
Obstacle avoidance and target acquisition
in mobile robots equipped with

neuromorphic sensory-processing systems
Moritz B. Milde, Alexander Dietmüller, Hermann Blum, Giacomo Indiveri, and Yulia Sandamirskaya

Institute of Neuroinformatics, University of Zurich and ETH Zurich
Winterthurerstrasse 190, 8057 Zurich, Switzerland

Email: ysandamirskaya@ini.uzh.ch

Abstract—Event based sensors and neural processing
architectures represent a promising technology for implementing
low power and low latency robotic control systems. However,
the implementation of robust and reliable control architectures
using neuromorphic devices is challenging, due to their limited
precision and variable nature of their underlying computing
elements. In this paper we demonstrate robust obstacle avoidance
and target acquisition behaviors in a compact mobile platform
controlled by a neuromorphic sensory-processing system and
validate its performance in a number of robotic experiments.

I. INTRODUCTION

Neuromorphic circuits harness some of the outstanding
properties of biological neuronal networks, such as massively
parallel distributed processing, clock-less event-based nature
of computation, and interwoven co-localized memory and
computing. These properties and the resulting speed and
efficiency of computation are particularly well-suited for
real-world robotic applications, in which large amount of
sensory information has to be processed in real time.

Along with purely digital neuromorphic approaches [1],
[2], neuromorphic processors designed using mixed signal
analog-digital neuromorphic electronic circuits combine the
energy efficiency and compact features of analog devices with
the reliability of digital processing [3], [4]. However, analog
circuits are affected by device mismatch and variability, e.g.
due to temperature changes. Therefore it is necessary to adopt
computational strategies and architectures that are tolerant to
variability, noise, and temporal fluctuations. A possible solu-
tion to this problem that appears to be employed by biological
neuronal systems lies in the use of attractor dynamics and
population dynamics. Population dynamics provide robustness
against mismatch and fluctuations in properties of neural
circuits. Similarly, attractor neural dynamics have been shown
to provide the required stability of the behaviorally relevant
states – such states of the neural network that correspond to
behavior – against sensory and neuronal noise [5], [6].

We present a proof of concept realization of these dynamics
implemented using a mixed-signal neuromorphic processor,
to process visual data sensed from a Dynamic Vision
Sensor (DVS) [7], and to produce obstacle avoidance and
target acquisition behaviors in a compact mobile robot. The
neuromorphic processor makes use of the Real-time On-Line
Learning Spiking (ROLLS) neural network chip, originally
proposed and fully characterized in [3]. The robotic platform
is a ”Pushbot” robot, developed by Jörg Conradt (TUM).

While similar recent attempts of using neurally inspired
controllers have been proposed to learn sensory-motor associa-
tions with robots [8], [9], to plan routes in an unknown environ-
ment [10], or to control a robotic arm [11], this work represents
the first attempt to realize obstacle avoidance and target acqui-
sition behaviors on a real robot using a mixed signal analog-
digital neuromorphic device and a neuromorphic vision sensor.

II. METHODS

A. The mixed-signal neuromorphic processor chip

The ROLLS neuromorphic processor comprises 256
Adaptive-Exponential integrate and fire (AdExp IF)
silicon neurons [12], implemented using analog electronic
circuits [13]. The neurons express biologically plausible
neural dynamics including configurable refractory period,
spike frequency adaptation, and time constant of integration.
The 256 neurons on the ROLLS chip can be connected to
each other and to external signals via three sets of synapses:
each neuron has 256 programmable (non-plastic) synapses,
256 learning (plastic) synapses, and 4 auxiliary (“virtual”)
synapses. The synapse dynamics are expressed using a
current-mode Differential Pair Integrator (DPI) circuit, that
behaves as a linear filter: incoming pre-synaptic spikes
produce currents that have an amplitude proportional to the
synaptic weight and that decay with a time-constant that is
set by the DPI. The programmable and on-chip routing on
the ROLLS that supports all-to-all connectivity allows us to
implement any arbitrary neural architecture. However, the
synapses can assume only one of 4 possible synaptic weight
values, that can be programmed via a 12-bit temperature
compensated bias-generator. An extra digital circuit allows the
user to specify if the synapse is excitatory (positive weights) or
inhibitory (negative weights). Careful analog design allowed
to reduce the effect of device mismatch to an average of about
10 to 20% variability, depending on the bias settings chosen.

