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Abstract—Neural dynamics offer a theoretical and compu-
tational framework, in which cognitive architectures may be
developed, which are suitable both to model psychophysics of
human behaviour and to control robotic behaviour. Recently,
we have introduced reinforcement learning in this framework,
which allows an agent to learn goal-directed sequences of
behaviours based on a reward signal, perceived at the end of a
sequence. Although stability of the dynamic neural fields and
behavioural organisation allowed to demonstrate autonomous
learning in the robotic system, learning of longer sequences
was taking prohibitedly long time. Here, we combine the neural
dynamic reinforcement learning with shaping, which consists
in providing intermediate rewards and accelerates learning. We
have implemented the new learning algorithm on a simulated
Kuka YouBot robot and evaluated robustness and efficacy of
learning in a pick-and-place task.

I. INTRODUCTION

The current strive for intelligent robotic systems, which
are able to operate autonomously in unconstrained real-
world environments calls for adaptive and self-organising
cognitive systems, which may autonomously initiate and ter-
minate actions and, more over, autonomously select which
action to activate next. A sequence of such action-selection
decisions should bring the robotic agent to its behavioural
goal. Reinforcement learning [1] is a learning paradigm,
in which a computational agent learns to select correct
actions in a goal-directed sequence from a numerical reward,
typically received at the end of a successful sequence.
Application of RL in robotics is challenging, however,
because of large and continuous state-action spaces, which
correspond to real-world perception and actions of a robotic
agent. Moreover, the robot has to not only select the best
next action, but also initiate this action and ensure that it
is brought to the end. Each action may need coordination
between different sensory inputs and motors of the robot
and require stabilisation in the presence of noise and dis-
tractors. Thus, actions in physical robots become more than
simple transitions between states, as typically assumed in
RL algorithms.

In order to apply RL to cognitive robotics, we have re-
cently used Dynamic Field Theory (DFT) [2] – a conceptual
and computational framework, which allows to stabilise sen-
sory representations and link them to motor control, while
performing elementary cognitive operations, such as mem-
ory formation, decision making, and selection among alter-
natives. Following an inspiration from behavioural robotics

[3], we have introduced a concept of elementary behaviours
(EBs) in DFT, which correspond to different sensorimotor
behaviours that the agent may perform [4], [5]. To the
contrary to purely reactive modules of the subsumption and
other behavioural-robotics architectures, the EBs in DFT are
endowed with representations. In particular, a representation
of the intention of the behaviour provides a control input to
the sensorimotor system of the agent, activating the required
coordination pattern between the perceptual and motor sys-
tems, and eventually triggers generation of the behaviour.
A representation of a condition of satisfaction (CoS), in
its turn, is pre-shaped by the intention to be sensitive to
an expected outcome of the behaviour and is activated
when the behaviour has reached its objectives. The CoS
inhibits the EB’s intention, which now gives way to the next
behaviour in the behavioural sequence. We have previously
discussed the need for this stabilised representations within
EB and how they contribute to autonomy and robustness of
behaviour [5], [6].

Further, we have demonstrated how goal-directed se-
quences of EBs can be learned from reward, received by
the agent at the end of a successful sequence [7]. The
latter architecture has integrated the DFT-based system for
behavioural organization with the Reinforcement Learning
algorithm (RL; [8], [9]), SARSA(λ). This system could
autonomously learn sequences of EBs through random ex-
ploration, and the model operated in real-time, continuous
environments, using the categorising properties of EBs.

Obviously, when applying RL approach in a robotic
domain with a high number of available behaviors, waiting
for such an agent to randomly explore action sequences
becomes untenable. Thus, in this paper, we introduce a study
of how the concept of shaping [10], [11], from the field of
animal learning can be used in order to speed up training
for the cognitive agent operating in our learning framework.
Shaping has been previously applied to robot learning [12],
[13], [14], [15], [16] and consists in providing feedback
to the agent about success of behaviour execution before
the final goal of the to-be-learned sequence is reached. In
the architecture, presented here, the DFT-based framework
for behavioural organisation trough EBs provides a robust
interface to noisy and continuous environments, RL provides
for autonomous learning through exploration, and shap-
ing accelerates learning. Here, we have used the recently
developed T-learning RL algorithm which fits the neural-
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dynamic framework for behavioural organisation better than
the SARSA.

