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Abstract. We present here a simulated model of a mobile Kuka Youbot which
makes use of Dynamic Field Theory for its underlying perceptual and motor con-
trol systems, while learning behavioral sequences through Reinforcement Learn-
ing. Although dynamic neural fields have previously been used for robust control
in robotics, high-level behavior has generally been pre-programmed by hand. In
the present work we extend a recent framework for integrating reinforcement
learning and dynamic neural fields, by using the principle of shaping, in order to
reduce the search space of the learning agent.
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1 Introduction

In the past few years, there has been a renewed interest in Dynamic Field Theory (DFT)
for robust control of robotic agents [32, 28, 25]. In DFT, attractor dynamic based be-
haviors stably deal with noisy and time-continuous sensory input. making it a desirable
candidate for a method of sensory processing and motor control.

To enable an agent to perform high-level, goal-directed action sequences, the behav-
ioral repertoire of an agent can be organized into Elementary Behaviors (EBs). Each EB
has an “intention”, a stable attractor state persisting during the behavior, and a “condi-
tion of satisfaction” (CoS; the desired perceptual outcome of a behavior), a stable attrac-
tor state which destabilizes the intention, and therefore sits between EBs. EBs can be
chained together to perform action sequences. Although preprogrammed behavioral se-
quences may suffice in certain environments, a more general autonomous agent should
be able to learn new rewarding behavioral sequences, and adapt to different environ-
ments, online and in real-time.

In order to show how goal-directed sequences of EBs could be learned from re-
ward, we recently introduced a model [17] which blended Dynamic Neural Fields, and
the Reinforcement Learning (RL; [37, 16]) algorithm, SARSA(�). This system could
autonomously learn sequences through random exploration, and the model operated in
real-time, continuous environments.
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One drawback with our previous model is that, as the number of available behaviors
increases, waiting for such an agent to randomly explore action sequences in real-world
environments becomes untenable. Building upon our previous framework, we introduce
here a study of how the concept of shaping [35, 22], from the field of animal learning can
be used in order to speed up training time for robotic and artificial agents operating in
our learning framework. Shaping has elsewhere been applied to robot learning [13, 20,
2, 30, 5], but not before within a DFT-based framework. DFT-based EBs provide a ro-
bust interface to noisy and continuous environments, RL provides autonomous learning
through exploration, and shaping accelerates learning without abandoning our inspira-
tion: a developmental narrative that goes back to Piaget [23].

2 Background

2.1 Dynamic Field Theory

While classical neural network architectures make use of computational units at the
level of individual neurons, Dynamic Field Theory (DFT; [32]) is a framework built
on Amari dynamics [1], which mathematically describe the continuous-time dynamics
of activitions over a field of neurons. The activity of any given Dynamic Neural Field
(DNF) is defined over continuous dimensions (e.g., color or space), which characterize
the sensorimotor systems and task space of the agent. Fields aggregate neural activity
by simulating excitatory inputs, as well as lateral patterns of connectivity, such as local
excitatory, and long-range inhibitory connections. As a result of the non-linearities in
the DNF’s dynamics, and the lateral interactions within the fields, stable localized peaks

of activation emerge from distributed, noisy, and transient input. These activation peaks
represent perceptual objects or motor goals in the DFT framework.

This ability to form and stabilize robust categorical outputs, makes DFT architec-
tures particularly well suited for robotic control systems. Multiple coupled DNFs span-
ning different perceptual and motor modalities can be composed into complex DFT
architectures to organize robot behavior. The building blocks of these architectures are
known as Elementary Behaviors.

2.2 Elementary Behaviors and Behavior Chaining

An Elementary Behavior (EB) is an organizational structure in DFT which not only
defines the actions associated with a behavior, but also the mechanisms for initiating
and terminating that behavior.

