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Abstract The partial reinforcement extinction effect
(PREE) is an experimentally established phenomenon:
behavioural response to a given stimulus is more persis-
tent when previously inconsistently rewarded than when
consistently rewarded. This phenomenon is, however, con-
troversial in animal/human learning theory. Contradictory
findings exist regarding when the PREE occurs. One body
of research has found a within-subjects PREE, while another
has found a within-subjects reversed PREE (RPREE). These
opposing findings constitute what is considered the most
important problem of PREE for theoreticians to explain.
Here,we provide a neurocomputational account of the PREE,
which helps to reconcile these seemingly contradictory find-
ings of within-subjects experimental conditions. The perfor-
mance of our model demonstrates how omission expectancy,
learned according to lowprobability reward, comes to control
response choice following discontinuation of reward presen-
tation (extinction). We find that a PREE will occur when
multiple responses become controlled by omission expecta-
tion in extinction, but not when only one omission-mediated
response is available. Our model exploits the affective
states of reward acquisition and reward omission expectancy
in order to differentially classify stimuli and differentially
mediate response choice. We demonstrate that stimulus–
response (retrospective) and stimulus–expectation–response
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(prospective) routes are required to provide a necessary and
sufficient explanation of the PREE versus RPREE data and
that Omission representation is key for explaining the non-
linear nature of extinction data.
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1 Introduction

The partial reinforcement extinction effect (PREE) is char-
acterized by a tendency for subjects to perseverate in
behavioural responding to a greater degree when the
behaviour was previously probabilistically/infrequently
rewarded as compared to when it was unconditionally/
frequently rewarded. These partial, as compared to con-
tinuous, schedules of reinforcement are critical for gaining
insights into how a history of behaviour can bring to bear
when circumstances change. Furthermore, intermittent rein-
forcement is the norm in natural environments (Pipkin and
Vollmer 2009).

The PREE has been studied since the 1940s and 1950s
(Mowrer and Jones 1945;Grosslight andChild 1947; Jenkins
and Rigby 1950; Amsel 1958). It has been identified using a
two-phase training assessment of behavioural history: (1) an
acquisition phase where subjects are rewarded for engaging
one of a number of response options in relation to a specific
stimulus cue, (2) an extinction phase where subjects are no
longer rewarded (or have diminished rewards) for respond-
ing. The PREE has been explained in terms of the number of
expected reinforcers omitted during extinction (Gallistel and
Gibbon 2000; Nevin 2012) so that multiple response choices
in the extinction phase are required to be able to disconfirm
probabilistic expectations learned in the acquisition phase.
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Thus, partial reinforcement (PRF) schedules require more
responses than continuous reinforcement (CRF) schedules
for such disconfirmation to be possible.

Nevertheless, controversies exist in the literature. The
findings of a PREE given the above-mentioned comparison
of CRF versus PRF schedules have been most consistently
found in between-subjects investigations (Mowrer and Jones
1945; Grosslight and Child 1947; Svartdal 2008), i.e. when
one set of subjects are tested on the CRF and a different set
of subjects are tested on the PRF. The PREE has also been
found using a within-subjects design (Kruse and Overmier
1982; Rescorla 1999; Nevin and Grace 2005a,b). However,
within-subjects scenarios have also found a reversed PREE
(RPREE) phenomenon. In this case, responding on the CRF
schedule has actually been more resistant to extinction than
the PRF schedule. The contradictory PREE andRPREEfind-
ings have been described as “[t]he outstanding difficulty” for
PREE theory (Case 2000, p. 93).

1.1 Theories for PREEs

There are several theories that attempt to address the under-
lying process of partial reinforcement effects on acquisition
and extinction including those that attempt to address the
contradictory PREE versus RPREE data, e.g. Nevin (1988);
Nevin and Grace (2000) and behavioural momentum theory,
and the sequential theory of Capaldi (1966, 1967, 1994). A
subset of these theories provide mathematical models (Nevin
2012; Hochman and Erev 2013; Grossberg 1975, 2003).

One of the leading theories of the PREE is that of Amsel
(1958, 1992), and is known as frustration theory. According
to this theory, animals will work more vigorously (e.g. run
down a maze faster) for a reward when they fail to receive
anticipated reward, or when they anticipate non-reward, than
when they receive, or anticipate, reward. The learned antic-
ipatory frustration effect has been explained as the result of
dispositional memory. This concerns a motivational effect of
unexpected non-reward (e.g. increased arousal) on one trial
being associated with a stimulus predictive of the reward that
follows on the succeeding trial. Notwithstanding its explana-
tory power, it has been noted that within-subjects PREEs are
not accounted for by this theory (Rescorla 1999).

Associative Mediational Theory, or AMT, (Trapold and
Overmier 1972; Overmier and Lawry 1979; Kruse and Over-
mier 1982) is similar to frustration theory in that anticipation
of reward omission can affect responding. Importantly, how-
ever, AMT states that conditioned expectancies can affect
choice of responding, rather than just vigour or response
rate. Different reward expectancies associated with different
discriminative stimuli are then said to be used to medi-
ate choice responses. The hypothesis made by Kruse and
Overmier (1982) based on the AMT, was that reward omis-
sion expectancy, during the acquisition phase, should come

to mediate behavioural responding (mediate discriminative
choice) on a PRF schedule but not on a CRF schedule. How-
ever, during the extinction phase both an expectancy, and a
response, switch should occur (Kruse and Overmier 1982)
with omission expectation now controlling responses in both
CRF and PRF conditions. Kruse and Overmier’s empirical
results were consistent with their AMT hypothesis.

Svartdal (2008)—following up on human subject exper-
iments described in Svartdal (2000)—posited a modulation
hypothesis to explain his findings of (1) between-subjects
conventional PREE, and (2) within-subjects RPREE. The
modulation hypothesis claims that use of different, alternat-
ing, reinforcement schedule components in within-subjects
experiments modulates behaviour in relation to extinction
resistance: the higher reinforcement probability component
modulates resistance of the lower probability component
downwards, i.e. it lessens resistance; the lower reinforcement
probability schedulemodulates resistance of the higher prob-
ability component upwards, i.e. it increases resistance. This
modulation upwards or downwards is in relation to the single
(between-subjects) reinforcement schedules (i.e always low
reward probability, or always high reward probability). The
mechanism underlying this modulation is, however, unclear.

Models concerning the neurobiology of partial reinforce-
ment extinction effects are surprisingly lacking. Notwith-
standing, there is evidence for separate representations of
both reward- and omission-based expectation in the brain
of animals and humans. Watanabe et al. (2007) describe the
finding of neural activity in the orbitofrontal cortex (OFC)
correlating with omission of expected reward during a delay
period (from predictive cue onset to the time at which reward
is intermittently delivered). McDannald et al. (2005) have
suggested that it is the interaction between the OFC and the
basolateral component of the amygdala (BLA) that is respon-
sible for the encoding of reward and omission expectations
associated with the eliciting primary stimuli and responses.
The interplay between OFC and BLA has been said to be
at the heart of affective or emotional appraisal of reward
(acquisition) and (reward) omission preceding the elicitation
of particular emotions/affective states, including excitement,
and frustration, respectively (Rolls 1999, 2013). Medial
prefrontal cortex (Passingham and Wise 2012), and dorso-
lateral prefrontal cortex (Watanabe et al. 2007) have been
suggested to have respective roles in outcome-contingent
learning and choice, and integration of retrospective and
prospective memory that may amount to a sort of compe-
tition mediating response choice.

1.2 Aims of the study

In this article, we propose a neural-computational account
of the partial reinforcement extinction effect (PREE). We
put forward our affective–associative two-process theory
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to model the PREE. ATP theory (Trapold and Overmier
1972; Urcuioli 2005) extends associative mediational the-
ory (Kruse and Overmier 1982; Overmier and Lawry 1979)
as an associative learning account of differential outcome
learning phenomena such as the PREE. In using an asso-
ciative explanation of the learning process, we comply with
the default position in animal learning theory (Pearce 2006),
i.e. avoiding recourse to extraneous cognitive mechanisms in
preference for the conceptually simplest explanation. Using
our model, we simulate the results of two studies whose
experimental set-ups are comparable. This comparison is
of interest because in spite of the similarity of the set-ups
used, contradictory results were found (Kruse and Over-
mier 1982; Svartdal 2008). Our modelling approach affords
a re-visiting of ATP theory offering new perspectives (cf.
Urcuioli 2005, 2008, 2013) regarding the role of affective
states in stimulus classification. The aims of our modelling
approach are: (1) show that the model, implemented as a
neurocomputational circuit, can capture the contradictory
PREE and RPREE findings of the two studies; (2) describe
the mechanism that underlies the modulation effect of Svart-
dal and the non-modulation effect of the Kruse and Overmier
(1982) experimental set-up; (3) describe and demonstrate the
model’s capability of accounting for existing PREE theory
as well as other related learning phenomena.

This article breaks down as follows: In Sect. 2,we describe
our model, explaining how omission anticipation representa-
tions can be learned and serve to mediate response selection.
In this methodology section we also describe the nature of
our simulations of the two experiments under investigation.
In Sect. 3, we simulate the Kruse and Overmier (1982) and
the Svartdal (2008) findings using our computational model.
In Sect. 4 we show how the empirical data can be explained
in terms of ‘stimulus classification by outcomes’ (Urcuioli
2013); we validate our model using a ‘lesioning’ approach
and carry out a parameter sensitivity analysis to show the
range of learning rateswithinwhich ourmodel is operational.
Finally, in Sect. 5, we provide a general discussion regarding
the plausibility of this model and predictions it makes.

2 Methodology: simulation set-ups and modelling
approach

2.1 Simulation set-ups: Kruse and Overmier (1982)
versus Svartdal (2008)

The Kruse and Overmier (1982), experiment 1, and Svartdal
(2008) experimentwere chosen for our neural-computational
analysis as suitable examples of the contradicting within-
subjects PREE versus RPREE bodies of research. Kruse
and Overmier obtained a PREE while Svartdal obtained
a RPREE. The experiments used rat and human subjects,

Fig. 1 Common experimental set-ups for evaluating partial reinforce-
ment extinction effects. Left Delay conditioning with free operant
responding—subjects, typically non-human, are evaluated according
to response rate in the presence of discriminative stimuli. The stim-
uli inform of the variable interval schedules of reinforcement (adapted
from Nevin and Grace 2000). Right Trace conditioning with differen-
tial responding—subjects are evaluated according to choice correctness
in the presence of discriminative stimuli. The stimuli are briefly pre-
sented followed by an inter-stimulus interval (ISI). Response options
are presented at the end of this interval and following a response (mul-
tiple responses may be required) a reinforcer is received. The trial is
terminated (discrete trial) and followed by an inter-trial interval (ITI)
Key: S1/S2 stimulus 1/2, Resp response, R1/R2 response options 1/2,
Rft reinforcement

respectively, providing one potentially significant source
of the difference in the results. However, the PREE and
RPREE have been found in rats and humans (as well as other
animals) and evidence for the existence of cross-species asso-
ciative mediational processes obtained through differential
outcomes training procedures is well-documented (Urcuioli
2005).