II. BACKGROUND

A. Dynamic Field Theory

Dynamic Field Theory (DFT; [2]) is a mathematical and
conceptual framework for modelling embodied cognition,
which is built on an approximation of dynamics of neu-
ronal populations, first analysed by Amari [17]. While
many neural network architectures use individual neurons
as computational units, DFT uses description of population
activity, expressed in continuous activation functions. The
activation function of a DF obeys the following differential
equation (analyzed by Amari [17]):

τ u̇(x, t) = −u(x, t)+h+S(x, t)+
∫
ω(x−x′)σ(u(x′, t))dx′,

(1)
where the dimension x represents the space of a be-
haviourally relevant variable, such as color, visual space,
or motor commands, which characterises the sensorimotor
system and the tasks of the agent; t is time, h < 0 is a
negative resting level, and S(x, t) is the sum of external
inputs, integrated by the DF along with the lateral inter-
action, defined by the sum-of-Gaussians interaction kernel
ω(x − x′), which has a the local excitatory and a long-
range inhibitory part. Output of the DF is shaped by a
sigmoidal non-linearity, σ, i.e. the regions of a DF with
activity below activation threshold are silent for the rest of a
DF architecture, only regions with suprathreshold activation
have impact on other DFs, the motor system, and the DF
itself.

The non-linearity and lateral connectivity in the DF’s
dynamics lead to stable localized peaks of activation to be
attractor solutions of the dynamics. These peaks build-up
from distributed, noisy, and transient input in an instability,
which separates a quiescent, subthreshold state of the DF
from the activated state. The activation peaks represent
perceptual objects or motor goals in the DFT framework.
The peaks may be sustained through lateral interactions even
if the initial input, which induced them ceases.

This ability to form and stabilize robust categorical
outputs makes DFT architectures particularly well suited
for robotic control systems, in which motor control relies
on perceptual (visual) information. Multiple coupled DFs
spanning different perceptual and motor modalities can be
composed into complex DFT architectures to organize robot
behavior. The building blocks of these architectures are
Elementary Behaviors (EBs), each consisting of stabilised
representations of intention and condition of satisfaction.

B. Elementary Behaviors and Behavior Chaining

An Elementary Behavior (EB) is an organizational struc-
ture in DFT which not only defines the actions associated
with a behavior, but also the mechanisms for initiating and
terminating that behavior.

In the original work on behavioural organisation with
attractor dynamics [18], attractor dynamics define values of

behavioral variables (e.g., heading direction), which charac-
terise the state of the robot and control the robot’s effectors.
The dynamics may integrate both attractive and repulsive
‘forcelets’, which determine behaviour of the system, con-
trolled by the given dynamics.

The limitation of the original attractor dynamics approach
was inability of EBs to switch themselves off and activate
another attractor-based controller. Thus, only appearance
of a new target would reset the attractor for the heading
direction dynamics, no explicit mechanisms is defined to
trigger selection or search for a different target when the
previous one was reached. This setting worked well in
navigation scenarios, due to an ingenious engineering of the
attractive and repelling contributions to the dynamics (e.g.
leading the robot to turn away from the reached target).
However, in more complex scenarios, which include object
manipulation, the system cannot rely on the immediately
and continually available sensory information, but needs to
leverage the sensory information into usable representations,
upon which autonomous decisions may be made and the
flow of actions may be autonomously controlled by the agent
itself.