B. The vision sensor

The Pushbot mobile robot is equipped with a DVS silicon
retina. Each pixel of the DVS reacts asynchronously to a local
change in luminance and sends out an event using the address-
event representation (AER) protocol [14]. Every event contains
the coordinates of the sending pixel (x, y), the time of event
occurrence (t), and its polarity (pol: “on”-event or “off”-event).
Due to the asynchronous sampling, the DVS is characterized
by an extreme low latency, which results in µs time resolution.



edvs
neurons 

Exc.

DL

DR
OL
OR

Sp.

Target 
DNF

Gyro

(a) The network architecture expressed as
a connectivity matrix set on the ROLLS
device. Red are excitatory weights, blue –
the inhibitory ones.

DL

DR

OL

OR -3-3

3

exc

sp

4
2

spike count

drive right
spike count

DVS frame 

Parallella

speed-2

3

-2

gyro

We chose however to connect the robot over a serial port to the Parallella to make connection
more robust and the small size, weight and power consumption of the Parallella allow it to be
mounted on the robot as well.

The second supported robot is the PushBot, also provided by NST. The PushBot has a similar
interface as the OmniRob and can also be easily accessed with the build-in WiFi module[8] over
a socket application programming interface (API).

Figure 13. The two robotic platforms currently supported by omnibot-lib: on the left the PushBot
and on the right the OmniBot (see also [12, 5]) for more information

2.4.1 Interface

RobotHost PC

robot control
and connectivity

robot listener

Robot.h

OmniRobot.h

PushBot.h

RobotListener.h

USBConnector.h

TCPConnector.h

Figure 14. Header files defining the interfaces to the robots and the robot listeners

The Robot was controlled by sending the necessary instructions over the serial connection from
the Parallella. The most important instructions are listed in table 1 on the following page:

Similarly to the DVS camera, di↵erent properties of the OmniBot are monitored asyn-
chronously by the RobotListener object, such as the actual servo states, if and which bumper
has been hit, making use again of the observer pattern as can be seen in figure 15 on page 15.
These states are logged as formatted text or processed immediately, such as the bumper states,
that trigger an emergency stop of the robot until the next drive command is send. At the
moment the Robot is polled in an interval of 1 s, future updates of the OmniBot firmware will
feature a broadcast function. However, logging the robot parameters is currently disabled as it
is favored to directly log the mapped keyboard inputs (see also figure 9 on page 11 for a list of
the mappings) instead of the polled robot parameters, amounting to the same result. Linux has

13

drive left
spike count

(b) Obstacle avoidance part of the neural
architecture.

DL

DR
We chose however to connect the robot over a serial port to the Parallella to make connection

more robust and the small size, weight and power consumption of the Parallella allow it to be
mounted on the robot as well.

The second supported robot is the PushBot, also provided by NST. The PushBot has a similar
interface as the OmniRob and can also be easily accessed with the build-in WiFi module[8] over
a socket application programming interface (API).

Figure 13. The two robotic platforms currently supported by omnibot-lib: on the left the PushBot
and on the right the OmniBot (see also [12, 5]) for more information

2.4.1 Interface

RobotHost PC

robot control
and connectivity

robot listener

Robot.h

OmniRobot.h

PushBot.h

RobotListener.h

USBConnector.h

TCPConnector.h

Figure 14. Header files defining the interfaces to the robots and the robot listeners

The Robot was controlled by sending the necessary instructions over the serial connection from
the Parallella. The most important instructions are listed in table 1 on the following page:

Similarly to the DVS camera, di↵erent properties of the OmniBot are monitored asyn-
chronously by the RobotListener object, such as the actual servo states, if and which bumper
has been hit, making use again of the observer pattern as can be seen in figure 15 on page 15.
These states are logged as formatted text or processed immediately, such as the bumper states,
that trigger an emergency stop of the robot until the next drive command is send. At the
moment the Robot is polled in an interval of 1 s, future updates of the OmniBot firmware will
feature a broadcast function. However, logging the robot parameters is currently disabled as it
is favored to directly log the mapped keyboard inputs (see also figure 9 on page 11 for a list of
the mappings) instead of the polled robot parameters, amounting to the same result. Linux has

13

exc

sp

4

2

spike count

spike count

spike count

DVS frame 

Parallella

speed

drive left

drive right

2

2

3

-4
etc.