We focus on these two particular experiments owing to
their methodological similarity. Firstly, they both involve
the potential to associate discriminative stimuli with one
of multiple instrumental responses. Secondly, they both uti-
lize discrete learning trials for making evaluations of choice
correctness history (based on reward-relevant feedback).
Thirdly, they use a trace conditioning set-up (Fig. 1, right):
discriminative stimuli are briefly presented thenwithdrawn, a
pause follows, then response options are presented, and then
a rewarding outcome is presented. The reader is referred to
“Appendix6.1” for a summary of the two experimental set-
ups (as compared to the respective simulated set-ups). Many
investigations of the PREE use instead delay conditioning
set-ups (Nevin and Grace 2000) whereby stimuli, responses
and reinforcers may temporally overlap (see Fig. 1 for com-
parison of set-ups). In sum, similarity in experimental set-ups
permits relative ease of analysis in our simulations set-up.

Kruse and Overmier’s set-up required individual rats to
perform in a Coulborn operant chamber. The rats, over a
number of discrete learning trials, were firstly presented with
one of two sensory stimuli. Following a short (3 s) delay,
levers were presented that flanked the centrally located food
collection box. Once a criterion number of successive cor-
rect lever presses (ten) were produced by the rat (i.e. above
baseline pressing), a reward (food pellets) was presented in
the food collection box. The correct response (lever press)
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Fig. 2 Kruse and Overmier (1982) schema of procedure. ITI inter-trial
interval, S1/S2 stimulus 1/stimulus 2 (sonalert, clicker stimuli order of
presentation per trial varied per subject); ♦ represents pause period;
R1/R2 response 1/response 2 (lever presses to the left or right of the
food panel); λ indicates the reward (food pellets) with probabilities of
receiving food given in brackets; φ indicates no reward. One stimulus is
presented at random per trial, one response type (R1 or R2) is permis-
sible per trial. The dashed lines here indicate the ‘incorrect’ response
option

Fig. 3 Svartdal (2008) schema of procedure. ITI inter-trial interval;
S1/S2 stimulus 1/stimulus 2 (red, green lights varied per subject); ♦
represents pause period; R1/R2 response 1 (produce opposite button
press sequence to computer), response 2 (produce random sequence);
λ indicates the reward (correct choice feedback) with probability of
receiving feedback given in brackets; φ indicates no reward. One stim-
ulus is presented at random per trial, one response is permissible per
trial. Dashed lines are for ‘incorrect’ choice

choice was rewarded according to a probabilistic schedule
(1.0 versus 0.5 probabilities) depending on the experimen-
tal condition (between subjects) or trial (within subjects),
i.e. continuous, or partial, reinforcement conditions, respec-
tively. In the case that the incorrect response was made,
no reward was forthcoming. This experimental sequence is
illustrated in Fig. 2 as the within-subjects CRF versus PRF
multiple-schedule (experimental) condition. In this case, the
two reward discriminating stimuli (clicker, sonalert tone) dif-
ferentially signalled the reinforcement schedules, continuous
(CRF) or partial (PRF). For one discriminative stimulus (S1),
one response was required (R1); for the other discriminative
stimulus (S2), the other response was required (R2). In the
between-subjects conditions, the same schedule (alwaysCRF
or always PRF) was used in relation to the rewarding S–R
contingencies.

The experiment of Svartdal (2008), by contrast, involved
human subjects, who were required to press buttons in
response to a two-button sequence presented (through an
automated computer program) as feedback on a computer

monitor on a table at which they were seated. Following
presentation of one of two colours on the screen (the discrim-
inative stimuli), the sequence was presented and, following a
short delay (0.7 s), the subjects were then required to respond
to the computerized sequence using the left and right buttons
in front of them.Correct choice entailed learning that the sub-
ject’s button presses were required to be the opposite of that
presented on the screen in order to get the feedback of being
‘correct’ (the effective reward). In this case, subjects were
presented one of two discriminative stimuli (S1 or S2), but
the same response (R1; produce opposite response sequence
to the computer program) was necessary to make the correct
choice for both stimuli. The alternative response optionswere
non-rewarding. In effect, the response options were: R1—
choose opposite response sequence to the computer program,
R2—choose a response based on an incorrect, e.g. random,
strategy. For the sake of our simulations, we assume that
the simplest, i.e. random, strategy is most likely applied by
subjects prior to inferring the task rules. The Svartdal 2008
experiment is illustrated in Fig. 3.

In effect, S–R links or associations entail the learning of
rules. In Kruse and Overmier (1982) this manifests in learn-
ing that S1–R1 and S2–R2 are rewarding, whereas other
combinations are not, while in Svartdal (2008) S1–R1 and
S2–R1 are rewarding while other combinations are not. In
this case, R must be considered as a response choice, which
in the case of Kruse and Overmier (1982) concerns pressing
one or other lever, whereas in Svartdal (2008) it concerns
applying the button presses that are opposite to those pre-
sented on the computer monitor.

2.2 A neural-computational model of
affective–associative two-process theory

Associative two-process (ATP) theory provides a strong can-
didate to explain the workings of the PREE and is considered
the leading theoretical explanation of the differential out-
comes effect (DOE) (Trapold 1970; Urcuioli 2005, 2013).
ATP hypothesizes the formation, during learning, of associ-
ations between stimulus (S) and expectations of outcome (E)
and in turn of E–R (responses) associations. These associa-
tions, thereby, provide an alternative, ‘prospective’, route to
response selection to the traditional instrumental S–R route.
This relationship is captured in Fig. 4.

In the Kruse and Overmier (1982) experimental set-up,
the difference between the stimulus predicting a reward
with 0.5 probability as compared to the stimulus predicting
reward with probability of 1.0 “allowed the mediating inter-
nal expectancy state, presumably anticipatory frustration in
this case, to gain at least partial control over one response,
while the expectancy of reward exercised full control over
the other” (Kruse and Overmier 1982).
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(A) (B)

Fig. 4 Associative two-process theory and the differential outcomes
effect. A Common outcome condition. Reinforced S–R associations
cannot be distinguished by outcome. B Differential outcome condition.
Reinforced S–R associations can be distinguised, and cued, by differ-
ential outcome expectancies (E1, E2)

2.2.1 Neurophysiological correlates of
affective–associative computation

We hypothesize that affective–associative circuitry in the
brain takes on an actor–critic-like structure where the critic
computes dimensions of value of discriminative stimuli,
and the actor utilizes values as expectancies for mediat-
ing response choice (see Fig. 5). Such actor–critic networks
have been hypothesized to exist as implementing interactions
between basal ganglia (actor-like) and cortical structures
(critic-like), e.g. Houk and Adams (1995). Many other cor-
tical actor–critic components have been proposed (Silvetti
et al. 2014) including medial PFC (Silvetti et al. 2014)
and dorsal PFC (Holroyd and Yeung 2012) for actor-like
structures as well as orbitofrontal cortex (OFC), (Holroyd
and Yeung 2012) and anterior cingulate cortex (ACC) (Sil-
vetti et al. 2014), for critic-like structures. A restriction
on a standard actor–critic network for modelling affective–
associative circuitry is that value (expectancy) computations
cannot directly mediate responses, in the manner that the
ATP requires. Instead, error signals that result from unpre-
dicted reinforcer presentations to the network, are used to
learn associations between the discriminative stimuli and the
responses that led to these errors (updating a ‘policy’). This is
consistent with classical two-process theory, which focuses
on a S–R processing route.

The ‘critic’, in our modelling approach, implements a
method for computing outcome expectancies. Our model
builds on that of Balkenius and Morén (2001) which com-
putes two dimensions of value within its critic-like com-
ponent. These dimensions correspond to reward omission
probability and reward magnitude. In Balkenius and Morén
(2001)—andMorén (2002)—theomissionnetwork andmag-
nitude network were considered to implement computational
processes that can be found in theOFCand amygdala, respec-
tively. The OFC is considered to enable fast, flexible and
context-based learning (particularly important in studies of
reversal learning, e.g. Delameter 2007) whereas the amyg-

Fig. 5 Affective–associative two-processmodel. Themodel is a hybrid
of an actor–critic architecture embedding within an associative media-
tional theoretic (AMT) component (‘outcome expectancy’). Traditional
actor–critic architectures are linked through the temporal difference
(TD) prediction error that updates both the stimulus valuation (S value)
and the action valuations (policy). In the associative–affective two-
process model, the AMT component further links critic to actor through
learned connections. This provides an alternative route, to the stimulus–
actor (response) route for action selection. The affective component
concerns omission and reward expectations, following specific stimu-
lus presentations, that become associated with responses

dala is considered less flexible, i.e. resistant to unlearning,
but critical to learning valuations of stimuli (Schoenbaum
et al. 2007). Furthermore, the interplay between the baso-
lateral division of the amygdala (BLA) and OFC may be
crucial in differential reward evaluation (Ramirez and Sav-
age 2007). The actor for our model is required to utilize
the differential outcome expectancies to mediate choice
responses. Passingham and Wise (2012) have suggested that
medial prefrontal cortex (PFC) has a critical role in encoding
outcome-contingent choice, whereas Watanabe et al. (2007)
have provided evidence for the lateral PFC integrating acti-
vation inputs from ‘retrospective’ (working memory) areas
such as dorsal PFC and ‘prospective’ (outcome expectant)
areas such as OFC and medial PFC.

2.2.2 Computational derivation of the model

At the root of the affective–associative component of our
model is the temporal difference learning algorithm of Sut-
ton and Barto (1990, 1998). This algorithm conflates into
a single dimension of value the information about multiple
reinforcement properties of the stimulus. In animal learning,
the use of a scalar value function has been noted as a key lim-
itation of the Rescorla–Wagner model (Miller et al. 1995).
As an example of its limitation, a reinforcer magnitude of 1.0
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Fig. 6 Balkenius and Morén (2001) model. The model adapts the
Rescorla and Wagner (1972) scalar reinforcement function to allow
for two dimensions of value—an effective reinforcer magnitude func-
tion, and an effective reward omission function. See also Morén (2002)
for details

Fig. 7 Neural-computational temporal difference learning algorithm
(adapted from Trappenberg 2010). For a neural computational imple-
mentation to be faithful to the TD learning algorithm, the assumption
that there are fast and slow connectivity routes to the prediction error
node is required. The computations of the individual nodes reflect the
continuous time Doya (2000) implementation of TD learning—see
Eq. (5) in main text

and presentation probability 0.5 is valued equivalently to one
ofmagnitude 0.5 and presentation probability 1.0.Organisms
may, nevertheless, benefit frommulti-dimensional reinforcer
information. For example, high magnitude, low probability
reinforcers might motivate learning the causal antecedents
of the low presentation probability so as to increase future
reward yield (Mackintosh 1971) and actively reduce predic-
tion error (Pezzulo et al. 2015).

Balkenius and Morén (2001)—see also Morén (2002),
Balkenius et al. (2009)—presented a model of learning
(Fig. 6) that addresses the above-mentioned limitation by
deriving a computation of reinforcement omission from a
reinforcement magnitude computation. Although not explic-
itly notedby the authors, this effectively provides anomission
probability when taken as a fraction of the reinforcement

magnitude. For every trial a reward is not presented to the
network, the error node of the omission critic is disinhibited.
Omission error then receives input from theMagnitude value
node with which it updates its own omission (probability)
representation. With repeated trials, the omission probabil-
ity is more accurately approximated (learned). It updates
asymptotically as increasingly accurate omission probabil-
ity (value) leads to increasingly inhibited error signals. The
‘probability’ computation is only possible because the mag-
nitude component only learns the value of a reinforcer over
trials but does not unlearn in its absence. It thus provides an
accurate measure of magnitude given that learned magnitude
does not vary over trials.