Thus, the concept of elementary behaviour (EB) was in-
troduced in DFT [4]. The key elements in a DFT EB are the
intention and the condition of satisfaction. Both the intention
to act and the condition of satisfaction are represented by
dynamic fields over some behavioural (perceptual or motor)
dimension, as well as by the associated with these dynamic
fields CoS and intention nodes (zero-dimensional DFs),
which are the elements, on which learning may operate (see
further). Because the amount of time needed to complete an
action may vary unpredictably in dynamic and partially un-
known environments, the intention to achieve the behavior’s
goal is maintained as a stable state until completion of the
goal is signaled. The condition of satisfaction is activated
by the sensory conditions that index that an intended action
has been completed. The CoS serves two roles: on the one
hand, it terminates the associated intention, and on the other
hand, as a stable state, it serves to select the behavior to do
next.

In previous work, we have shown how EBs may be
chained according to rules of behavioral organization [4], [5]
or serial order [19]. In order to introduce learning into the
scheme, adaptive weights can be placed between CoS node
of one EB and the intention nodes of other EBs, representing
transitions between a just completed behavior (CoS), and
possible next behaviors (intentions). These weights serve
as values in the RL sense and may be learned, as was
introduced recently [7].

C. Reinforcement Learning.

We use a particular RL method, called T-learning [31],
in which value is associated with transitions between states,
instead of states or state-action pairs. Assigning value to
transitions is appropriate in our framework because an
elementary behavior itself is an attempted transition between
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two stable states (attractors), and the agent’s decision con-
stitutes choosing the next elementary behavior when it is in
one of these stable states. In other words, the agent needs to
pick the next most likely optimal transition. T-learning is the
simplest RL method for this type of setup. With T-learning
and EBs, there is no need to define a separate action set.

Further, T-learning is a more efficient learning method
than standard SARSA or Q-learning when some actions
are failure-prone, as is the case in many robotic learning
environments. In our setup, the rewarding transitions are
reinforced when accomplished successfully, but when they
fail, a different transition is credited — one which goes to
a ‘failure’ state, whereas if state-action values were used, a
failure would de-value the action itself (or the state-action
pair). T-learning suits the learning of ‘skilled’ behavior,
where learning to make difficult transitions is highly reward-
ing. By difficult, we mean that only a small percentage of
possible actions reliably transition to a state associated with
high reward. The T-learning agent will continue to try to
make that transition even after a failure.

The T-learning update rule is

T (s, s′)← T (s, s′) + α [r + γT (s′, s′′)− T (s, s′)] , (2)

where s, s′, and s′′ are three successive stable states
(either CoS of an EB, or the failure state), r is a reward,
α is the learning rate, and γ is the discount factor. In
our implementation, T-learning is combined with eligibility
traces [32], [33], in the same way as when SARSA becomes
SARSA(λ) [8], to deal with non-Markovian nature of the
task (a whole sequence is reinforced by a single reward,
received at the end of the sequence).

D. Shaping

Shaping, first introduced by B.F. Skinner [10], [11], is
well-known in both the psychological and reinforcement
learning literature as a method of conditioning. Shaping
involves teaching a desired behavior by successive approx-
imations, where the teacher or trainer invents and rewards
subgoals, which bring the agent’s behavior closer to that
of the desired behavior. Critically, one of the defining
characteristics in shaping, is successive and shifting positive
rewards, rather than the use of negative punishments.

In RL, an undirected exploration methods, such as ε-
greedy or purely random search [22], [8], which rely on
random actions, result in (a) redundancy in the search due to
lack of a memory structure and (b) search bias centralized on
the starting position, making it more difficult to discover far
away rewards. This problems are particularly relevant in RL
implemented on autonomous robots, which are slow, prone
to breakage, and cannot sustain long exploration periods.

Informed, directed exploration methods (such as opti-
mistic initialization or artificial curiosity [23]) may acceler-
ate learning. But the learning speed with directed exploration
is still considerably lower than when using guided learn-
ing, wherein knowledge about how to achieve rewards is
transferred to the agent during exploration. Guided learning

Fig. 1. The simulated YouBot and the environment, in which learning
takes place. The task of the robot is to bring colored objects to the grey
box.

manifests in RL under various guises and names, includ-
ing chaining [24] or chunking of actions into macro-
actions [25], manipulating the reward function to guide the
agent [12], [13], and knowledge transfer over tasks [26],
[27].

