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Abstract. A dilemma arises when sequence generation is considered in
embodied autonomous agents. While achieving an individual action goal,
the agent must be in a stable state to link to fluctuating and time-varying
sensory inputs. To transition to the next goal, the previous state must
be released from stability. A previous proposal of a neural dynamics that
solves this dilemma by inducing an instability when a “condition of sat-
isfaction” signals that an action goal has been reached does not scale to
more complex sequences. We address this limitation by showing how the
neural dynamics can be generalized to generate hierarchically structured
behaviors. Actions are initiated in a downward stream, their termination
is signaled in an upward stream. We analyze the mathematical mecha-
nisms and demonstrate the flexibility of the scheme in simulation.
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1 Introduction

Perhaps you have once thought about a new paper while cooking your dinner
and keeping an eye on the toddler next door, being interrupted by a phone call
and then returning to your last thought. If so, then you were demonstrating a
hallmark of human embodied cognition, our capacity to generate well-organized
sequences of mental and physical acts while faced with a complex, time-varying
environment. Enabling artificial cognitive systems to generate sequences requires
theoretical understanding of sequence generation shaped into process models
that can be linked to real sensory information, that control real effectors, and
that operate in the real world.

Although considerable theoretical work has focussed on sequence generation,
often with methods from the theory of neural networks [1–3], the demands of em-
bodiment have received little attention. A critical issue in acting out sequences
is the conflict between a need for stability to resist to change while performing
a step in a sequence, and a need for release from stability to transition to the
next step. Previously, we have proposed a neural dynamics that addresses this
issue [4]. Each step in a sequence is an attractor state that steers in a closed
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loop the action of an agent toward the intended action goal. A specialized neural
structure represents the “condition of satisfaction”, that continuously compares
the current intention to perceptual information. When perception matches in-
tention, a dynamical instability releases the current attractor from stability and
switches to the next attractor. This proposal was elaborated in simple models [4,
5], in which a set of ordinal units represents the serial order of a sequence. Each
ordinal unit projects onto the sensory and motor systems required to achieve
each action goal. Although we have recently, generalized this idea to enable flex-
ible reorganizations of sequences in a robotic setting [6], this proposal faces a
fundamental limitation. Every time a new sequence is learned, new units must
be linked to the relevant sensory and motor systems and the number of these
units cannot be multiplied for ever.

Cognitive scientists and roboticists have recognized that scaling the complex-
ity of real-world sequence generation requires hierarchical structures, in which
chunks of subsequences and individual action units can be reused flexibly [7–10].
Such hierarchies are conceptually founded on an information processing view
of neural computation in which each stage of a computation has a well defined
outcome that then triggers the next computational step. This conception makes
strong demands on each element of the hierarchy so that it may detect its own
completion independently of the state of the agent and its environment (and
leaves the stability/instability dilemma unaddressed at the top level). Our pre-
vious effort was to reduce such demands by making each stage of a sequence a
stable state that can operate in a closed loop within online sensory information.

In this paper we ask, how this principle may be generalized to emulate hier-
archies. We propose a neural dynamics, in which ordinal neurons may call entire
chunks or subsequences at a lower level of a hierarchy. When they do so, they
not only trigger the transition to the first element of the chunk, but also set
the “condition of satisfaction”, that signals the termination of the chunk and
organizes the return to the calling point in the hierarchy. This leads to a dy-
namical hierarchy, in which the downward progression is organized in one way
(through a dynamics of intention), and the return to higher levels is organized
another way (through a dynamics of condition of satisfaction). The present pa-
per elaborates the critical mathematical mechanisms and demonstrates these
in simulation while a demonstration on a robotic hardware is not yet part of
the present contribution. The approach is similar in spirit to earlier work by
Stringer and colleagues [11], but enables generalization beyond the motor se-
quences treated there by making the analysis and synthesis of the dynamical
instabilities more explicit.

2 The model

In Dynamic Field Theory (DFT), the states of a cognitive system are represented
as attractor states of the Dynamic Fields (DFs) [12], defined over behaviorally
relevant perceptual, motor, or abstract spaces [13]. Localized peaks are induced
in DFs by external inputs and are stabilized by lateral interactions. Discrete
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dynamic nodes may be introduced in this framework with an analogous bi-stable
dynamics. Bistability of dynamic fields and dynamic nodes enables not only their
coupling to real sensory-motor systems, but also coupling to each other through
weighted connections, while preserving stability and robustness of the overall
dynamics.

Here, we describe two subsequent layers of the hierarchical DF architecture
for sequence generation (Fig. 1). Each layer contains a number of elementary
behaviors (EBs). The EBs at the lower layer of the hierarchy directly drive overt
actions and the EBs at the upper layer may activate subsequences, or chunks, at
the lower layer. An EB consists of five elements – the three discrete neural acti-
vation variables (the memory, ordinal, and condition-of-satisfaction nodes) and
two dynamic fields (the intention field and the condition-of-satisfaction field).
Their dynamics and coupling are described next.
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Fig. 1: Illustration of the structure of a single elementary behavior (EB) and the
inter- and intra-layer coupling for the hierarchical organization of sequences.