TheBalkenius andMorén architecture is, however, limited
by its incapacity to represent time. This is a critical feature
for models that attempt to capture neurobiologically real-
istic activation patterns and the discounted valuation effect
of duration of the inter-stimulus interval1 on action selec-
tion. The temporal difference learning algorithm of Sutton
and Barto (1990, 1998) addresses this limitation. It has been
viewed as being at the intersection between animal learn-
ing and machine learning investigations (Wörgötter and Porr
2005).

Figure7 shows a neural network implementation of the
TD learning rule (adapted from Trappenberg 2010). While
neural network TDmodels have previously existed (Suri and
Schultz 1998; Balkenius and Morén 1999; Suri 2002), the
depiction of Trappenberg (2010) shows the requirement for
fast and slow connections between a value computation node
and two other computational nodes. The link between a tar-
get2 node (in green) and the value node (in black) constitutes
the difference in computation of a TD learning network and a
Rescorla–Wagner learning network. In Fig. 6 (the Balkenius
and Morén 2001 model) the absence/presence of this link,
similarly, constitutes a key difference in critic computation
between our model (Fig. 8) and the Balkenius and Morén
(2001) model (Fig. 6).

From the Trappenberg (Fig. 7) and Balkenius and Morén
(Fig. 6) neural network models, we have derived our
affective–associative model which is shown in Fig. 8—see
Lowe et al. (2014) for an earlier version.Corresponding to the
numbered elements in the figure, it consists of (1) S-E learn-
ing: A value function (critic) computing reward omission
probability andmagnitude,which is a TD learning adaptation
of the Balkenius and Morén (2001) model, (2) E-R learning:
An expectancy behaviour mediation network, which extends
the Balkenius and Morén (2001) model’s expectation-based

1 This is the delay between stimulus presentation and reinforcement
presentation during which expectations can form.
2 We use the term target in reference to the dynamic programming term,
i.e. the value to be approximated. When the target equals the value, no
prediction error is generated.
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Fig. 8 Affective–associative two-process network. Our associative–
affective component builds on Trappenberg’s and Balkenius and
Morén’s (2001) neural network models. It further adds an ‘actor’
whereby the outputs of the two ‘critic’ value dimensions become asso-
ciated with response options. Mutual inhibition promotes dimensional
mediation of responses. The computations of individuals nodes are
derivable according to Fig. 7 and Eqs. (1–12). Small yellow circles indi-
cate learnable connections (gated by prediction error value). S1/S2
connections to R1/R2 provide the ‘retrospective’ (S–R; label 3) route of
ATP. The Om and Rew connections to R1/R2 provide E–R connections
(2). Finally theS(t) inputs here provide temporal stimulus valuations and
allow for S–E connections (1). Key: OFC orbitofrontal cortex, AMYG
amygdala, PFC prefrontal cortex (colour figure online)

behavioural control by allowing for multi-response asso-
ciative mediation, (3) S-R learning: A stimulus–response
associative route.

In (1), omission critic computation can be explained as
follows:

– Learning omission expectation the omission critic error
node (Fig. 8) updates omission valuewhen reinforcement
via the magnitude critic ‘Target’ node is absent at the
previously learned time.

– Asymptotic learning Omission expectation inhibits the
omission error as an asymptotic and temporally dis-
counted function of existing expectation.

– Unlearning Above-zero omission expectation decreases
as a result of unexpected reinforcement input.

In the case of (2), like Balkenius and Morén (2001), we
have the output of the omission critic inhibit the output of
the magnitude critic (at the ‘Rew’ node). This preserves the
ability of the network to account for the empirical data that
the Balkenius and Morén model simulated, e.g. asymptotic
profiles of learning and extinction, and the ‘savings effect’
(Pearce 2006)3—see Lowe et al. (2014) for data. The savings
effect is achieved by Balkenius and Morén (2001) by hav-

3 Learning a reinforcing behaviour is faster in a reacquisition phase,
following extinction, than in an initial acquisition phase.

ing differential learning rates for omission, and magnitude,
computations, which is made possible by separating the stan-
dard value function into these two dimensions. The output
node of the Balkenius and Morén (2001) model constitutes
an ‘optimistic’ (reward acquisition) probability value. The
magnitude value is equivalent to the maximum probability
in this case as omission probability is taken as a fraction of it.
In our model, the node ‘Rew’ implements the same function.

Additionally, we model omission representation (‘Om’).
This ‘pessimistic’ (omission) probability representation
receives inhibition from the ‘Rew’ node. Both ‘Om’ and
‘Rew’ nodes, however, receive nonlinear transformations of
inputs—see Eqs. (9–11). Thus, they no longer accurately rep-
resent probabilities but rather more general expectations of
reward acquisition (‘Rew’) and frustrative non-reward, or
omission (‘Om’). A glossary of key terms linking aspects of
our model in Fig. 8 to the equations in the following subsec-
tions is found in “Appendix6.2”.

2.2.3 Critic equations

Equations (1–6) provide the implementation of the critic. In
simulation, for each trial, one cue input to the critic is pre-
sented at time t = 25 and offset at t = 50, the two target
inputs (at S1 and S2 nodes, respectively) are presented at
t = 57 and offset at t = 72, during which time a response
(above threshold) is chosen, and reinforcer input (or not)
is presented at t = 72, and offset at t = 73. The inter-
stimulus interval (ISI) between stimulus and target(s) is, thus,
7 timesteps and ISI between stimulus and reinforcer is 22
timesteps.

Ve(t) = f ′
(

N∑
n=1

S∑
s=1

(
θens (t)φns(t)

))
, (1)

f ′(x) =
⎧⎨
⎩
0, x < 0
x, x ≥ 0 and x < 1
1, x ≥ 1

(2)

θens (t) = θens (t − �t) + βeδe(t)ēn(t) (3)

ēn(t) =
{
1, t < t0
λγ ēn(t − �t), t ≥ t0

(4)

where Ve(t) is the learned value function (expectation); θe(t)
is the value function update rule that, through prediction
error updating, valuates the temporal stimuli; e ε {m, o} is
an index denoting Magnitude or Omission critic value func-
tions, respectively; n is the number of stimuli discrete trace
representations in [1, N ] where N = 100; t is time in [1, T ]
where T = 100; t0 = the time onset of reward; s is the
number of different stimuli in [1, S] where S = 2; βe is a
learning rate in [0,1); �t is the time window set here to 1; δe

is the prediction error term (non-negative for e = m); φ is the
input stimulus vector of size = [100, S] (for each stimulus in
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S there is a vector of 100 timesteps). This temporal stimulus
representation formulation is known as the complete serial
compound (CSC), as used by Suri and Schultz (1998). Each
vector of the compound stimulus has a single unit set to 1 and
all others set to 0. A given vector represents the trace delay
of a phasically (short duration) presented stimulus across the
inter-stimulus interval (time between stimulus and reinforce-
ment presentations). This means a unique vector represents a
time step following offset of the stimulus presentation whose
unity value provides a pre-synaptic component of the two-
factor learning rule (the other ‘factor’ being the prediction
error). Equation (3) provides the value function update rule
that associates the stimuliwith theprediction error termvia an
eligibility trace (calculated in Eq.4), following Doya (2000).
Equation (4) provides the backward view TD(λ) implemen-
tation of the eligibility trace used to speed up learning—each
temporal stimulus representation unit in the CSC has an eli-
gibility trace following onset (set to 1) that decays at rate
λγ ēn(t − �t), where λ = 1 − 1−�t/κ

1−�t/τ (κ = 9.6, τ = 10)

and γ = 1 − �t
τ
, following Doya (2000).

δm(t) = λ(t − �t) + τ

�t

((
1 − �t

τ

)
Vm(t) − Vm(t − �t)

)
(5)

δo(t) = −δm(t) + τ

�t

((
1 − �t

τ

)
Vo(t) − Vo(t − �t)

)
(6)

where δm and δo represent prediction errors used to update
the magnitude and omission critics, respectively, and to
approximate them better as Bellman optimality functions;
λ(t) is the reward signal in [0, 1]; τ is a time constant.4 We
hereby use a set of parameters for the critic that is based on
theoretical considerations of reinforcement learning.

2.2.4 Actor equations

The nodes (S1, S2, R1, R2: see Fig. 8) in the actor network
are governed by the neural-dynamic Eqs. (7) and (8). Equa-
tions (9–11) provide Rew and Om node parameterizations
(again see Fig. 8).

ur (t) = ur (t − �t) + �t

τr
(−ur (t − �t)

+ hr + CrΛ(u(t − �t, βr )) + Ir (t))
(7)

where ur (t) provides the backward Euler differentiation
description of Amari (1977) nodes (only 1 node for each
r ) and represents the activation of the r th node r ∈ [1, R]
and R = 4(1 = S1, 2 = S2, 3 = R1, 4 = R2); CrΛ(u(t −
�t, βr )) provides self-excitation scaled by Cr ; Ir (t) is the

4 We use the scaling term τ
�t suggested in Doya (1996) rather than

1
�t

in Doya (2000) as the former allows for values of τ and �t greater than
1.

input term. Free parameters are listed in “Appendix6.3”.

Λ(u, β, th) = 1

1 + exp[−β(u − th)] (8)

Λ(u, β, th) provides a nonlinear (sigmoidal) transformation
of activation for all actor nodes where β provides a gain
parameter and th a threshold value.

Rew(t) = Λ
((

Vm(t − 1), xβvm (t), xthvm (t)
)

−Λ
(
Vo(t − 1), xβvo(t), xthvo(t)

))
(9)

Om(t) = Λ
(
Λ

(
Vo(t − 1), xβvo(t), xthvo(t)

)
− Rew(t), βom, thom) (10)

xs(t) =

⎧⎪⎨
⎪⎩

ns, xs < ns

as, xs ≥ as

xs(t − �t) + ψs · δo · 1
C j ·Ir (t)

, otherwise

(11)

Equations (9–11) concern Rew and Om node activa-
tions and meta-parameterization that permits a sort of
‘classification by stimulus’ Urcuioli (2013) where βom,
thom provide sigmoid inputs. xs parameterizes the sigmoid
update functions for (Om, Rew nodes) according to slope
xβs (t), s = {1(Om),2(Rew)} and threshold xths (t), s =
{3(Om),4(Rew)}. These are meta-parameters (Doya 2002)
modulated by the prediction error feedback of the omission
critic.

The parameter ψs gives a binary sign value. ψs is positive
for β and negative for th (Vo inputs) so that the omission
critic prediction error increases the gain on the slope and
brings towards zero the threshold of the omission node sig-
moid function. ψr is negative for β and positive for th
(Vm inputs) so that the omission critic reward prediction
error (inverted omission critic prediction error) increases the
gain on the slope and brings towards zero the threshold of
the reward node classifier. Finally, C j concerns the meta-
learning rate. The stronger the positive omission prediction
error, the larger the possibility for effective omission clas-
sification; the stronger the positive reward prediction error,
the greater the tendency for effective reward classification.
Example sigmoid functions for Rew and Om are shown in
“Appendix6.4” (Fig. 23). The use of dopamine (prediction
error) to increase precision and confidence in signalling has
been hypothesized by predictive processing accounts (Fris-
ton et al. 2012; Clark 2015; Pezzulo et al. 2015).