Dorigo and Colombetti [16] introduced the term robot
shaping, wherein a trainer, providing guidance and support,
was found to be greatly effective in speeding up the robot’s
learning. Various methods have been introduced to allow
the teacher to reinforce the robot in a timely and useful
manner, such as a reinforcement sensor [28], “good” and
“bad” buttons [29], as well as related methods such as
Learning from Easy Missions (LEM; [14]).

III. METHODS AND EXPERIMENTAL SETUP

Robot and Environment. We used the Kuka Youbot in
our experiments, implemented in the Webots simulator [30].
The Youbot combines an omnidirectional mobile base with
a one degree of freedom (DOF) rotating base platform and
a standard three DOF arm with a two pronged gripper
with force feedback. The Youbot provides flexibility to
move around untethered on a flat surface, and to reach for
and grasp small objects. The Youbot was enhanced with a
RGB and kinect sensor on the front, to detect and localize
targets for reaching, and infrared range (IR) sensors around
the robot, to detect obstacles. The Youbot is placed in an
environment with a few differently colored blocks upon
boxes, some obstacles, and a deposit location, the container.
A reward is given when the robot transports an object of a
specific color into the container at the deposit location (see
Fig. 1). Our implementation used seven different elementary
behaviors (EBs), which when chained appropriately lead to
a find-pick-and-place action. We introduce these elementary
behaviours next.
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Fig. 2. System architecture. See text for details.

• Visual search is an EB, which controls the orientation
of the robot’s base (its heading direction) and which is
‘satisfied’ when the target object is central in the robot’s
vision, as detected in a perceptual DF. The perceptual
DF’s input is a color histogram from every input image
column of the robotic camera [19], i.e. this is a 2D field
over dimensions of color and angular space. The target
color is biased in the perceptual field by a Gaussian-
ridge shaped input, such that only the target color’s
appearance in the camera image can produce an activity
peak in the perceptual DF. The output of the perceptual
DF along the spatial dimension feeds into the CoS
and motor intention fields. The motor intention field
controls the heading direction of the robot, based on
location of the target object in space, as represented
in the perceptual DF. The CoS has a preshape over
central image columns, and consequently the CoS only
creates a peak if the target is centred in the camera
image. If the target is not visible, a default pseudo-
random movement behavior takes over.

• Approach target EB moves the robot towards the
target, which must have been found with the visual
search EB beforehand. This is expressed as a pre-
condition of the approach EB [4]: if the object has
not been found first (the CoS of visual search has
not been activated), the approach EB transitions to
the failure state (see further). Behavioral variables of
the approach EB are heading direction and speed. The
infrared sensors provide repulsive forces, which signal
obstacles in the robot’s vicinity. The CoS of this EB

is activated when the distance between the target and
robot is below a given threshold.

• Orient arm to target rotates the arm platform until the
angle between the base-gripper vector and the base-
target vector becomes nearly zero. This provides an
optimal angle of approach for grasping.

• The reaching EB uses the Jacobian (which relates joint
angle changes to the velocity of the end effector) of the
three DOF RRR arm to continually move the central
point between the gripper prongs to a point just above
the target.

• The close gripper EB closes the gripper prongs until
the force feedback, resulting from the gripper pressing
on the object, surpasses a threshold.

• The open gripper EB moves the gripper prongs in the
opposite direction until the joint limits are reached.

• Approach deposit location has the same dynamics as
approach target, but uses the deposit location as the
target.

Failure State. The elementary behaviors above can fail,
either due to the lack of a precondition (e.g., the approach
behaviour), or something going wrong during execution
(e.g., the object not being grasped properly and falling
down). We added a failure state for such cases. To detect
failure, conditions of dissatisfaction (CoD) nodes are built
into each EB. All behaviors use timer-based CoD’s, set to
200 time steps. After failure, the robot pose is reset, as is
the environment’s state.