The key elements in a DFT EB are the intention and the condition of satisfaction.
Both the intention to act and the associated condition of satisfaction are represented
by attractor states within dynamic neural fields. Because the amount of time needed to
complete an action may vary unpredictably in dynamic and partially unknown environ-
ments, the intention to achieve the behavior’s goal is maintained as a stable state until
completion of the goal is signaled, so it is not necessary to model how long it is ex-
pected for the behavior to take. The condition of satisfaction is a neural representation
of the sensory conditions that index that an intended action has been completed. The
CoS serves two roles: 1. it terminates the associated intention, and 2. as a stable state,
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it serves as a breakpoint between behaviors — once satisfaction is achieved, the agent
can decide what behavior to do next.

A standard DNF-based EB [27]) consists of a set of DNFs, as well as intention and
CoS nodes. While the nodes play a role at the level of inter-behavior dynamics (i.e.,
switching between behaviors by initiating and terminating a given EB), the DNFs in
the EB determine the intra-behavior dynamics (e.g., how the motor system responds in
real-time, to changing perceptual stimuli).

In previous work, we have shown how EBs may be chained according to rules of
behavioral organization [25, 27], serial order [29, 7, 6], or the value-function of a goal-
directed representation [17]. Multiple EBs can be composed into chains [28], where
a sequence of behaviors execute one after another, in parallel and/or in response to
sensory information [27].

In order to introduce learning into the scheme, adaptive weights can be placed be-
tween CoS nodes and intention nodes, representing transitions between a just completed
behavior (CoS), and possible next behaviors (intention). These weights serve as values
in the RL sense.

2.3 Dynamic Neural SARSA

The recently introduced Dynamic Neural SARSA(�) [17] model integrates the well
known SARSA(�) model of reinforcement learning [26, 37] with the mathematical
language of neural dynamics. The model makes use of EBs for sensorimotor control,
while simulating the eligibility traces (�) of the SARSA model with an Item and Order
Working Memory [11].

Although the model successfully learns behavioral sequences from delayed rewards,
random exploration with the fully connected search space (any EB can transition to any
other EB) can become prohibitively time consuming. Not only does random exploration
lead to a combinatorial explosion of the search space with increasing numbers of be-
haviors, but because each behavior is a continuous real-time action, any given action
will require a variable amount of time to terminate before exploration can continue.
For such a learning mechanism to work in a more efficient, and time-friendly manner,
shaping is used.

2.4 Shaping

Shaping, introduced by B.F. Skinner [35, 22], is well-known in both the psychologi-
cal and reinforcement learning literature as a method of conditioning. Shaping involves
teaching a desired behavior by successive approximations, where the teacher or trainer
invents and rewards subgoals, which bring the agent’s behavior closer to that of the
desired behavior. For example, in a classic shaping experiment, Skinner trained a pi-
geon to strike a wooden ball, by successively rewarding the pigeon turning towards
the ball, then stepping towards the ball, then moving within a certain distance of the
ball, etc. Skinner described the effect of shaping as “altering the general distribution of
behavior”, noting “in this way we can build complicated operants which would never
appear in the repertoire of the organism otherwise”. Critically, one of the defining char-
acteristics in shaping, is successive and shifting positive rewards, rather than the use of
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negative punishments (which can certainly also be used to “alter the general distribution
of behavior”).

With respect to artificial agents, RL researchers realized that difficulties could arise
from some reward functions, such as those with a single goal state in a large search
space, when combined with undirected exploration methods, such as ✏-greedy or purely
random search [38, 37]. Undirected exploration methods rely on random actions, re-
sulting in 1. redundancy in the search due to lack of a memory structure and 2. search
bias centralized on the starting position, making it more difficult to discover far away
rewards. Informed, directed exploration methods (such as optimistic initialization or
artificial curiosity [31]) are more effective in accelerating learning. But the learning
speed with directed exploration pales in comparison to guided learning, wherein one
knowledgable about how to achieve rewards is able to transfer this knowledge to the
agent. Guided learning manifests in RL under various guises and names, some of which
are, sometimes (but not always), referred to as shaping. These include chaining [39] or
chunking of actions into macro-actions [21], manipulating the reward function to guide
the agent [13, 20], and knowledge transfer over tasks [33, 18].