Ωkl(t) = Ωkl(t − �t)

+ βeδe(t)Λ (uk(t), βr ) Λ (ul(t), βr )
(12)

Ωkl(t) provides connectivity strengths (synaptic efficiencies)
from pre-synaptic node k ∈ {Om, Rew} to post-synaptic
node l ∈ {R1, R2}.
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Fig. 9 Comparison of the present theoretical predictions with Kruse
and Overmier acquisition results. Left original experimental results due
to Kruse and Overmier (1982), reprinted with permission. Right sim-
ulated results. The six data points (right) concern blocks of 40 trials
each

See Sect. 4 for discussion of learning rates βe where e ε

[S-R,S-Vm ,S-Vo,E-R].

3 Results

3.1 Simulation of Kruse and Overmier (1982)
within-subjects experiment

Typical to partial reinforcement extinction investigations,
there were two phases in the Kruse and Overmier (1982)
experiments: acquisition phase, for learning reinforcement
value; extinction phase, where reinforcers are no longer
presented. There were three conditions: (1) Experimental
(EXPL)—a within-subjects design where a given reinforcer
schedule (continuous/CRF or partial/PRF) was randomly
selected per trial5 (see Fig. 2), (2) CRF between-subjects
control, i.e. both components were continuous, (3) PRF
between-subjects control, i.e. both schedules were partial.
Where in (1) stimulus 1 is reinforced by R1 (CRF) and
stimulus 2 reinforced by R2 (PRF), in (2) and (3) the two
stimulus–response contingencies now lead to purely CRF, or
PRF-based outcomes, respectively.

3.1.1 Acquisition phase

The results of the acquisition phase are displayed in Fig. 9.
In Fig. 9 (left) the empirical data is shown (from Kruse

and Overmier 1982) of mean values of correct behavioural
choice, i.e. reinforced according to one or other schedule
(PRF or CRF) for each condition. Here it can be seen that
in the EXPL condition the CRF trials lead to faster learn-
ing (acquisition) than do the PRF trials though the latter
converges onto the former’s performance (near 90% correct
response choice) by the sixth day of trials. The between-

5 No schedule component was used for more than three consecutive
trials.

subjects CRF (non-feedback) and PRF (non-feedback) con-
ditions6 fair observably better andworse, with respect to their
within-subjects counterparts (in the EXPL condition). The
result of increased acquisition speed under CRF conditions
is expected under the associative mediation theory (AMT)
of Kruse and Overmier (1982), but also most theories con-
cerned with partial reinforcement effects, since the higher
rate of reinforcement leads to more rapidly acquired associa-
tions between predictive (conditioned) stimuli and response
options. This within-subject difference in acquisition speed
was found by the authors to be statistically significant.

Our simulation results are displayed in Fig. 9 (right). They
show the mean values7 of correct choice response. In this
case, the acquisition rates of each of the three conditions
(EXPL, CRF, PRF) are shown where similar findings were
obtained as compared to the empirical data. In this case, we
did not have additional ‘feedback’ conditions and, therefore,
here show instead four sets of plots. The CNTRL CRF plot
is closely matched to the EXPL CRF plot which observably
show the fastest rates of learning. The EXPL PRF plot is
slower to learn than the EXPL CRF plot but converges to
close to 100% correct performance (μ = 96.77) by the final
block of trials (each block represented is a mean over 50
simulation runs).

3.1.2 Extinction phase

The results of the extinction phase are displayed in Fig. 10.
In Fig. 10 (left) the empirical data is shown of mean values
of ‘correct’ behavioural choices (i.e. corresponding to same-
choice per schedule in the acquisition phase). We show here
only the data from the EXPL (CRF–PRF components) con-
dition. No statistically significant differences in the control
(PRF-only, CRF-only) conditions were found nor between
conditions. Thus, the experimenters found a within-subjects
PREE for performance choice.

In our simulations, the PRF trials can be observed to pro-
duce choices that are more resistant to extinction over trial
blocks up to the point of extinction (CRF standard error bars
overlapwith random, i.e. 50% correct performance). Polyno-
mial regression lines are plotted for both the PRF extinction
(linear), and CRF extinction trajectories (quadratic), which
appear to be consistent with appropriate representations also
of the original empirical data. Consistent with the notion
that the network requires more omissions of reinforcers in
extinction in the probabilitistic (PRF) rather than uncondi-

6 Kruse and Overmier (1982), in the EXPL (or within-subjects) con-
dition, show only results for an additional feedback condition which
provides an additional cue for ‘correct’ responding, particularly rele-
vant for the trials on which no reinforcer is presented.
7 Means were calculated over independent simulation runs (with dif-
ferent random seeds) over blocks of trials. See “Appendix” for details
of simulations set-up.
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Fig. 10 Comparison of the present theoretical predictions with Kruse
and Overmier acquisition results. Left original experimental results
due to Kruse and Overmier (1982), reprinted with permission. The
x-axis label 1-4 consists of 4 blocks of 32 trials, blocks adminis-
tered per day over 4 days. Right simulated results. The x-axis label
1–4 consists of blocks of 10 trials each. Key: EXPL experimental
condition, which in the Kruse and Overmier investigation (and our
simulated replication), represents the within-subjects condition; PRF
partial reinforcement component/schedule; CRF continuous reinforce-
ment component/schedule

tionally reinforcing (CRF) condition (Gallistel and Gibbon
2000; Nevin 2012), in CRF extinction of correct responses is
rapid, whereas in PRF it is comparatively slow. Remaining
unanswered, on this popular account of the PREE, is what
determines the rate of extinction for the different schedules?

3.2 Simulation of Svartdal (2008) within-subjects
experiment

In Svartdal’s (2008) experiment, there are three conditions
(within-subjects and two between-subjects conditions). The
procedure is similar to that of Kruse and Overmier (1982) as
described in the previous section (see Fig. 3). The key differ-
ence in this study is replacement of an unconditional (CRF)
reinforcement schedule by a ‘high-density’ probability of
reinforcement (0.8) condition while the low-density (PRF-
equivalent) is set at 0.4 reinforcement probability (compared
to 0.5 in Kruse and Overmier 1982).

The most important methodological difference between
Svartdal’s set-up and that of Kruse and Overmier is that
for each of the two predictive stimuli, the same response
rule applies: produce the mirror-opposite of the two-button
sequence presented on the monitor. Contrarily, in the Kruse
and Overmier (1982) experiment each schedule has an inde-
pendent task rule: if S1, choose R1; if S2, choose R2.

3.2.1 Acquisition phase

The results of the acquisition phase of the Svartdal (2008)
experiments, over the three conditions, are shown in Fig. 11.
It is observable that acquisition learning is faster in the

Fig. 11 Acquisition learning correctness performance for original
Svartdal (2008) data. Left Component A results for each of the three
subject conditions. Right Component B results for each of the three
conditions. Component A concerns stimulus 1 presentations and Com-
ponent B stimulus 2 presentations. In within-subjects conditions, this
results in density 80 (0.8 probability) and 40 (0.4 probability), for the
respective components. The difference between Component A and B
conditions entail consistent presentations of one of two predictive stim-
uli arbitrarily selected by the computer program at the beginning of the
experiment for a given subject (reprinted with permission from Svartdal
2008). Plots are based on 18 blocks of 5 trials for each component
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Fig. 12 Acquisition learning simulated correctness performance. Cor-
rect responding means are shown over 18 blocks of 10 trials (≈5 trials
per component). Here, component A always involves presentation of
stimulus 1, while component B always involves presentation of stim-
ulus 2 at the beginning of each trial. The stimuli are binary numbers
so not considered to bias the results. The vertical dashed line shows
at block 9 values that might be compared to those of Svartdal’s by the
final trial block and reflect an approximate 1.5× faster learning rate of
the high-density component

‘high-density’ schedule as compared to the ‘low-density’
schedule.8

The simulations results are given in Fig. 12. Qualitatively,
we have similar results, i.e. high-density schedules learn
to cue correct responses faster than low-density schedules.

8 Similar to the finding in the Kruse and Overmier (1982) acquisi-
tion phase, this result of high reward probability → fast learning; low
reward probability → slow learning has been consistently borne out in
the literature and is most simply explicable in terms of the increased
frequency of reinforcement.
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Fig. 13 Extinction learning correctness performance for original
Svartdal (2008) data. Left Component A (stimulus 1) results for each
of the three subject conditions. Middle Results for subjects given a dif-
ferential reinforcement probability stimulus schedule, i.e. 0.8 and 0.4
reinforcement probability for Component A (stimulus 1) and B (stim-
ulus 2), respectively. Right Component B (stimulus 2) results for each
of the three conditions. The difference between Component A and B
conditions in the same-schedule conditions concerns stimulus presen-
tation order. E1–E4 represent Extinction blocks 1–4 each consisting of
5 trials per component (reprinted with permission)

Moreover, the increasing rate of correct performance (where
over 5 evaluation trials random performance is set at 1.25, i.e.
0.25 probability, as for Svartdal 2008) in several components
has not asymptotically converged (similar to the Svartdal
acquisition data).

3.2.2 Extinction phase

The results of the extinction phase for the three conditions
of the Svartdal data are presented in Fig. 13. Of critical
conceptual importance is the middle panel which shows
the correctness performance in the multiple-schedule (high-
density versus low-density), i.e. within-subjects, condition.
The superior overall performance on the high-density sched-
ule compared to the low density schedule is described as
a RPREE. Svartdal reports that the findings of an ANOVA
showed a group x trial block interaction effect. A further
test showed a significant difference in performance of the
high-density and the low-density in the multiple-schedule
condition. This confirmed Svartdal’s expectation of a within-
subjects RPREE for performance choice.

In our simulations, visualized in Fig. 14, it can be observed
that, similar to Svartdal, the high-density schedule in the
80/40% rewarded (0.8/0.4 probability rewarded) condition
produced higher choice correctness than did the low-density
schedule. This was observed over fewer trials than for
Svartdal (5 per block as compared to 10), which may
owe to the learning rates chosen for our model. Neverthe-
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Fig. 14 Extinction learning simulated correctness Performance. Here
components A and B concern presentations for Stimuli A and B that are
binary numbers. E1–E4 represent extinction blocks 1–4 each consisting
of 5 trials

less, the qualitative finding of an observable within-subjects
RPREE was found. We considered only the second and
third blocks for analysis, i.e. after intertial transients and
before absolute extinction (affecting at least the 80/80 and
80/40 schedules by E4). We found the high-density com-
ponent (M=0.641, SEM=0.023, 95% CI[0.596, 0.687])
scored higher than the low-density component (M=0.581,
SEM=0.026, 95%CI[0.53, 0.632]). Using amixedANOVA
we found significant effects for the within-subjects factor
(type of trial/schedule; F(1, 147) = 7.899, p < 0.01,
η2p = 0.051), the between-subjects factor (experimental

condition; F(2, 147) = 6.246, p < 0.01, η2p = 0.078),
and also an interaction effect: F(2, 147) = 5.495, p <

0.01, η2p = 0.070. We also conducted paired t tests to evalu-
ate the within-subjects performance. In the multiple (0.8 vs.
0.4) schedule correct responding during extinctionwas found
to be higher: t (98) = 2.5823, p < 0.05, 95% CI[0.0365,
0.2785]. This confirmed a within-subjects RPREE in simu-
lation of Svartdal’s experiment. As expected, no significant
differences were found when comparing 0.8 versus 0.8
(t (98) = −0.2658) and 0.4 versus 0.4 (t (98) = 0.5212).
So, consistent with the Svartdal data, our model predicts a
within-subjects RPREE contrary to the Kruse and Overmier
(empirical and simulated) results in the previous subsection.
Why is this the case? We answer this question in the next
section.