System Architecture. The system architecture is depicted
in Fig. 2. The figure shows a set of elementary behaviors,
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Fig. 3. Shaping improves the speed of policy learning, with an appropriate
exploration setting.

some field-based (with intention and CoS dynamic fields),
and some not (for which intention and CoS node suffice).
The EBs take turns controlling the robot. Each behavior
entails a stabilized representation of the condition of sat-
isfaction, which corresponds to the state of the RL agent.
There is another stable state associated with failure of any
behavior. A set of weights T , between each pair of EBs
defines the possible transitions between EBs. When a behav-
ior completes, a behavior selector chooses the next behavior.
This is performed either through a random choice (based on
the parameter ε, as in ε-greedy action selection), or by taking
the behavior with the largest weight e.g., the largest T (s, s′),
given s. The weights are adapted through T-learning with
an eligibility trace, using parameters α (learning rate), γ
(discount factor), and λ (eligibility trace decay). The rewards
come from the environment when a particular sequence is
completed. Additional shaping rewards may arrive after the
agent correctly completes each step of the sequence.

IV. EXPERIMENTAL RESULTS

A. Effect of Shaping

In our previous work, the agent needed to discover the
rewarding sequence through random search before any up-
date of the value node weights due to reinforcement could be
done. Learning in this case, while theoretically guaranteed,
becomes too slow for real world agents. With shaping,
the teacher provides positive reinforcement for successfully
completed intermediate steps and thus modifies the reward
function. Consequently, shaping should decrease the search
time to discover the rewarding sequence and accelerate
learning the policy that allows the robot to accomplish the
sequence reliably.

To test this, we compared two RL setups, in which 100
learning trials were run in each. In both, there were four
behaviors, and the rewarding sequence was 5 items long. In
one case (with shaping), the agent received rewards after
each correct step in the sequence (besides the first one
completed). In the other (without shaping), the agent only
received a reward after the entire sequence was completed.
In each case, ε-greedy action selection was used, and we
tested two exploration settings of ε = {0.999, 0.996}, where
the random action chance starts from ε = 1 (100%) and is
multiplied by ε after each behavioral transition. In all cases,

the learning rate was α = 0.1, the eligibility trace parameter
λ = 0.6, and the discount factor γ = 0.9.

In order to measure policy correctness, we measured the
deviation of the optimal policy from the policy at every
time step. To do this, the maximum valued action of each
state was compared with the correct action. If they matched,
the agent scored 0.25 points. An optimal policy, where the
agent does the right thing in each state, scores 1, and the
worst policy scores 0. Mean policy correctness for the four
methods at each decision point are shown in Fig. 3. One
can see that on average, the two variants with shaping
learn much faster. The variants with a faster decreasing
exploration factor are more prone to catastrophic failure
runs, where the agent never learns the rewarding sequence. If
one can tolerate a chance of failure, the variant with shaping
and quicker exploration decrease can learn a bit faster than
the other shaping variant. The variant without shaping and
fast exploration decrease fails more than on the half of the
trials. We have also tested performance of the models at
different learning rates. In all cases, the shaping variants
find the correct sequence faster.

B. Further RL Experiments
For further analysis of the performance of the neural-

dynamic RL algorithm with shaping, we simulated the
Youbot-Webots scenario numerically, in order to study
learning in isolation. In these experiments, each behavior’s
success is endowed with a probability, instead of relying on
the environment physics. Using this setting, we studied the
effect of the choice of the learning algorithm (SARSA or
T-learning), the effect of shaping, the effect of the eligibility
trace, and the effects of all parameters.

First, we note that the scenario is designed to be the same
as in the Webots simulation. The robot has to perform a
sequence of seven elementary behaviors in the correct order
to get the big reward. It has to transition from “Visual
Search” to “GoTo Target” to “Orient Arm to Target” to
“Reach” to “Grab” to “GoTo Deposit Location” to “Open
Gripper”. The states for the RL algorithms correspond to
the stable states provided by the conditions of satisfaction
of the seven EBs, with the addition of a failure state.