-3
-3

Target 
DNF

…

Target 
input

gyro

4-2

(c) Target acquisition part of the neural
architecture.

Fig. 1: The neural architecture for obstacle avoidance and target acquisition realized on the ROLLS chip.

As the DVS detects the spatio-temporal changes in a
visual scene, a static camera only perceives moving objects.
However, on a moving robot, the DVS produces a continuous
stream of events at the objects’ boundaries, where change is
induced by the sensor motion. The fact that the DVS also emits
a fairly large amount of input-dependent noise makes the use
of this sensor particularly challenging in navigation scenarios.

C. Neuronal architecture for obstacle avoidance and target
acquisition

We designed a neural architecture that can cope with
both the DVS noise and the ROLLS device mismatch in the
same way. Each event of the DVS is mapped onto a virtual
synapse of one of the neurons of neuronal populations on the
ROLLS. This mapping is realised using a miniature computer
(“Parallella” board), used for the purpose of data logging and
spike mapping between the DVS, ROLLS, and the robot’s
motors. In the longer term, this board can be replaced by a
more direct hardware interface between the two neuromorphic
devices. The neural obstacle avoidance and target acquisition
architecture, implemented on the ROLLS chip, is shown
in Fig. 1. The figure shows the connectivity matrix which
realizes the network architecture on the neuromorphic device,
as well as a “connectionists” scheme of the obstacle avoidance
and the target acquisition parts of the neural architecture.

1) Motor outputs of the ROLLS chip: We defined three
populations of 16 neurons each that represent three correspond-
ing robot commands: speed, turn left, and turn right. The
speed population receives constant input from an additional
constantly active population that represents the maximum
speed. Spikes from the speed population are summed up on the
Parallella board and drive the forward motion of the robot. The
turn left and turn right populations drive the respective turning
behavior of the robot. The spiking output rates of the neural
populations are transformed into robot commands using a first-
order low-pass filter with a sampling time of 50 ms. Multiplied
by a scaling factor, the “firing” rates are sent to the robot as ve-
locity commands. This mechanism is in principle equivalent to
how, e.g., motor neurons drive muscles in biological systems.

2) Obstacle Avoidance: We defined a group of 32 neurons
to represent obstacles in the lower half of the camera field
of view (FoV). We divided the FoV into vertical regions
(containing 4 columns of the 128×128 DVS pixels), each
region providing input to one of the obstacle neurons. For
every received DVS event in the assigned column, the
respective neuron receives a spike. If enough events arrive,
the neurons start emitting spikes, thus signaling detection of
an object. To turn away from an obstacle, the first 16 neurons
representing the left half of the FoV are connected to the
turn right population and vice-versa for the other 16 neurons.
The turn-populations inhibit each other and thus implement
competitive dynamics. The decision about the driving direction
is made at this point. Furthermore, the obstacle detecting
neurons inhibit the speed population, slowing the robot down
if obstacles are present to ensure collision-free navigation.

3) Dynamic neural field for target representation: Similar
to the strategy above, we defined a target input population of
64 neurons receiving input from the upper half of the FoV
(every neuron receiving events from 2 DVS columns). This
population filters out much of the sensory noise, since only
activity which persists over time (in contrary to the salt and
pepper noise) can activate neurons.

Every neuron in the target input population is connected
to one neuron in a target WTA (winner takes all) population of
the same size. To represent targets of the navigation dynamics,
we use the principle of Dynamic Neural Fields (DNFs) [15],
which can be easily realised in neuromorphic hardware by
setting a winner-takes-all (WTA) connectivity network: Every
neuron has excitatory connections to close neighbours while
inhibiting far off neighbours. This DNF population implements
working memory, remembering the target location in the DVS
output even if the target vanishes from sight. The target in our
experiments is a blinking LED of a second robot which is a
salient input for the DVS and simplifies the segregation from
the background (which is still non-trivial, as you will see).