4 Affective-ATP computation

In this section we investigate more closely the validity of
the neurocomputational affective–associative description of
the two sets of empirical data. We further wish to explain:
(1) why partial reinforcement (or low-density) acquisition
schedules extinguish faster than continuous reinforcement
(or high-density) schedules, (2) why a PREE is found in
the Kruse and Overmier within-subjects experiment but a
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RPREE found in the Svartdal experiment. We address these
questions according to the following:

4.1. We discuss stimulus classification by expected out-
comes (Urcuioli 2005, 2013) and evidence this phe-
nomenon with a mechanistic analysis of our computa-
tional model.

4.2. We describe the results of lesions of the various con-
nections of the tested model and, thereby, compare
performance with a standard actor–critic model, and
also an associative mediational theory (AMT) only
model.

4.3. We carry out a parameter sensitivity analysis, which
evaluates the range of learning rates permissible for our
model to account for the two sets of data, as well as to
be theoretically plausible in relation to other aspects of
biological learning. We describe learning phenomena,
related to the PREE phenomenon, that such a param-
eter range can account for.

We show in our comparative tests that the associative links
that concern the full (affective)ATPmodel are both necessary
and sufficient to qualitatively capture all the Kruse and Over-
mier, and the Svartdal, data. Simplifications of the model are
thus insufficient to capture all the data.

4.1 Stimulus classification by expected outcomes

Figure15 schematically explainswhy theKruse andOver-
mier (1982) experiment yields a PREE and the Svartdal
(2008) experiment an RPREE for the within-subjects sched-
ules. In line with Urcuioli (2005, 2013), we seek to explain
these phenomena according to the ability of differential out-
come expectations to classify discriminative stimuli and use
these classifications to cue a subset of associated response
options. We posit that differential outcome expectations
classify stimuli associated with reinforcement schedules
(CRF/PRF or High/Low probability) in both experiments
under investigation in this article. The learned outcome clas-
sifications cue particular responses. In the case of Kruse
and Overmier (1982) the response options (lever pressing
behaviours) are unique and differentiated according to the
two outcomes; in the case of Svartdal (2008) the response
options (mouse button press task rules) are not differentiated
according to the two outcomes. This means that during the
extinction phase when both schedules are classified by omis-
sion expectations, in theKruse andOvermier (1982) scenario
theCRF stimuluswill now cue the ‘incorrect’ choice (i.e. that
mediated by the PRF stimulus in the acquisition phase) via
the learned association of omission expectation and response
2 (R2). On the other hand, in Svartdal (2008) the omission
classification of the High-density stimulus does not alter the
response option—the same Omission-Response association

Fig. 15 Acquisition–extinction transfer of control effects (Experimen-
tal condition). Top Kruse and Overmier (1982) transfer of control
schema: during the acquisition phase, the CRF stimulus (CRF) is effec-
tively classified by the differential expectation of reward, the PRF
stimulus (PRF) is classified by the differential expectation of omis-
sion. These two differential expectations control/mediate differential
responses. During the extinction phase CRF (as is still true for PRF)
is now classified by Omission expectation and so cues the incorrect
response (R2) due to the already learned omission–R2 association
(Om2–R2 in our model). Bottom Svartdal (2008) transfer of control
schema: during acquisition, similar to the Kruse andOvermier scenario,
the high-density stimulus (high) is classified by reward while the low-
density stimulus (low) is controlled by mission. However, unlike the
Kruse and Overmier scenario, the differential expectations both control
and mediate the same response (R1). Therefore, during the extinction
phase, when high is now classified by omission expectation, it continues
to mediate the ‘correct’ (i.e. same) response (R1)

is invoked. So, whereas in the CRF of Kruse and Overmier’s
EXPL condition, incorrect responses are cued subsequent
to reward→omission classification switching, in the Svart-
dal experiment reward→omission switching does not affect
response selection.

In relation to the Kruse and Overmier (1982) simulated
results, the above-discussed ‘differential responsemediation’
benefits from computational explanation to comprehend this
stimulus classification effect. During the Acquisition phase
the network exhibits differential mediation of responding—
Stimulus 1 is controlled by reward expectation andStimulus 2
by omission expectation leading to respective response 1 and
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Fig. 16 Learning of differential affective mediation of extinction
responses, Kruse and Overmier EXPL condition case study. Left
associative–affective network activations in the first 20 trials of the
extinction phase.Right Network output activations (darker more active)
corresponding to those encapsulated in the rectangle of the left fig-
ure. Dark connections between Om/Rew and R1/R2 indicate learned
connections. Dashed connections indicate unlearned (but learnable)
connections. Key: S stimuli, 1 values Stimulus 1, 0 values Stimulus
2; Vom Omission value node; Rew rew node; Om Om node; rew-R Rew
node outputs to R1 (open circles) and R2 (asterisks)
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Fig. 17 Learning of differential affective mediation of extinction
responses, Svartdal 0.8/0.4 condition. Left Associative–affective net-
work activations in the first 20 trials of the extinction phase. Right
Network output activations (darker more active) corresponding to those
encapsulated in the rectangle of the left figure. Key: S stimuli, 1 values
Stimulus 1, 0 values Stimulus 2; Vom Omission value node; Rew rew
node; Om Om node; rew-R rew node outputs to R1 (open circles) and
R2 (asterisks)

response 2 differential responsemediation.During extinction
(Fig. 16), however, the growing Vom node value (which rep-
resents the omission probability computed by the omission
critic) leads to inhibition of theRewnode and activation of the
Om node. Over trials the weighted output of the Rew node is
unlearned, via the negative prediction error feedback, and the
Om node assumes differential response control by virtue of
having learned theOm–R2 association during the acquisition
phase. So now, in agreementwithKruse andOvermier (1982)
following CRF stimulus presentation omission expectancy
cue[s] the PRF response. This means the omission expecta-
tion control increases the tendency for error (choosing the
PRF-correct response) in the CRF condition when stimulus

1 is presented (see also Fig. 15, top). There is a switch from
acquisition to extinction phases from reward (‘optimistic’)
to omission (‘pessimistic’) expectancy control in the CRF
component.

Further to the aforementioned stimulus classification by
expected outcome explanation of PREE versus RPREE
effects is why CRF extinction (in the PREE case) is so much
more rapid than for PRF extinction (refer to Fig. 10). This
depends on the learning rates of the S-E and E-R connec-
tions in the affective–associative two-process network. If the
omission learning rate (S–E connection) is faster than the
omission-response (E–R) learning rate, extinction will be
apparently rapid—increasingly strong omission output will
not be sufficiently offset by the weakening of the omission-
response 2 weight. On the other hand, omission control tends
to increase persistence (of the PRF-correct response) when
stimulus 2 is presented. Similar to the CRF schedule effects
of omission, fast omission learning rates render Om–R2
unlearning insufficient to rapidly extinguish this now redun-
dant behaviour.

In sum, the much faster extinction rate of the CRF
schedule, compared to the PRF schedule, is not adequately
explained by the network requiring fewer reinforcement
omissions in the extinction phase to be inconsistent with
the schedule experienced in the acquisition phase. The CRF
schedule, in the extinction phase, comes to be controlled
by omission, which does not merely serve to unlearn CRF-
acquisition responses (R1) but induces a strong bias towards
PRF-controlled responses (R2) leading thereby to rapid
decline in performance—a sort of counterfeit extinction. PRF
extinction is slow because no such acquisition-extinction
switch of control occurs. Noting that the above find is depen-
dent on the relative learning-unlearning rates of S–E and E–R
connections, we discuss more the theoretical implications of
learning rates in 4.3.

For the Svartdal (2008) simulation results, critically, the
two associations between differential outcome expectancies
are made to the same response (R2). In our simulation,
abstractly we represent Svartdal’s task rule to produce the
reverse responses to that displayed on the monitor by a single
response node whose random chance of being selected is one
in four (assuming 4 possible pairings of responses if selected
at random). Correct responses show an increasing propor-
tion of correct responses during the acquisition phase that
reduces towards chance levels (0.25) over extinction blocks.
Figure17 shows the output activations for the nodes of the
affective–associative network in the extinction phase. During
the acquisition phase, stimuli 1 and 2 are differentially classi-
fied by reward and omission expectation as for the Kruse and
Overmier (1982) simulation. During extinction, the growing
Vom node activation inhibits the Rew node and activation of
the Om node. Gradually the Om node assumes differential
response control for both stimuli as a result of the Om–R1
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association learned during acquisition. This is the same as for
the Kruse and Overmier simulation. However, in this case,
S1 (cueing 0.8 reinforcement probability) continues to pro-
duce the ‘correct’ response when Om cues R1 since not only
Om but also Rew were associated with R1 in the acquisition
phase.

The above description is, therefore, consistent with a stim-
ulus classification by expected outcomes explanation of par-
tial reinforcement extinction effects. In the case of Svartdal’s
experiments, omission and reward (acquisition) expectations
differentially mediate responding but, owing to the nature of
the experimental set-up, they cue the same response options.
In the 0.8/0.4 condition, the reason for the RPREE is simply
explicable according to the higher rate of reinforcement in
the 0.8 schedule leading to superior performance, as a result
of stronger weighted output via the retrospective (S–R) route
(for brevity and space-saving results not shown), in the acqui-
sition phase, than for the 0.4 schedule. This in turn leads to
a lower rate of correct performance in the first trials of the
extinction phase for the 0.4 component.9

4.2 ATP lesioning comparison study

In Figs. 18 and 19 are shown plots of acquisition–extinction
correct choice performance, for representative single cases.
As a measure of RPREE versus PREE performance we cal-
culated: (CRF − PRF)/(CRF + PRF), where CRF and PRF
indicatemean correct performance for theCRF (highdensity)
schedule, and for the PRF (low-density) schedule, respec-
tively. This gives a minus value for a PREE and a positive
value for an RPREE. This calculation was based on the last
block of trials in both the Kruse and Overmier (1982) and
Svartdal (2008) experiments (empirical data and simulated)
for the Acquisition phase, and for the first 3 blocks of the
Extinction phase for individual runs.We compared date from
the following:

1. Actor–critic (prospective routed lesioned) model,
2. AMT (retrospective route lesioned) model,
3. (Affective-)ATP model,
4. Original empirical data.

The AMT (associative mediational theory, Kruse and
Overmier 1982) model constitutes the affective–associative
component of our full (affective-ATP) model and thereby
lesions the S–R (retrospective route) component of the ATP.
The actor–critic version of the model simply eliminates the
connections between the critic and the actor inherent in the
non-lesioned ATP model. All comparisons are made in the

9 It is not clear in either the original Svartdal data (Fig. 13, middle
panel) or the simulation data (Fig. 14, middle panel) that the gradient
of extinction is lower for the 0.8 component.
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Fig. 18 Comparison of models on Kruse and Overmier (1982) experi-
ment. In this comparison, only the empirical data and the full ATPmodel
produces CRF correct choice proportionate to PRF-correct choice
(CRF − PRF)/(CRF + PRF) transitioning from positive (in the acqui-
sition phase) to negative (in the extinction phase). It is this transition
that is characteristic of the PREE. Key: AMT associative mediation
theory model, A(Aff)TP associative–affective two-process model, Data
empirical data

experimental (within-subjects) conditions where Kruse and
Overmier and Svartdal found contradictory results, i.e. a
PREE and reverse PREE (RPREE), respectively.

The Kruse and Overmier (1982) experiment and the full
(affective-) ATPmodel are unique in producing a PREE over
the acquisition–extinction transition (see Fig. 18).