Each sequence of two behaviors was endowed with a
probability of failure. For example, if the robot tries to
go from the visual search CoS to the GoTo object CoS,
there is a 5% chance of failure. If any behavior fails, the
robot transitions to the failure state. These probabilities were
mostly either very low (e.g., 10%) or high (100% for all
impossible transitions).

We have established earlier that this problem is a POMDP,
which can be learned using standard RL with shaping and
an eligibility trace. Using both of these, we came to a set of
parameters, with which SARSA and T-learning could solve
the problem within about 12,000 behavior transitions: the
discount factor γ = 0.5, the eligibility trace decay rate λ =
0.95, the learning rate α = 0.05, the initial random action
chance ε = 0.999, and the random action chance decay rate
ε = 0.9999.
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Fig. 4. Value functions in various conditions of learning viewed as graphs. All graphs were constructed in the following way. The weight for the edge
shown between each two EBs is larger of the two directional transitions in the value function. In this way, a symmetric weighted adjacency matrix is
constructed, which is row-normalized. (a). Initial value function using zeros. (b). State-action values of SARSA(λ) using shaping and memory (eligibility
trace) after 20,000 transitions. (c). Transition values of T-learning using shaping and memory after 20,000 transitions. (d). State-action values when
shaping was not used. (e). State-action values (outcome of SARSA) after the experiment where several EBs had a high chance of failure. (f). The result
of T-learning using the same conditions as (e).

The shaping rewards were set to 1, after each successive
correct step in the rewarding sequence, while the big reward
at the end of the sequence was set to 100. When shaping
was disabled, either with or without the eligibility trace, the
agent could not find the rewarding sequence after 150,000
transitions. When shaping was enabled but the eligibility
trace was disabled, the agent could find the rewarding
sequence (within about 20,000 transitions), but the resulting
state-action or state-state values were less robust than in the
case where both shaping and the eligibility trace were used.
Less robust means here, that the values of correct transitions
differed less from the other values, and thus the sequence
more easily got corrupted during exploration, although the
agent usually converged to the correct sequence.

With T-learning, the learning algorithm does not need
an action set. This is advantageous in our framework,
since we have a direct mapping of RL states to the stable
states (CoS/CoD nodes) of the neural-dynamic architecture.
In DFT, there is no direct representation of classical RL
actions – instantaneous transitions between states. Since in
SARSA, the state-action transition values are learned, when
implementing SARSA for comparison with the approach,
presented here (T-learning with shaping), we use an at-
tempted completion of a behavior as action in RL terms.
In T-learning, we only need to represent that the agent tries
to accomplish some transition, which corresponds to the
neural-dynamic EB. Critically, if the agent fails, another
transition gets the credit (to the failure state). In SARSA,
the transition that was tried gets the credit, no matter where

the agent actually ends up, which prevents the agent from
trying a failed transition again.

Even though the main reason we used T-learning is
to better match the conceptual framework of behavioural
organisation in DFT, we can show a learning advantage
as well. We used a “high-failure” environment, where the
transitions from “Orient Arm to Target” to “Reach”, and
from “Reach” to “Grab” were both set to 70% failure rate.
We also extended exploration by setting ε = 0.99999. In
this case, T-learning, with both shaping and the eligibility
trace, was able to find the correct sequence after 150,000
transitions. However, SARSA under the same conditions and
parameters was not able to find the sequence.

Thus, T-learning enables the learning in high-failure en-
vironments. In the Webots simulation, neither the reach nor
the grab fail anywhere close to 70%, the failure rate is close
to 10% for this EBs in simulation. However, we expect this
to change in an implementation with a real physical robot
and consequently, the T-learning with shaping might be the
key to application of RL in robotics.

With both shaping and memory, the 12,000 transitions are
needed to find the seven item sequence in our simulation,
most of the simulation being exploration, in which most
behaviours are terminated due to passing the time limit.
Without shaping, finding the sequence would take roughly
70 times longer.