Reinforcement learning is, in theory, an attractive framework for autonomous learn-
ing. Autonomous robots present difficulties however: they are slow, and prone to break-
age [8], and, of course, they have to operate in real-time. Undirected and even di-
rected exploration presents prohibitive challenges for autonomous robots, especially
with larger state spaces. Dorigo and Colombetti [5] introduced the term robot shaping,
wherein a trainer, providing guidance and support, was found to be greatly effective in
speeding up the robot’s learning. Various methods have been introduced to allow the
teacher to reinforce the robot in a timely and useful manner, such as a reinforcement
sensor [4], “good” and “bad” buttons [41], as well as related methods such as Learning
from Easy Missions (LEM; [2]).

3 Methods

Robot and Environment.The Kuka Youbot was our experimental robotic platform for
our system, implemented in the Webots simulator [40]. The Youbot combines a om-
nidirectional mobile base (via Mechanum wheels [14]) with a one degree of freedom
(DOF) rotating base platform, upon which is a standard three DOF RRR arm [36] with
a two pronged gripper, with force feedback. The Youbot provides flexibility to move
around untethered on a flat surface, and to reach for and grasp small objects. It is a
good “far-ranging” pick and place robot, compared to an arm with an immobile base.
The Youbot was enhanced with a RGB and kinect sensor on the front, to detect and
localize targets for reaching, and infrared range (IR) sensors around the robot, to detect
obstacles. The Youbot is placed in an environment with a few differently colored blocks
upon boxes, some obstacles, and a deposit location — the container near the oven. A
reward is given when the robot transports a object of a specific color into the container
at the deposit location. See Fig. 1. Our implementation used seven different elementary
behaviors, which we will discuss further below. First we describe EBs in general in
terms of attractor dynamics and neural fields.
Attractor Dynamics EBs. As modeled by Bicho, Mallet, and Schöner [3], each EB
involves controlling one or more behavioral variables (e.g., heading direction), which
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Fig. 1. Left. The YouBot. Right. The environment.

represent the state of the system, particular to that EB. The behavioral variable values
are continually mapped to control the robot’s effectors. The behavioral dynamics are
differential equations updated via attractive and repulsive forcelets. The attractor solu-
tions are the asymptotically stable states, and the achievement of one of these is the
goal of the behavior. Example attractive forces are changing the alignment of heading
direction until a target is directly in front of the robot, and diminishing the distance
between the robot and the target until it is below a threshold. Example repulsive forces
are from obstacles, which effectively perturb heading direction and distance so that the
robot moves away from them. The definitions and strengths of the attraction, repulsions,
and their ranges are hand-selected.
Field-Based EBs. The above attractor dynamics approach is effective but limited. In
some cases, such as with a real robot using information from its sensors to represent
its world, the necessary variables (such as the target location) are not directly available;
instead the robot needs to leverage its sensory information into usable representations.
Dynamic neural fields are used to overcome this limitation. Instead of behavioral vari-
ables, DNFs use behavioral dimensions (i.e., a selection of sensory input), over which
there is a field of activation. Field activations have input from the environment, lateral
input (self-excitation, and a localized activation kernel), and EB-specific “top-down”
biases (certain dimensions are boosted, to preferably choose a target associated with
those dimensions). Stable peaks emerge as output from the activation dynamics, and
those peaks are used as de facto behavioral variables.

The activation level of a DNF uses the following differential equation (analyzed by
Amari [1])

⌧ u̇(x, t) = �u(x, t) + h+ S(x, t) +

Z
!(x� x

0)�(u(x0
, t))dx0

, (1)

over spatial dimension x at each time t, where h < 0 is a negative resting level and
S(x, t) is the sum of external inputs, for instance from sensors or other DNFs. The
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local activation kernel !(�x) determines the lateral interaction within the field, e.g.,
local excitation and long-range inhibition. There is also self-excitation, in the form of
�, an output function, typically a sigmoid. A high output value leads to a stable peak of
activation, the unit of representation in DFT. Field-based EBs use three fields, namely
perceptual, condition of satisfaction, and motor, and include a perceptual field bias (for
target representation), and a CoS field bias (for goal representation).
EBs used.