For the actor–critic model, correct choice performance is
dependent on learning the S–R connections (since E–R con-
nections are lesioned). The strength of the connections in the
Acquisition phase are determined by the reward prediction
errors gating the Hebbian learning of connections between
S representations and R response nodes. Therefore, for the
CRF stimulus, the relevant S–R connection strength (here
S1–R1) will converge to 1.0 as a function of learning rate,
while for the PRF stimulus, connection strength (for S2–
R2) will converge to 0.5. In extinction, the S–R connections
are weakened by the negative reward prediction error gen-
erated by the Critic and it thus takes longer for the CRF
(S1–R1) connection to extinguish as it is stronger in the
acquisition phase. Hence, an RPREE result. For the ATP
model, however, unlearning in the PRF component is offset
by the increasing omission expectation value during extinc-
tion. This counteracts the effects of diminishing associations,
i.e. E–R associations, through which response choice can be
affectively mediated.

In Fig. 19, it can be seen that no model produces a PREE
for Svartdal’s simulated experiment. The AMT model pro-
duces a compromised performance during the acquisition
phase in the absence of scaffolding from the S–R route
whereby initial S–R learning guards against the effects of
initial erroneous E–R associations. ATP, actor–critic and
the empirical data all show more standard RPREE find-
ings, i.e. that the high-density component is implicated in
slower choice correctness extinction than is the low-density
component. The lack of a discriminative choice option in
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Fig. 19 Comparison of models on Svartdal (2008) experiment. In
this comparison, no model shows a PREE (again based on (CRF −
PRF)/(CRF + PRF) correct choice responses). The AMT-alone model
shows a counterintuitive negative to positive (acquisition to extinction)
transition in correct choice performance for CRF versus PRF. Key:
AMT associative mediation theory model, ATP = A(Aff)TP associative–
affective two-process model,Data empirical data.Note: Data smoothed
by second-order polynomial over all data points obtained by Svartdal
(2008)

the Svartdal experiment (S1–R1 and S2–R1 are probabilisti-
cally rewarded but no other S–R pairs) means that outcome
expectations cue the same response and thus do not pro-
vide additional information to that available to the S–R
route. Thus, the E–R weighting is shared ((0.8 + 0.4)/2)
over the high and low densities and therefore acquisition
and extinction rate are approximately the same for the two
components. So, informationally, acquisition and extinction
learning/unlearning here only requires an S–R route (actor–
critic is sufficient).

In summary, following an associative (reinforcement
learning) approach, both retrospective (S–R) and prospective
(S–E–R) routes appear necessary to capture the modelled
data. The retrospective route is critical for scaffolding the
learning of the prospective route, while the prospective route
is critical for the persistence of the partial reinforcement
(PRF) schedule (relative to the continuous reinforcement
schedule—CRF).

4.3 ATP learning rate sensitivity analysis

The majority of the model parameters chosen for the
experiments described are based on values consistent with
TD learning theory and dynamic field theory. The critic val-
ues are given in Sect. 2.2.3 and actor values tabulated in
“Appendix6.3”.

Of critical importance to generating the partial reinforce-
ment extinction effects found in the empirical data are those
parameters concerning learning rates. Figure20 shows, for
the within-subjects condition of the Kruse and Overmier
(1982) simulations, a scatter plot concerning parameteriza-
tions of S–R and S–E (omission value) learning rates as they
map to PREE generation (CRF–PRF < 0). Note, E–R and
S–E (magnitude) learning rates are fixed at 0.06. The blue

Fig. 20 Learning rate sensitivity analysis for Kruse and Overmier
(1982) data. The individual plots show (CRF − PRF) ·/(CRF + PRF).
DOT differential outcomes training modelled performance

transparent box (with blue circles) encapsulates the range of
values within which the PREE is achieved and the savings
effect is also respected (where omission value updates must
be higher than magnitude value updates for both effects).
Within this range it is also possible to capture data from
differential outcomes training scenarios (Lowe et al. 2014)
where similar schedules are used as to the current simulation
experiment but where outcomes can vary not just according
to reward omission probability but also according to reward
magnitude. The learning rates not encapsulated by the red
box, however, might be considered implausible biologically
and further untypical for TD learning simulations. Consider-
ing that the same range of parameter values for the Svartdal
(2008) data always gives RPREE results, we can say that it is
within this red box that we provide the most theoretically
and biologically acceptable model, which simultaneously
adheres to our hypothesis that omission probabilities may
be approximated through neural activation.

We summarize the relationships between the different
learning rates of the affective–associative two-process model
for discriminable response tasks as follows:

1. S–E (omission) > E–R → PREE
2. S–E (omission) < E–R → RPREE
3. S–R < E–R � RPREE

Point (1) occurs because during the Extinction phase, if
S–E learning is faster than E–R learning, absolute omission
will soon be predicted and there will be no prediction error
remaining on subsequent trialswithwhich to unlearn theE–R
weights. Thismeans that as the omission (Omnode) expecta-
tion controls responding of both PRF and CRF they will pro-
vide weighted output to the previously learned E–R response
(for PRF) in the acquisition phase. Point (2) entails anRPREE
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since the E–R weights can be unlearned, through omission
prediction error updates, before omission expectation proba-
bility of 1.0 is learned. Thus, while, as for Point (1), omission
expectation controls responding for both PRF and CRF stim-
uli, there will cease to be E–Rweighted outputs and respond-
ing will tend to random selection instead as a function of the
degree of learning of CRF and PRF in the acquisition phase,
which for all S–R, E–R learning rates is higher for CRF.
Finally, in the case of Point (3), it appears that generation
of expected PREE (Kruse and Overmier 1982) and RPREE
(Svartdal 2008) results are not especially sensitive to partic-
ular S–R learning rates. Nevertheless, we have seen from our
lesioning analysis that setting the S–R rate to zero prohibits
the generation of appropriate effects in both experiments.

Thus, we conclude that so long as Point 1 is adhered to,
that S–R learning rates are greater than zero, and that the
full affective–associative two-process model with both retro-
spective (S–R) and prospective (S–E–R) routes is employed,
it is possible to generate the network performance for
simulations-based replication of both Kruse and Overmier’s
(1982) and Svartdal’s (2008) data. If the retrospective route
(S–R) is insufficiently influential in early learning (for scaf-
folding learning), erroneous prospective influence (via E–R
connections) may result while the ‘pessimistic’ and ‘opti-
mistic’ affective XOR-like classifications are still being
meta-learned (see Fig. 23, “Appendix6.4”). Thereafter, con-
tinuous erroneous prospective bias in decision making will
render the task rules (S–R associations) difficult to learn. If
S–E (omission) does not update sufficiently quickly, relative
to S–E (magnitude), the strong influence of omission rep-
resentation, relevant to the ‘savings effect’, the PREE and
other differential outcomes learning data, will not be possi-
ble. This bears some resemblance to the learning of value in
the brain where orbitofrontal cortex inhibits amygdala out-
put in a fast and flexible manner in relation to context change
(Schoenbaum et al. 2007). Thus, these relative learning rates
are essential to capture the interaction between retrospective
and prospective processing routes that in turn captures the
described empirical data.

5 Discussion

In this paper, we have provided a neural-computational
description of an affective–associative two-process account
of partial reinforcement extinction effects which helps rec-
oncile contradictory (PREE versus RPREE) findings in the
literature (Kruse and Overmier 1982; Svartdal 2008). The
neural-computational model explains both sets of findings
according to the standard generalization decrement invo-
cation (Nevin 2012)—the schedule with lower probability
reinforcement for correct responding in the acquisition phase
of the experiment resembles more the zero reinforcement for

‘correct’ responding in the extinction phase (lower general-
ization decrement). The use of a single reinforcing response
option indicates that Svartdal’smodulation hypothesis expla-
nation for his within-subjects RPREE findings may owe to a
shared generalization decrement over the two reinforcement
schedules as a result of the differential mediators both cue-
ing the same response choice. In this case, the generalization
decrement for each reinforcement schedule (highvs. lowden-
sity) in Svartdal’s within- subjects condition uses the average
weighted response of the schedules for learning (acquisi-
tion)/unlearning (extinction) of the single rewarded response.

In the remainder of this section,wewill discuss the follow-
ing issues: (5.1) Predictions of the Model, (5.2) Critique of
the Modelling and Simulation Approach, (5.3) Alternatives
to the ATP Hypothesis.

5.1 Predictions of the model

A main premise of this work is that Svartdal’s (2008)
experiment introduces only one viable (rewarding) response
option—mouse-press reversal of sequence presented on
screen—in response to differentially (probabilistically)
rewarding stimuli. We suggest that this fails to tap into
the same phenomenon uncovered by Kruse and Over-
mier (1982)—associative mediational theory (AMT), which
assumes omission, and reward, based expectancy control
over differential responses. On this basis, while the AMT,
when embedded within an associative two-process archi-
tecture, can explain both Svartdal’s (2008) data and that
of the Kruse and Overmier (1982) experiment, Svartdal’s
modulation hypothesis (Svartdal 2000, 2008), on the other
hand, describes his own findings, but not those of Kruse
and Overmier (1982). We have suggested, consistent with
Urcuioli (2005, 2008, 2013), that stimuli predictive of differ-
ential affective outcomes can approximately classify such
stimuli, which then bring to bear on existing associated
responses. This particular effect is even more pronounced
in Pavlovian-instrumental transfer (or ‘transfer-of-control’)
set-ups (Urcuioli 2005), which demonstrate how novel stim-
uli previously only associated with differential outcomes but
not responses may, without any requirement for learning, cue
appropriate responses for reward retrieval. This is the result
of the prospective route using existing associations concern-
ing S–E (from the Pavlovian phase) andE–R (fromaprevious
instrumental phase).

Our model, beyond the original AMT, makes the predic-
tion that omission and reward representations have mutually
inhibitory effects that promote an XOR-like classification
of stimuli. AMT remains silent on this point (Overmier,
personal communication). Such mutual inhibition permits
cleaner expectancy-based response control. In our model,
in the absence of this mutual inhibition, the competition
between the two representations renders differential response
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control challenging. For example, in the Kruse and Overmier
(1982) PRF set-up, omission and reward representations,
without mutual inhibition, would both approximate 0.5 and
no such differential response mediation (and thus PREE)
should be possible. Further, our model predicts, that in an
adaptation of the Svartdal (2008) experiment that uses two
differential response options (i.e. different rules for each dif-
ferentially rewarded stimulus), a PREE is possible, though
owing to the relatively small difference between the proba-
bilistic schedules (0.8 vs. 0.4 reward probability), the ability
of the network to differentially classify stimulimight be chal-
lenging and requires empirical validation. In general, the
bigger the difference between the two probabilistic sched-
ules, the bigger the PREE effect is likely (Urcuioli 1990).

Our model also predicts that the ISI (inter-stimulus inter-
val), if sufficiently reduced, would fail to produce a PREE.
Omission expectancies in our model, as they bring to bear
on response choice mediation, build nonlinearly over the ISI.
Very short ISIs, therefore, should make expectancy media-
tion of responding more challenging and the retrospective
route would become dominant.