Figure 4 shows the value function for various learning
conditions. Note, that only the variants with shaping succeed
in learning the correct sequence of seven EBs after 20.000
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transitions, including when the chance of failure is high
(subplot f). A plot showing the time-courses of EBs during
exploration and exploitation is shown in Fig. 5. Here, the dif-
ferent EBs take different amounts of time, making use of the
stabilising properties of the neural-dynamic behaviours, in
which the DF intentions sustain different durations, needed
to finish an action in a physical environment. Overall, our
results support the hypothesis that both shaping and memory
(eligilbility trace), as well as the segregation of the state-
action space into attractor-based neural-dynamic EBs, are
very beneficial for learning sequences in partially observable
environment.

C. Simulated Robot Experiments

We successfully applied the shaping-based RL system
to the Youbot, to produce the behavior of depositing a
yellow target object in the periwinkle container. A video
of the Youbot performing the rewarding sequence is at
http://www.idsia.ch/∼luciw/videos/youbotreward.avi. A few
behavior transition failures can be seen at http://www.idsia.
ch/∼luciw/videos/youbotfail1.avi (the robot tries to reach an
object out of range), and http://www.idsia.ch/∼luciw/videos/
youbotfail2.avi (the robot tries to go to a target it has not
located visually, yet).

D. Notes on a Comparison to the System of Duran, Lee,
and Lowe

We should note the similarities and differences of our
system to one of Duran, Lee, and Lowe, 2012 [34]. They
also use reinforcement learning to adapt a set of weights,
used to chain elementary behaviors together. However, their
system uses a reward signal which is not sparse, namely,
the distance of the robot’s arm to the target. Using this
information, the robot does not have to wait until the end
of the sequence for any feedback about how well it is
doing. In our case, the reward is delayed until the end of
the behavioral sequence. This makes the learning problem
more difficult since the information about the utility of each
choice will not be available after each choice. One can
think of our shaping rewards as a developmental mechanism
to deliver this gradient information, to enable sequence
learning in a feasible time frame.

V. CONCLUSIONS

In this paper, we have considered different variants of
the reinforcement learning algorithm in a simulated robotic
scenario in order to study theoretical challenges and possible
solutions for application of RL in physical robots.

The state-action space of a robotic agent is high-
dimensional and continuous in nature, which makes applica-
tion of conceptually well-suited for robotics RL paradigm
prohibitedly time- and resources consuming. We have ar-
gued that the neural dynamics, in particular the Dynamic
Field Theory, offers means to segregate the continuous
and high-dimensional state-action space of a robotic agent
into discrete, attractor-based elementary behaviours. The
dynamic neural fields and the DFT-based EBs have been

previously demonstrated to successfully organise behaviour
of real physical robots [4], [35]. Here, we have extended
the recently introduced framework, which implements the
RL algorithm SARSA in terms of the neural dynamics, by
adding shaping. We have studied influence of the choice
of the RL algorithm on the performance of the system,
demonstrating that the T-learning enables learning in cases
with a high probability of failure. We have demonstrated
how shaping may be introduced in this framework, which
facilitates learning of longer sequences in large spaces,
discretised by the EBs.

In the animal learning literature, from which machine
learning RL takes its inspiration, learning of long sequences
from a single rewards at the end of a sequence is not typical.
In most studies, RL in biological systems refers to learning
of a single stimulus-response association only [36]. Thus,
shaping – a successive learning of a sequence by rewarding
intermediate stimulus-response transitions – is a way how
RL may lead to learning long sequence in animals [10],
[11]. Shaping is thus also a promising method to enable RL
in robotics, where exploration of large behavioural spaces
is too costly.

Reinforcement learning and shaping are not the only
methods of learning, required to develop truly autonomous
self-organising and adaptive agents. Indeed, these methods
only lead to learning of what to do, i.e. which behaviours
to activate in different situations, but not how to perform
different actions. In some cases, more supervision and
imitation learning may be needed [37], whereas in other
cases motor babbling and self-organising mappings [38]
may solve the “how” of the learning task.
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