4) Fine tuning: In order to achieve robust navigation, we
modulated the weights’ strength between the obstacle and
drive populations depending on the distance of the obstacle
from the camera midline. We set weights of different strength



Fig. 2: Avoiding obstacles in a cluttered environment. Top:
overlay of the overhead camera frames. Middle: DVS events
at three points during the experiments (the points are marked
with 1, 2, and 3 in the top pane). Green are “off” and blue
are “on” events. Bottom: Output of the obstacle, turn, and
speed populations of the ROLLS chip.

for synapses from different obstacle neurons to the turn
populations to make the robot turn faster if an obstacle is
in front of the robot and slower if it is on the periphery. To
overcome the limitation of the ROLLS chip in the limited
(four) number of possible weight values, we used multiple
sets of synapses. Thus, neurons representing an obstacle in
the center project to all neurons in the turn population (16 in
total), while neurons representing obstacles on the edge have
only one connection. We use the same idea for the inhibition
of the speed population: the robot slows down more for central
than for peripheral obstacles. For target acquisition, we use an
inverted scheme: neurons representing a target in the center
have less connections since less turning is required. In this
way, convergence on the direction towards the target can be
achieved and the network effectively sets an attractor for the
robot’s heading direction on the direction towards the target.

5) Proprioception: In this work we also used the Inertia
Measurement Unit (IMU) device integrated in the DVS to
model proprioception and saccadic suppression. We read
the measurement for angular velocity along the robots axis,
sampled every 50 ms. This measurement was used to set the
rate of stimulation for a gyro population on the ROLLS chip
(16 neurons). Because of the nature of the DVS output, a
greater number of events is produced while turning. We use the
gyro population to inhibit all populations receiving DVS input
(the obstacle and target input populations) during turning.

III. EXPERIMENTAL RESULTS

Figure 2 demonstrates the obstacle avoidance behavior
of the robot controlled by our neuronal architecture on the
ROLLS chip on one of trials. The robot is put in an arena,
in which a number of obstacles is arbitrarily distributed.
The top part of the figure shows an overlay of camera
frames from an overhead camera that allows to follow the
robot’s trajectory as it navigates in this cluttered environment,
avoiding collisions with objects and walls. The middle part of
the figure shows the output of the DVS at three time points
during this experiment (number 1, 2, and 3 in the top-view
image). The DVS events are sampled for 1500 ms to show
them as one image. The neurons on the ROLLS chip receive
events from DVS pixels asynchronously in real time. Note the
noisy and cluttered character of the output signal. The bottom
plots in the figure show activity of the obstacle, turn, and
speed populations on the ROLLS chip. Note how the speed
population is inhibited when an obstacle is detected, how the
obstacles are represented in a spatially resolved way by the
obstacle left and obstacle right populations, and how the turn
populations are activated to a different degree depending on
the position of the obstacle relative to the midline.

Figure 3 demonstrates how the robot modulates the
amplitude of the obstacle avoidance maneuvre depending on
the distance of the obstacle from the midline of the DVS
frame. Here, the robot moves towards a cup, which is placed
at different distances from the line that would be the robot’s
straight trajectory in the absence of the obstacle. The figure
shows that the obstacle and the turn neuronal populations are
activated stronger and for a longer time for the more central
obstacle, leading to a more pronounced avoidance maneuver.
For a peripheral obstacle, the robot only slightly changes
its trajectory. This behavior emerges from the dynamics and
connectivity of neuronal populations on the ROLLS chip and
is not “programmed” algorithmically.

Figure 4 demonstrates the target acquisition behavior of
the robot. In the presented experiment, the Pushbot equipped
with the ROLLS device approaches a second Pushbot with a
blinking LED. Since the upper part of the DVS FoV is used
for target acquisition, many disturbing events are perceived
by the DVS from the background objects outside the arena.
The target input population filters our much of the noise
events, whereas the connectivity of the target WTA population
creates a stable localised representation of the single most
salient (the LED) object.

IV. DISCUSSION

In this work, we presented a neuromorphic obstacle avoid-
ance and target acquisition architecture, realized using low-
power and low-latency event-based sensing and processing.
This architecture allows to smoothly and reliably avoid obsta-
cles and track the target object. We showed how redundant
synaptic connectivity between populations of neurons can be
used to cope with the low number of available weight values in
the neuromorphic hardware and allowed us to realize complex
graded connectivity patterns with a limited number of weights.
We also demonstrated how we can overcome the effects of
device mismatch of the neuromorphic hardware by redundant
computation using population dynamics and neuronal filtering.



Fig. 3: Demonstrating the graded nature of the spatial
representation of obstacles: an object is placed at different
distances from the robot’s initial heading direction. Left:
Overlays of the overhead camera images for three trials. The
red line marks the line of the initial heading direction of the
robot. Right: Activity of the obstacle, drive, and speed neural
populations on the ROLLS.