– Visual search is a field-based behavior, which controls the robot’s base, and which
stabilizes when the target object is central in the robot’s vision. The perceptual
field’s input is a color dimension at all input image columns [29]. The target’s
color is biased in the perceptual field, such that only that color’s appearance in the
field can produce an output peak. The perceptual output feeds into the CoS and
motor fields (which controls heading direction). The CoS bias is over central image
columns, and the CoS only creates a peak if the target is centered. If the target is
not visible, a default pseudo-random movement behavior takes over.

– Approach target moves the robot towards the target, which must have been found
with visual search beforehand (as a precondition [25]) Behavioral variables are
heading direction and speed. The IR sensors provide repulsive forces. The CoS is
that the distance between the target and robot is small.

– Orient arm to target rotates the arm platform until that the angle between the
base-gripper vector and the base-target vector becomes nearly zero. This provides
an excellent angle of approach for grasping.

– The reaching EB uses the Jacobian (which relates joint angle changes to the veloc-
ity of the end effector) of the three DOF RRR arm to continually move the point in
between the gripper prongs to a point just above the target (a closed form inverse
kinematics solution exists for such a manipulator, but does not suit an attractor
dynamics framework).

– The close gripper EB closes the gripper prongs until the force feedback, resulting
from the gripper pressing on the object, surpasses a threshold.

– The open gripper EB moves the gripper prongs in the opposite direction until the
joint limits are reached.

– Approach deposit location has the same dynamics as approach target, but uses
the deposit location as the target.

Failure State. These behaviors can fail, either due to the lack of a precondition, or
something going wrong during execution (like the object not being grasped properly
and falling down). We added a failure state for such cases. To detect failure, conditions
of dissatisfaction (CoD) were built into each EB. All behaviors used timer-based CoD’s,
set to 200 time steps, where each time step in simulation lasted 64 ms. After failure, the
robot pose is reset, as is the environment’s state (e.g., any displaced objects are placed
back in their starting positions).
Reinforcement Learning. We use a particular RL method, called T-learning [10], in
which value is associated with transitions between states, instead of states or state-
action pairs. Assigning value to transitions is appropriate in our framework because an
elementary behavior itself is an attempted transition between two stable states (attrac-
tors), and the agent’s decision constitutes choosing the next elementary behavior when
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it is in one of these stable states. In other words, the agent needs to pick its next ideal
transition. T-learning is the simplest RL method for this type of setup. With T-learning
and EBs, there is no need to define a separate action set.

Further, T-learning is a more efficient learning method than standard SARSA or Q-
learning when some actions are failure-prone, as is the case in many robotic learning
environments. In our setup, the rewarding transitions are reinforced when accomplished
successfully, but when they fail (e.g., the object slips out of the robot’s gripper during
an attempted grasp), a different transition is credited — one which goes to a “failure”
state. If state-action values were used, and if “grasp” were an action, a failure would
de-value this action. T-learning suits the learning of “skilled” behavior, where learning
to make difficult transitions is highly rewarding. By difficult, we mean that only a small
percentage of possible actions reliably transition to a state associated with high reward.
The T-learning agent will continue to try to make that transition after experiencing it
just once.

The T-learning update rule is

T (s, s0) T (s, s0) + ↵ [r + �T (s0, s00)� T (s, s0)] (2)

where s, s0, and s

00 are three successive stable states (either CoS of an EB, or the failure
state), r is a reward, ↵ is the learning rate, and � is the discount factor. In our implemen-
tation, T-learning is combined with eligibility traces, in the same way SARSA becomes
SARSA(�) [37].