Our focus has been on a neural-dynamic reinforcement
learning computational description. We are currently inves-
tigating how well our model captures data according to
differential outcomes training paradigms. Specifically, we
are interested in reward-based differential outcomes train-
ing procedures—transfer of control—see Lowe et al. (2014),
and also Lowe and Billing (2016), Lowe et al. (2016). The
neural-dynamic (Amari-based) perspective of our model is
thus used in a population coding capacity. This allows us to
investigate existing hypotheses concerning spatial and tem-
poral aspects of learning and decision making, e.g. regarding
the neural-dynamic relation between prospective and retro-
spective topographically organized memory as it develops
over an organism’s lifetime.

5.2 Critique of the modelling and simulation approach

We have sought to validate a neural-computationally plausi-
ble model and, as such, have used neural-dynamic equations
and a neural-anatomically plausible structure (actor–critic
like) to frame our modelling approach. By modelling
ATP using a neural-computational reinforcement learning
approach,we can apprehend: (a)ATP’s neural-dynamicprop-
erties, (b) ATP according to aMarkovian decision process, in
relation to the animal/human learning and decision making
data that are captured. Notwithstanding, a number of limita-
tions of our model warrant further discussion. (1) Modelling
temporal inputs: We have used the biologically unrealistic
complete serial compound (CSC) temporal stimulus rep-
resentation. This presupposes (i) a constant non-decaying
relayed signal from external (predictive) stimulus onset to
reinforcement onset, and (ii) leads to same-size negative

prediction error signals as positive prediction error signals.
Neither presupposition is tenable. An alternative model, of
Ludvig et al. (2008, 2012) provides a potential solution to
these problems. Microstimuli representations of the stimulus
onset produce variably parameterized radial basis functions
whose sum constitutes a decay from stimulus to reinforcer
onset. This model also generates negative prediction errors
more reflective of neurobiological reality, i.e. shallow and
broad below-baseline activation as a result of expected
reinforcer omission, while preserving the standardly found
phasic positive prediction error signal (at unexpected rein-
forcer onset). We aim to apply this model to our affective–
associative two-process model to further test the plausibility
of our neural-computational approach. (2) Modelling mag-
nitude of reinforcement: We implemented only non-negative
learning of the magnitude critic. This reflects the suggestion
that what is unlearned is not so much reward presence and
strength but rather its effects on behaviour (cf. Morén 2002).
However, in another version of our model (Lowe et al. 2014)
tested on a differential outcomes learning problem, we allow
for a slow unlearning rate of magnitude in order to be able to
compute differential magnitudes as objective stimulus value
changes.

Furthermore, our simulated approach made several
assumptions that might be criticized. Firstly, we assumed
that Svartdal’s response options could be abstractly consid-
ered as: (1) produce the opposite response to that observed
on the computer monitor—the correct choice, (2) produce
a random response based on the permutations of the button
pressing—incorrect choice. In the case of following option
(2), by a 1/4 chance, the correct response will be even-
tually discovered. Further, this random selection ‘strategy’
might be a reasonable assumption when considered over
the uninformed population of subjects, i.e. an initial trial-
and-error approach is utilized until the response rules are
discovered.

Secondly, in the Kruse and Overmier (1982) simulation
set-up (“Appendix6.1”) we used the same inter-stimulus
interval (22 processing steps) as for Svartdal (2008) when in
reality the formerwas considerably longer (3 s) than the latter
(0.7 s).Wemade this design decision to facilitate comparison
of the data but with a longer delay for the Kruse and Over-
mier simulation replication, wemight expect slower learning
but similar overall results.

Finally, it may be argued that comparing experiments
using rats and humans does not provide a good basis for
discerning shared neural-computational mechanisms, partic-
ularly where the prefrontal cortex is concerned. However,
the PFC-relevant areas we have postulated—orbitofrontal
cortex and medial PFC—are considered shared, as agran-
ular regions, across all mammals (Passingham and Wise
2012). We might expect differences in performance of ani-
mals where more complex tasks and task rules are required
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Fig. 21 Behavioural momentum theory (BMT) modelling of Nevin
and Grace (2005b) of empirical PREE findings. The pred (predic-
tion) linear plots provide the BMT model of two choice discrimination
task. A PREE is evident when considering the log proportions of the

pre-existing correct responses (baseline). Left Discrete trial choice
discrimination task Nevin and Grace (2005b). Right Discrete trial rate-
based task Rescorla (1999). Reprinted with permission

to be learned as other regions of cortex are recruited, but the
basic outcome–expectancy-associative mechanisms may be
common across mammalian species.

5.3 Alternatives to the ATP hypothesis

Svartdal interpreted his within-subjects RPREE finding
according to a modulation hypothesis: “If extinction perfor-
mance under individual schedule components is modulated
equally by their contexts, extinction persistence under the
80%component should be increased if the context was a 40%
schedule, and persistence under the 40% schedule should be
reduced by a corresponding magnitude if the context was an
80% schedule” (Svartdal 2008, p. 53). To demonstrate this
phenomenon, Svartdal made further comparisons between
the two components of the multiple-schedule condition and
their concomitant density schedules for the single-schedule
(0.8/0.8 and 0.4/0.4) conditions.

We present our simulations of Svartdal’s tests in
“Appendix6.5”. Notwithstanding our simulation-based con-
firmation of Svartdal’s hypothesis, that in within-subjects
conditions high-density schedules give the appearance of
‘modulating up’ low-density schedules while low-density
schedules give the appearance of ‘modulating down’ high-
density schedules, the modulation hypothesis cannot explain
the PREE result of Kruse and Overmier.

In Sect. 2.1. (see Fig. 1) we described two types of studies
of the PREE—(1) rate-based, i.e. concerning an evaluation
of the number of responses to stimuli predictive of a fre-
quency of reinforcer presentations, (2) choice-based, i.e.
concerning an evaluationof responses ondiscrete trialswhere
reinforcement is presented in relation to choosing between
different response options. Much research carried out on the
PREE has focused on (1), but our interest has been on the
decision-making (choice-based) aspect of the PREE. The

within-subjects PREE has been found in such choice-based
set-ups and explained according to particular perspectives.
One such is that the partial reinforcement schedule requires
more omissions of reinforcement in the extinction phase than
the continuous reinforcement schedule in order to unlearn
reinforcement-based expectations (Gallistel and Gibbon
2000; Nevin 2012). In this case, evaluating extinction in the
different reinforcement schedules according to rate of change
of correct choice in choice discrimination tasks should yield
differential linear gradients as a function of omission rate.
Nevin’s Behavioural Momentum Theory (BMT) (Nevin and
Grace 2005b; Nevin 2012) predicts this result. The BMTwas
used to account for data on discrete trials of pigeon choice
discrimination (Nevin andGrace 2005b) or pecking response
rate (Rescorla 1999) using a calculation of the log proportion
of correct choice in the extinction phase (over blocks of trials)
to the baseline achieved at the end of the Acquisition phase.
The Nevin and Grace (2005b) experiment resembles most
that of Kruse and Overmier (1982) with a choice discrimina-
tion task and a probabilistically rewarding schedule (1.0 vs.
0.25). It is arguable, however, that the linear fit of the BMT
model to the data (see Fig. 21, left) insufficiently captures the
mechanistic complexity of thePREE. InFig. 22 the extinction
data of the Kruse and Overmier (1982) and Svartdal (2008)
experiments are expressed as log proportions to baseline
along with our model’s predictions. The continuous rein-
forcement (CRF) data of Rescorla (1999), Nevin and Grace
(2005b) and Kruse and Overmier (1982) can all be argued to
yield a disproportionately high, nonlinear, rate of extinction
by comparison to the partial reinforcement (PRF) sched-
ules. Based on our affective-ATP computational modelling
approach, we suggest that the nonlinearity owes to the effect
of omission representation (‘pessimistic’ classification) for
the CRF stimulus mediating a response option classified by
that affective state, which previously was reinforced in the
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Fig. 22 Modelling PREE versus RPREE empirical data according to
rate of extinction. A PREE is still evident when considering the log
proportions of the pre-existing correct responses (baseline) for both the
Kruse and Overmier data and our model. The Svartdal data (and model
results) do not support an RPREE in this case

PRF schedule (in the acquisition phase). This imbues a bias
for the ‘wrong’ response early in extinction in the CRF and
may account for the sharp increase in extinction in the three
aforementioned experiments (as visualized in Figs. 21 and
22). On the other hand, the PRF schedule is relatively persis-
tent. This, we have suggested, owes to the omission represen-
tation increasing in strength and initially offsetting the effects
of the no-longer-reinforced and diminishing connections
between the PRF stimulus and response. When expressing
Svartdal’s data logarithmically (Fig. 22, right), the data, and
our modelling thereof, provide evidence against a RPREE.
The differences in the extinction rates of the two schedules
(high density versus low density) is slight, and we have sug-
gested that this (relative non-difference) owes to the single

response (choice) option being associated with the (increas-
ing) omission representation during extinction tending, at a
similar rate, to random responses in both schedules. We sug-
gest that, at least as concerns choice discrimination tasks, the
(affective)-ATP model is of greater explanatory value than
both the BMT and Svartdal’s modulation hypothesis.

In contrast, the RPREE phenomenon has been more typi-
cally found in rate-based experiments (Flora andPavlik 1990;
Nevin andGrace 2000;Nevin 2012)where the same response
(non-choice discriminant) is typically required of the individ-
ual and rate of response is measured in accordance to number
of reinforcers presented.

5.4 Conclusion

In this article, we demonstrated neurocomputationally how
affective–associative two-process theory is consistent with
thewithin-subjects experimental findings of Kruse andOver-
mier (1982) and Svartdal (2008) who obtained contradicting
PREE and RPREE results, respectively. We posited that crit-
ical to this contradiction is the lack of use of differential
response choice options in the Svartdal (2008) experiment.
Addressing the aims of our modelling approach put forward
in the Introduction section, we mechanistically (and theo-
retically) described how a chief property of ATP theory—
stimulus classification by differential outcome expectan-
cies—may underly both sets of results. The modulation
hypothesis of Svartdal (2008), confirmed by our simulations
results, was explained according to the amount of omis-

Table 1 Kruse and Overmier (1982) experimental versus simulations-based set-up

Kruse and Overmier (1982)
Simulation

Subjects 6 rodents for each of the 3 conditions 50 simulations with different initial random seeds

Apparatus Three colbourn modular rodent cages MATLAB program adapting Cosivina
Neural-dynamic software framework (http://
roboticsschool.ini.rub.de/software.php)

External stimuli Stimulus 1= sonalert tone, Stimulus 2=clicker Binary valued Stimulus 1 and Stimulus 2

Pre-training Yes (see paper for details) No

Acquisition learning trials 40 (blocks) × 32 trials 10 (blocks) × 24 trials

Extinction trials 4 (blocks) × 32 trials 10 (blocks) × 4 trials

Inter-trial interval (ITI) 30 s No ITI, neural activation reset at the end of the trial

Inter-stimulus interval (ISI) 3 s 22 processing steps (stimulus outcome)

Response requirement 10 presses of the correct lever (alternative lever
retracted after initial press)

A single response selection

Response reward CRF=1 pellet for correct response (10 presses) per
trial; PRF=1 pellet for correct response (10
presses) at probability=0.5

CRF= score 1 for correct response per trial;
PRF= score 1 for correct response at probability =
0.5

Between-subjects design PRF-only condition, CRF-only condition PRF-only condition, CRF-only condition

Trial ordering (1) Trial transition probability 0.656; (2) No more
than 3 successive trials of the same type could
occur (for CRF and PRF types

(1) Trial transition probability pseudo-random; (2)
No more than 3 successive trials of the same type
could occur (for CRF and PRF types)
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Table 2 Svartdal (2008)
experimental versus
simulations-based set-up

Svartdal (2008) Simulation

Subjects 56 students (male and female) 50 simulations with different initial
random seeds

Apparatus (1) A vertical metal console
(33×33cm), (2) two
transluminated ’stimulus’ keys
on a table in front of the console,
(3) two push button ‘response’
keys on table, (4) sound
attenuated room

MATLAB program adapting
Cosivina NeuralGdynamic
software framework (http://
roboticsschool.ini.rub.de/
software.php)

External stimuli Stim. 1= red light, Stim. 2=green
light

Binary valued Stimulus 1 and
Stimulus 2

Pre-training No No

Acquisition learning trials 180 trials 180 trials

Extinction trials 40 trials 40 trials

Inter-trial interval (ITI) 3 s No ITI, neural activation reset at
the end of trial

Inter-stimulus interval (ISI) 0.7 s 22 processing steps (stimulus
outcome)

Response requirement To choose opposite sequence from
that presented by the computer on
lamps on the vertical console. 4
possible response contingencies:
LL, LR, RL, RR (wrt push button
positions). So 1/4 correct chance
over blocks of 5 trials

A single response selection.