At the same time, the mismatch may be beneficial in a neuronal
controller, as the variability would allow to escape unstable fix-
points of the dynamics, as well as facilitate exploratory behav-
ior in more complex scenarios. In summary, we showed how
our system can produce meaningful robotic behaviors, despite
the constrains and limitations of the neuromorphic hardware.

ACKNOWLEDGMENT

We are grateful to Jörg Conradt for providing the Pushbot
robotic platforms. This work was supported by the EU H2020-
MSCA-IF-2015 gr. 707373 ECogNet, the ERC-2010-StG gr.
257219 NeuroP, and the UZH gr. FK-16-106.

REFERENCES

[1] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown, “Overview of the SpiNNaker System
Architecture,” IEEE Transactions on Computers, vol. 62, no. 12, pp.
2454–2467, 2012.

[2] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, et al., “Artificial
brains. A million spiking-neuron integrated circuit with a scalable
communication network and interface.” Science (New York, N.Y.), vol.
345, no. 6197, pp. 668–73, 2014.

[3] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, D. Sumislawska,
G. Indiveri, and G. Indiveri, “A Re-configurable On-line Learning
Spiking Neuromorphic Processor comprising 256 neurons and 128K
synapses,” Frontiers in neuroscience, vol. 9, no. February, 2015.

[4] E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indivei, “Neuromorphic
Electronic Circuits for Building Autonomous Cognitive Systems,”
Proceedigns of the IEEE, vol. 102, no. 9, pp. 1367–1388, 2014.

[5] W. Erlhagen, a. Bastian, D. Jancke, a. Riehle, and G. Schöner, “The
distribution of neuronal population activation (DPA) as a tool to study
interaction and integration in cortical representations.” Journal of
neuroscience methods, vol. 94, no. 1, pp. 53–66, dec 1999.

Fig. 4: Target acquisition: the Pushbot controlled by the
ROLLS device approaches a second Pushbot with a blinking
LED, while avoiding a small obstacle on the way. Top: The
overlay of the overhead camera; middle: the DVS events
around the time points 1, 2, and 3; bottom: neural activity
on the ROLLS chip.

[6] W. Erlhagen and G. Schöner, “Dynamic field theory of movement
preparation,” Psychological Review, vol. 109, pp. 545–572, 2002.

[7] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 X 128 120db
30mw asynchronous vision sensor that responds to relative intensity
change,” 2006 IEEE International Solid State Circuits Conference -
Digest of Technical Papers, pp. 2004–2006, 2006.

[8] J. Conradt, F. Galluppi, and T. C. Stewart, “Trainable sensorimotor
mapping in a neuromorphic robot,” Robotics and Autonomous Systems,
vol. 71, pp. 60–68, 2015.

[9] T. C. Stewart, A. Kleinhans, A. Mundy, and J. Conradt,
“Serendipitous Offline Learning in a Neuromorphic Robot,” Frontiers
in Neurorobotics, vol. 10, no. February, pp. 1–11, 2016.

[10] S. Koziol, S. Brink, and J. Hasler, “A neuromorphic approach to path
planning using a reconfigurable neuron array IC,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 12, pp.
2724–2737, 2014.

[11] F. Perez-Peña, A. Morgado-Estevez, A. Linares-Barranco, A. Jimenez-
Fernandez, F. Gomez-Rodriguez, G. Jimenez-Moreno, and J. Lopez-
Coronado, “Neuro-inspired spike-based motion: from dynamic vision
sensor to robot motor open-loop control through spike-VITE.” Sensors
(Basel, Switzerland), vol. 13, no. 11, pp. 15 805–15 832, 2013.

[12] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity,” J. Neurophysiol.,
vol. 94, no. 5, pp. 3637–3642, 2005.

[13] G. Indiveri, B. Linares-Barranco, T. Hamilton, A. van Schaik, et al.,
“Neuromorphic silicon neuron circuits,” Frontiers in Neuroscience,
vol. 5, pp. 1–23, 2011.

[14] “The address-event representation communication protocol AER 0.02,”
Caltech internal memo, February 1993.

[15] Y. Sandamirskaya, “Dynamic Neural Fields as a Step Towards
Cognitive Neuromorphic Architectures,” Frontiers in Neuroscience,
vol. 7, p. 276, 2013.