Ordinal nodes. Each EB at the layer i of the hierarchy is activated by its ordinal
node, voi , Eq.(1) (we drop the index that numbers EBs within a layer for simplic-
ity). Activation of an ordinal node is output through a sigmoidal non-linearity,
σ(·)

τov̇oi = − voi + ho + co,oσ(voi )− c−
∑

σ(voi )− co,sσ(vsi )

+ Wo,m
i σ(vmi ) +Wo,o

i−1σ(v
o
i−1). (1)

Here, τo is a temporal constant of the dynamics, ho is a negative resting level, co,o

is the strength of self-excitatory input, c− is strength of the mutual inhibition
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between ordinal nodes in a layer. co,s is an inhibitory input from the condition-
of-satisfaction node of the EB, which deactivates the ordinal node when the
EB is finished. Wo,m

i are connection weights from memory nodes (presented
next) into ordinal nodes within a layer, which control the sequential activation
of the ordinal nodes. There’s one weights matrix per possible chunk in a layer,
each being activated by an ordinal node at the upper layer. Finally, Wo,o

i−1 are
connection weights from ordinal nodes in an upper layer, (i − 1), into ordinal
nodes of the current layer, which brings ordinal nodes that belong to a particular
chunk closer to the activation threshold.

Memory nodes. The memory nodes, vmi , become activated when the respec-
tive ordinal node has been activated. They remain active through a strong self-
excitatory input until the entire chunk, of which they are part, has been executed.
An active memory node provides an excitatory input to the next ordinal node
in a sequence, i.e. the memory nodes with their connections to ordinal nodes
encode the serial organization of EBs within a layer. The dynamics of memory
nodes in layer i reads:

τmv̇mi = − vmi + hm + cm,mσ(vmi ) + cm,oσ(voi ) +Wm,o
i−1σ(v

o
i−1). (2)

The notations here are analogous to notations in Eq.(1). Note that there’s no
mutual inhibition between memory nodes.

Condition-of-satisfaction nodes. An active CoS node, with σ(vsi ) > 0 in Eq.(3),
signals that the behavioral goals of an EB have been realized.

τsv̇si = − vsi + hs + cs,sσ(vsi )− c− max (σ(vsi )) + cs,mσ(vmi )

+ Ws,o
i−1σ(v

o
i−1) + cs,cos

∫
σ(us

i (x
′))dx′ +

c+

lc

∑
σ(vsi+1). (3)

First three terms of Eq.(3) are the generic dynamics of an Amari node, the forth
term is a global inhibition in a layer. Input from the memory node of the EB,
scaled by the constant, cs,m, and input from the active ordinal node at an upper
layer, scaled by the chunk-dependent synaptic weights Ws,o

i−1, enable activation
of the CoS node by the inputs that signal completion of the EB (last two terms
in Eq.(3)).

A positive input from the CoS field, us
i (x), Eq.(5), signals accomplishment

of the direct motor action. In the upper layer, the CoS node also detects the
end of a chunk by collecting input from the CoS nodes within the chunk at
the lower layer. This contribution has a constant factor c+ and is scaled down
proportionally to the length of the chunk lc. The chunk’s length is estimated
through integrating the non-zero synaptic connections between the memory and
the ordinal nodes for the lower layer, W o,m

i+1 , Eq.(1).
When a CoS node becomes active, it inhibits the respective ordinal node and

triggers an instability in the dynamics of the EB, which leads to the sequential
transition at the current layer of the hierarchy and to a reset of the memory, the
CoS, and the ordinal nodes at the lower layer in a reverse detection instability.
The CoS nodes thus organize the generation of sequences in time.
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Intention field. An intention field, uint
i (x), is associated with every EB and re-

ceives a localized input from the ordinal nodes. An active ordinal node specifies
parameter values of the action in the associated intention field. Typical param-
eters, x, are feature values that specify a perceptual goal (e.g., the color of an
object that must be visually searched) or movement parameters (e.g., the direc-
tion in which an effector is moved). The dynamics of an intention field reads:

τ intu̇int
i (x) = −uint

i (x) + hint +

∫
σ(uint(x′))wint(x− x′)dx′

+
∑

σ(voi )W
int
i (x). (4)

The intention field receives input from the associated ordinal node, voi , through
synaptic weights, Wint

i (x), that would typically be learned [4], but will be set to
particular localized gaussian inputs in the simulations below. This input pushes
the intention field through the detection instability and induces a localized ac-
tivity peak. The peak is not sustained, so that it decays when localized input
from the ordinal node is removed. As long as the intention field is activated, it
impacts on the down-stream sensory-motor structures (dynamic fields and mo-
tor dynamics) and sets attractors in these structures that result in the overt
behavior of the agent.