4 Experimental Results

In the sort of behavioral chaining task we are considering here, we need to reinforce
a sequence of behaviors, which led to a reward. This is not a Markovian setup. In the
rewarding sequence A ! B ! C, the reward is delivered after C, but C is only a
valuable behavior to select after B and A. If we reinforce the selection of C, the robot
will often wrongly select it. One way to deal with this is to use composite states such
as AB, BC, or ABC, which causes an explosion in the number of states, but can be
tractable if we know the necessary chaining limit. Another way is to use an eligibility
trace [19, 15], which is what is done in our implementation.

In our previous implementation, using DN-SARSA(�), the agent needed to discover
the rewarding sequence, through random search, before any reinforcement, i.e., learning
of the value node weights, could be done. For n behavior nodes, the chance that a
sequence of length m is discovered randomly is 1/(nm), which becomes prohibitively
small as the number of EBs and/or the length of the sequence increases. Learning, while
theoretically guaranteed, becomes too slow for real world agents.

With shaping, the teacher’s input modifies the reward function by providing pos-
itive reinforcement for successfully completed intermediate steps. We expect shaping
decreases both the search time to discover the rewarding sequence (i.e., perform it for
the first time), and to learn the policy that allows the robot to accomplish the sequence
reliably. To test this, we compared two RL setups, in which 100 learning trials were run
in each. In both, there were four behaviors, and the rewarding sequence was 5 items
long (e.g., A ! D ! C ! B ! A). In one case (with shaping), the agent received
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rewards after each step in the sequence (besides the first was completed). In the other
(without shaping), the agent only received a reward after the entire sequence was com-
pleted. In each case, ✏-greedy action selection was used, and we tested two exploration

settings of " = {0.999, 0.996}, where the random action chance starts from ✏ = 1
(100%) and is multiplied by " after each behavioral transition. In all cases, the learning
rate for SARSA ↵ = 0.1, the eligibility trace parameter � = 0.6, and the discount
factor � = 0.9.
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Fig. 2. Shaping improves the speed of policy learning, with an appropriate exploration setting.

In order to measure policy correctness, we measured the deviation of the optimal
policy from the policy at every time step. To do this, the maximum valued action of
each state was compared with the correct action. If they matched, the agent scored 0.25
points. A perfect policy, where the agent does the best thing in each state, scores 1, and
the worst policy scores 0. Mean policy correctness for the four methods at each decision
point, or behavior transition point, are shown in Fig. 2. One can see that on average, the
two variants with shaping learn much faster. The variants with a quicker decreasing
exploration factor are more prone to catastrophic failure runs, where the agent never
learns the rewarding sequence. If one can tolerate a chance of failure, the variant with
shaping and quicker exploration decrease can learn a bit faster than the other shaping
variant. The variant without shaping and quick exploration decrease is very prone to
failures.

In Table 1, we can see the average time each variant first discovered the rewarding
sequence. We also try a few different learning rates, here. The number to the left of the
dash in each table cell shows the mean sequence discovery time, while the number to the
right of the dash shows the mean time, if all failure runs are removed. In parentheses is
how many failure runs there were (out of 100). One can see the shaping variants usually
find the sequence first. The variant without shaping and fast exploration decrease fails
more often than not, but the runs that don’t fail find the sequence very quickly. This
however, is simply due to sampling bias (namely, by throwing out all long-run trials
that do not complete). The only way this variant can learn the correct sequence is if it
gets lucky with the random number generator, and finds the correct sequence early on.
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Table 1. Format: a-b (c). (a): Mean number of decisions before the rewarding five-item sequence
was first discovered. (b) Each run was stopped after 2000 decisions, and “catastrophic runs” never
find the sequence. The second number shows the average without including catastrophic runs. (c):
The number of catastrophic runs, out of 100.

