-
ing to use hybrid devices on sensitive body parts such as fingertips 
of a robot, where high-density tactile feedback is required for inter-
action and manipulation. This can be potentially mitigated through 
wafer thinning technology using ultrathin chip (UTC) (148–151), as 
shown in Fig. 6C. The thin chips bonded onto flexible PCBs could 
offer greater flexibility. With this strategy, one critical challenge is 
the lack of suitable bonding techniques to gain access to the circuitry 
on thin chips from a soft platform. The conventional chip bonding 
methods are not suitable because they are likely to introduce cracks 
in the chips. These issues could be resolved by methods such as bond-
ing by printing (152–156). The challenges related to reliable inter-
connects could be addressed by mechanically flexible conductive 
materials such as liquid metals (157). Overall, despite these challenges 
and limitations, using UTCs with flexible PCB is possibly the quickest 
route toward the realization of the computational e-skin.

Printed electronics on soft substrates
The proposed e-skin can also be fabricated directly on soft platforms, 
using printing technology with both inorganic (158, 159) and organic 
(158, 160) materials (Fig. 6D). This will also be an attractive direc-
tion for future electronics, because resource-efficient manufacturing 
could help to reduce electronic waste and contribute to sustainability. 
Further, it is easier to process biodegradable materials using printing 
technology so that the printing technology also holds promise for 
future transient electronics (161–163). Several printing techniques 
that are available today include inkjet printing (118, 164–166), trans-
fer printing (159, 167–170), contact printing (171–174), and screen 
printing (175–179). Specifically, the transfer and contact printing 
techniques are promising for high-performance electronics and also 
compatible with roll-to-roll manufacturing (180). Figure 6D shows 
an example of roll-to-roll printed multigate devices (Fig. 3E) on the 
flexible substrate along with various other building blocks required 
for the computational e-skin mentioned in the “Computational building 
blocks and their hardware implementation” section. Specifically, the 
synaptic device can be made from printed metal-oxide nanowires 
[Fig. 6D  (iii)] (174), and the channel of the multigate devices (as 
nonspiking neuron) can be made of Si nanoribbons (181) shown in 
Fig. 6D (i and ii) (inset). The multigate device has the inputs fed from 
the readout circuit from various sensors, showing a simple tactile 
sensing scheme capable of delivering linear summation on the flexible 
substrate. The low-temperature processing from the printed electronics 
is naturally compatible with the thermally sensitive soft substrates. 

However, it should be noted that the printed electronics is still 
mainly developed within laboratories with limited device metrics 
such as device density, uniformity, and mobility. Taking the fabri-
cation of FETs as an example, the largest number of printed FETs 
on the flexible or stretchable substrates is in the order of a few thousand 
(182). Using standard microfabrication techniques, this number can 
be in the order of tens of thousands (183). At present, printing tech-
nology could possibly be used to produce those parts of the e-skin 
that require lower device density, which corresponds to the part of 
the skin with a lower density of mechanoreceptors or spatial acuity.

CONCLUSION
Next-generation robots are expected to be highly intelligent and 
autonomous, and the sense of touch is critical for them to safely 
interact in dynamic, unstructured, and often uncertain environments. 
For intelligent systems to have human levels of performance, it is 
vital to develop a sensitive tactile sensory system that provides at 
least similar information. To attain this, there is a need to expand 
the e-skin research toward perception and learning. Now, most of 
the e-skin research still focuses on the tactile sensation and their in-
tegration on substrates, which can conform to curvy surfaces of ro-
botic body. We address this need in this review article by focusing 
on the computational aspect of the skin and the associated PNS to 
efficiently process the tactile data. The e-skin that can mimic the bio-
logical tactile neural pathway could offer the desired preliminary 
perception capability, markedly decreasing the cognitive load on their 
central control units. This is analogous to the PNS complementing 
the functionality of the CNS in humans. We discussed the possible 
building blocks of the tactile neural pathways and the integration 
that could imitate their functionality. It is highlighted that the 
mechanical properties of the skin and the neurological behaviors are 
correlated in both tactile sensation and perception. Furthermore, 
we have also discussed how the e-skin development could benefit 
from advances in areas such as printed and flexible electronics. By 
revisiting the discoveries from diverse disciplines and reviewing the 
state-of-the-art in tactile sensing and neuromorphic computing hard-
ware, it is hoped that this article will inspire future advances for the e-skin 
research, rendering the robots with human- like responsiveness.
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