Response reward Rewards= score of 1 at
probability: High dens=0.8 Low
dens=0.4

Rewards= score of 1 at
probability: High dens=0.8 Low
dens=0.4

Between-subjects design LOW: S1 & S2→Low dens=0.4;
HIGH: S1 & S2→High
dens=0.8.

LOW: S1 & S2: Low dens=0.4;
HIGH: S1 & S2: High dens=0.8

Trial ordering Random presentation of S1 or S2 (1) Trial transition probability
pseudo-random; (2) No more
than 3 successive trials of the
same type could occur (for CRF
and PRF types)

sion prediction error—analogous to a dopamine signal—
available to unlearn expectancy–response (E–R) associations
during the extinction phase. The modulation effect amounts
to a shared generalization decrement effect, consistent with
Nevin (2012), affecting differential schedules.

Classifying stimuli by differential reward expectations
serves little function if it cannot be put to some cognitive-
behavioural end. One such end would concern (pessimistic)
omission expectation that may motivate organisms to mon-
itor environmental detail so as to find the stimuli complex
that reduces uncertainty in prediction (Mackintosh 1971).
Another use of such classification is to associate affective
outcomes with a particular repertoire of adaptive responses.
This accords with the somatic marker hypothesis of Dama-
sio (1999). Somatic markers are affective states that can
adaptively constrain action selection under conditions of
uncertainty (e.g. when task rules are not well understood).

In the stimulus classification by expected outcomes perspec-
tive, the affective states (reward, omission) generated in
partial reinforcement experimental set-ups, classify particu-
lar stimuli by differential affective states that are then able to
differentially cue choice responses. This particular property
of these differential affective states, similar to somatic mark-
ers, is of most relevance when multiple response options can
be associated with each affective state (cf. Urcuioli 2013).
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6 Appendix

6.1 Experimental versus simulation set-ups

Tables 1 and 2 compare the experimental set-ups of Kruse
and Overmier (1982) and Svartdal (2008) to our simulations
set-ups.

6.2 A: glossary of key modelling terms

Table3 provides a glossary of the key terms of our computa-
tional model.

6.3 Free parameter values

Table4 lists parameter values used over Eqs. (7–12) for our
two simulated experiments. Note, the same parameterization
is used for both experiments. The listed parameters con-
cern standard values used in dynamic field theory modelling
as well as parameterization of our meta-learning of affec-
tive classification functions (sigmoids). The parameter values
given in Sect. 2.2.3 are standard and tested values for tem-
poral difference learning.

The input term, from Eq. (7), is characterized by a
standard dynamic field theory based formula: Ir=1|2(t) =
Cstim[ScueΩkl(t)]+ + Star + qψ , where Scue ε {0,1} is the
binary cue stimulus input and Star ε {1.25,4.5} is a bias term
presented randomly for targets (choice options) per trial;
Cstim = 3 is a scaling term. See Eq. (12) for description
of other terms.

Table 4 List of parameters not specified in main text

Parameter Value

τr = 1 − 4 (decay constant) {3, 3, 5, 5}
hr = 1 − 4 (baseline activation) {−4,−4,−2,−2}
Cr = 1 − 4 (sel f − exci tation scaling) {10, 10, 1, 1}
βr = 1 − 4 (sigmoid gain) {5, 5, 4, 4}
Bom (sigmoid gain) 20

T hom (sigmoid threshold) 0.2

j = 1 − 2 (meta − learning rates) {0.0667, 0.05}

Input Ir=3|4(t) = Cexp[Om(t)Ωn(t) + Rew(t)Ωn(t)] +
Ir=1(t) + Ir=2(t) + qψ , where Cexp=10 and Ωn(t) is the
weighted input from Om, Rew nodes to n=1 (R1) and n=2
(R2), respectively. ψ is a Gaussian noise term scaled by
q = 0.05 and permits stochastic action selection in R nodes.

In Eq. (11), xs parameterizes the sigmoid update func-
tions for (Om, Rew nodes) according to slope xβs (t), s =
{1(Om),2(Rew)} and threshold xths (t), s = {3(Om),4(Rew)}.
These are meta-parameters (Doya 2002) modulated by the
prediction error feedback of the Omission Critic. ns=1|2ε
{10, 15}, as=1|2ε{6, 10} give maximum and minimum val-
ues for Vm and Vo β inputs, respectively. ns=3|4 = 0.4,
as=3|4 = 0.1 give maximum and minimum values for Vm

and Vo th inputs, respectively.

6.4 Meta-learning affective classification

In Fig. 23, is shown a representative example of the meta-
learning of the sigmoidal transfer functions of the Rew node

Table 3 Glossary of key terms
describing the full model in
Fig. 8 and in Eqs. 1–12

Ve(t) Learned value function (expectation) in [0,1] at time step t where
e ε {m, o} and m stands for magnitude valuation of the stimulus, o
stands for omission probability valuation of the stimulus. This is
visualized in the nodes in the Critic in Fig. 8

θe(t) Gives the parameter (Critic weights) indexed by e that valuate the
stimuli at each time step t . These weights are denoted by (1) on Fig. 8

δm(t) Is the prediction error generated by Critic that updates the θm(t)
parameters of the magnitude Critic

δo(t) Is the prediction error generated by Critic that updates the θo(t)
parameters of the omission Critic

ur (t) Stimulus/response option neural-dynamic variables indexed by
r ε[1, R] where R ε {S1, S2, R1, R2}

Rew(t) Reward expectation (right-side blue node Fig. 8) classification of
stimulus

Om(t) Omission expectation (left-side blue node Fig. 8) classification of
stimulus

xs(t) Meta-parameter that controls the slope and threshold of Rew and Om
variables allowing for competition for stimulus classification

Ωkl Connection strength in [0, 1] between pre-synaptic node
k ε {Om, Rew} and post-synaptic node l ε {R1, R2}. See
connections denoted by (2) on Fig. 8
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Fig. 23 Neural-computational ‘classification’ in Svartdal simulation
case study. Top Rew node sigmoid transfer function at the first trial of
the extinction phase (black line) and last trial (red line). Bottom Om
node sigmoid transfer function at the first trial of the extinction phase
(black line) and last trial (red line) (colour figure online)

(Eq. 9, Vm input), and the Om node (Eqs. 10/11, Vo input).
It can be seen that Rew ‘classification’ sensitivity becomes
weaker (threshold drifts to the right) over extinction tri-
als. This owes to the negative reward (positive omission)
prediction error feedback to update the slope (xβvm ) and
threshold (xthvm ) parameters. On the other hand, Om ‘classi-
fication’ sensitivity becomes stronger over extinction trials.
This owes to the positive omission prediction feedback effect
on increasing the slope steepness (xβvo ) and bringing the
threshold (xthvo ) close to zero. Thus, we have a hypothesized
meta-learning (Doya 2002) mechanism for permitting flexi-
ble classification by reward (acquisition/omission) outcome
expectancy.

6.5 Svartdal’s modulation hypothesis

Results of the analysis of Svartdal’s modulation hypothesis
are displayed in Fig. 24. Svartdal found significant results for
the 80% component, i.e. it showed greater persistence when
the other component had a 40% schedule than when it had
an 80% schedule which Svartdal attributed to the lower den-
sity component modulating upwards (making more resistant
to extinction) the higher density component. He did not find
a difference, however, regarding the 40% component being
affected by an 80 or 40% alternative schedule though he pre-
dicted that in the 80/40 schedule the 80% component should
modulate downwards (make less resistant to extinction) the
lower-density (40%) component.

Fig. 24 Comparison of multiple-schedule components to single-
schedule concomitants for original Svartdal (2008) data. Left The 80%
component of the 80/40 (multiple-schedule component) is compared to
the 80/80 group Component A. Right The 40% component of the 80/40
group is compared to the 40/40 group (note, error in original labelling of
Svartdal (2008) Component B. AS acquisition state, E1–E4 extinction
performance over four blocks of 10 trials. Reprinted with permission
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Fig. 25 Simulation-based comparison of multiple-schedule compo-
nents to single-schedule concomitants. Left As for Svartdal (2008), the
80% component of the 80/40 schedule is compared to the 80/80 sched-
ule component A. Right The 40% component of the 80/40 schedule is
compared to the 40/40 schedule component B

Our simulations for this pairwise comparison are visu-
alized in Fig. 25. In paired t tests (evaluated over blocks
2 and 3 in the extinction phase) we found significant dif-
ferences for both 80% (Fig. 25, left; t (98) = −2.1896)
and 40% schedules (Fig. 25, right; t (98) = 3.6387) where
p < 0.05. On this basis, our simulations actually pro-
vide results that are consistent with Svartdal’s modulation
hypothesis for both high-density upward modulation (by the
lower-density component) and by the low-density downward
modulation (by the high-density component). The stronger
simulatedmodulation effect of the 40%may reflect the higher
acquisition performance value, in our simulation study, at
which the extinction phase was initiated allowing for greater
scope for differences in values until absolute extinction was
achieved.
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Notwithstanding our simulations-based confirmation of
Svartdal’s hypothesis, we can explain these findings with
recourse to stimulus classification by differential outcome
expectancies. As Omission expectancy classifies both com-
ponents of the low-density schedule, these components share
a common association to R1. This means that they also share
the amount of prediction error available, at the end of the
Acquisition phase, to unlearn this association. This average
amount of error is greater the higher the average density
of the individual components. Thus, in the Svartdal (2008)
experiment the average omission probabilities for the 0.8/0.8,
0.8/0.4, 0.4/0.4 conditions yield negative reward prediction
error, averaged over the two components for each condi-
tion, of 0.8, 0.6 and 0.4, respectively, with which to unlearn
responses.10 The extinction rate in these conditions is thus
higher where the prediction errors are greater (more intense
unlearning) which inversely reflects degree of reward expec-
tation generalization from acquisition to extinction phases.
This phenomenon can be likened to the generalization decre-
ment effect: “Reinforcers, considered as stimuli, are part of
the stimulus situation in which training occurs, and, when
extinction begins, there is a smaller change in the overall
stimulus situation after PRF than after CRF because the aver-
age reinforcer rate is lower” (Nevin and Grace 2000).

On the other hand, no such significant between-subjects
effect was found in the Kruse and Overmier experiment
(either in the empirical or simulated findings), which indi-
cates that no explicit modulation mechanism exists.
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