Learning Rate
0.1 0.25 0.5

With Shaping " = 0.999 401 - 401 (0) 372 - 372 (0) 400 - 400 (0)
" = 0.995 311 - 259 (3) 391 - 270 (7) 390 - 287 (6)

Without Shaping " = 0.999 597 - 507 (6) 670 - 539 (9) 600 - 511 (6)
" = 0.995 1280 - 197 (60) 1291 - 182 (61) 1233 - 173 (58)

We successfully applied the shaping-based RL system to the Youbot, to produce
the behavior of depositing a yellow target object in the periwinkle container. A video
of the youbot performing the rewarding sequence is at http://www.idsia.ch/
˜

luciw/videos/youbotreward.avi. A few behavior transition failures can be
seen at http://www.idsia.ch/

˜

luciw/videos/youbotfail1.avi (the
robot tries to reach an object out of range), and http://www.idsia.ch/

˜

luciw/

videos/youbotfail2.avi (the robot tries to go to a target it has not located vi-
sually, yet).

5 Discussion and Conclusions

Without shaping, the robot had to explore, either randomly, or over every possible se-
quential path. Although this could be effective in discovering and reinforcing basic or-
ganizational constraints between behaviors, the speed of learning the overall goal would
be significantly slower. With shaping, the goal was reached faster. Both of these modes
could be appropriate in different situations. While a naive robot may need to explore
broadly to discover what it can and cannot do at a low level (assuming it is protected
from harming itself [8]), it can be desirable to allow a teacher to guide learning for par-
ticular tasks. In such scenarios, shaping becomes an efficient and effective method of
learning.

A potential drawback of imposing shaping or some other guided learning method
on an autonomous agent is that the agent loses some autonomy by being guided. In
other words, the agent might not only learn to do what we want it to do, but also how to
do it. Skinner’s pigeon could not be directly programmed, but our robots can be. What
is the utility of learning? Why don’t we just program the robot to do what we want?

The same arguments supporting RL over direct programming apply to shaping, ex-
cept at a lower level of granularity. Shaping, in the form suggested by Skinner’s experi-
ments, involves constructing “waypoints”, in the reward function, without imposing the
exact path to get to each waypoint. Adaptive algorithms can take advantage of unfore-
seen environmental quirks and find surprising (to the teacher) paths. And some agent-
environments are not straightforward to hand-program (i.e., bicycle [24], cart-pole [9]).

Further, shaping does not have to be the only method of learning available. Shaping
can be an important piece of the learning repertoire of any autonomous agent that will
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interact with teachers/trainers in real time. The robot can use other forms of learning
(i.e., curiosity-driven exploration) when it has time to do so, and when it won’t hurt
itself. In other cases, the teacher can play a very important role.

Future Work. A deficiency of our architecture is that it cannot learn a sequence
with multiple instances of the same item in it, such as A ! B ! A ! C. This is
a known issue of sequence learning with an Item and Order working memory [12],
which is what we used for the eligibility trace. Any method where a temporal sequence
becomes a spatial pattern via decay will be unable to represent a sequence with repeated
elements, without using duplicated but unique elements, sometimes called rank cells

(e.g., A� 1, A� 2 can represent two instances of A [34]).
A simple method to deal with the repeated items problem, in the context of this

work, is to ensure that no rewarding sequence includes repeated elements. Of course,
this will diminish the sequence space that is searched over. It is sensible that, given
such a shortcoming, we should not allow exploration of sequences with repeated items
either, but our current system has no such restrictions. We are currently exploring neu-
ral dynamics mechanisms for disabling exploration over repeated items. We note this
will improve the learning speed of the current system, as the probability of randomly
getting the right sequence of m items in n possibilities increases greatly, from 1/(nm)
to 1/(n!/(n�m)!).
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3. Bicho, E., Mallet, P., Schöner, G.: Target representation on an autonomous vehicle with
low-level sensors. The International Journal of Robotics Research 19(5) (2000) 424–447

4. Colombetti, M., Dorigo, M.: Training agents to perform sequential behavior. Adaptive
Behavior 2(3) (1994) 247–275

5. Dorigo, M.: Robot shaping: an experiment in behaviour engineering. The MIT Press (1998)
6. Duran, B., Sandamirskaya, Y.: Neural dynamics of hierarchically organized sequences: a

robotic implementation. In: Proceedings of 2012 IEEE-RAS International Conference on
Humanoid Robots (Humanoids). (2012)
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