Condition-of-satisfaction field. The CoS field, ucos
i (x), detects if the intended

action or perceptual state of the calling EB, expressed by a peak in the intention
field, has been realized. It does so by matching the pattern induced by input
from the intention field to the sensory information. When a match is detected, a
peak forms in the CoS field and activates the CoS node, ultimately triggering a
cascade of instabilities that leads to the deactivation of the current EB and the
activation of the next EB within a layer. The dynamics of the CoS field reads:

τcosu̇cos
i (x) = −ucos

i (x) + hcos + ccos
∫

σ(ucos
i (x′))wcos(x− x′)dx′

+ ccos,int
∫

σ(uint(x′))wcos,int(x, x′)dx′ + Icos(x). (5)

The CoS field receives input from two sources. The intention field provides local-
ized input at the locations along the dimension of the CoS field specified by the
coupling kernel, wcos,int(x, x′). If this input overlaps with the perceptual input,
Icos(x), the CoS field goes through a detection instability and an activity peak
builds-up in this field. The peak is not self-sustained and decays when either of
the two inputs ceases after the behavior has been realized.

3 Results

To demonstrate how the dynamic field architecture may generate sequences with
a hierarchical structure, we describe here an exemplar simulation. We show two
layers of the hierarchy: at the top layer, a sequence of three EBs is generated,
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each driving a subsequence (chunk) of EBs at the lower layer. In particular, we
want to make three points here: (1) show how individual EBs and whole chunks
may be reused at different positions in the sequences; (2) show how simulated
sensory input to the condition-of-satisfaction DF may be integrated with CoS
signal about completion of a subsequence; (3) demonstrate context-dependent,
variable timing of the subsequences. In this simulation, the ordinal nodes within
a layer project onto a single intention field for simplicity of presentation, but
separate intention fields for every EB may also be used if the application requires
such configuration [6, 5].
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Fig. 2: Activity of fields through time.

Fig. 2, top-left, shows activation time-course of the intention field of the
upper layer in the hierarchy. The three traces of positive activation in the plot
correspond to three different ”intentions” activated for the three EBs at the
upper layer. The bottom-left plot shows activation of the intention field of the
lower layer. The dashed vertical lines mark the chunks, activated by the upper
layer. Note that an EB may be reused in the adjacent chunks, as well as the
whole chunk may be reused at different positions in the upper-layer sequence
(chunks 1 and 3).

Fig. 2, right, shows the time-courses of activation of the CoS fields of the
upper layer (top) and the lower layer (bottom) of the hierarchy. Traces of the
sensory input can be seen in the CoS fields, which follow a simple transition path
in this simulation, but would be a more complex paths in a dynamic environ-
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ment. We modulated the dynamics of the simulated sensory input to emulate
the variability in timing of the real-world sensory input. The CoS field of the
upper layer is activated as soon as the sensory input overlaps with input from
the intention field. The CoS node, however, is only activated when the chunk
at the lower level is finished – only then the intention field of the upper layer is
deactivated (top-left plot) and, consequently, the CoS field of the upper layer is
deactivated (top-right plot).

0 100 200 300 400 500 600 700 800 900 1000
−4
−2
0
2
4
6

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

6

Time

Ac
ti

vi
ty

 (l
ev

el
 1

)
Ac

ti
vi

ty
 (l

ev
el

 2
)

404000 505000 606000000000

Di!erent context
using

same chunks

Di!erent lengths
depending on
sensor input

Fig. 3: Activity of memory nodes through time.

Fig. 3 shows the activity of the memory nodes of the upper (top plot) and the
lower (bottom plot) layers. Each memory node is activated by the ordinal node
of the respective EB. The memory node is brought to the level of self-sustained
activation when the EB ceases and stays at this level until the end of the chunk.
At the end of the chunk, the ordinal node of the upper layer is inhibited and
the memory nodes of the lower layer decay to the negative resting level. The
memory node of the upper layer stays at a self-sustained level of activation until
the end of the sequence. Note the variable duration of EBs, even for the same
chunk at positions 1 and 3 of the upper-layer sequence.

4 Discussion

The neural dynamics proposed in this paper provides a general and robust mech-
anism for transitioning from the stable state that each stage of a behavioral
sequence represents to its successor state. The mechanism enables inserting a
chunk or subsequence at any point and then return to the ongoing sequence
at the higher level of an implied hierarchy. Transitions to a lower level of the
hierarchy are based on the same principle as transitions within each level and
enable sustaining the stable state at each step for variable amounts of time until
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perceptual information matches the expected outcome of the stage, inducing a
detection instability in the associated “condition of satisfaction” (CoS) system.
This concept of a CoS is also used to organize the transition from the end of a
chunk to the next stage of a sequence at the higher level, from which the chunk
was initiated. The hierarchical organization enables reuse of the same chunk at
different points in the sequence. Moreover, different chunks may overlap, reusing
elementary behaviors or subsequences. This core mechanism opens the neural
dynamics of sequence generation to the much richer class of hierarchically orga-
nized sequences.
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