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Abstract— Robotic agents that interact with hu-
mans and perform complex, everyday tasks in natural
environments will require a system to autonomously
organize their behavior. Current systems for robotic
behavioral organization typically abstract from the
low-level sensory-motor embodiment of the robot,
leading to a gap between the level at which a sequence
of actions is planned and the levels of perception
and motor control. This gap is a major bottleneck
for the autonomy of systems in complex, dynamic
environments. To address this issue, we present a
neural-dynamic framework for behavioral organiza-
tion, in which the action selection mechanism is
tightly coupled to the agent’s sensory-motor systems.
The elementary behaviors (EBs) of the robot are
dynamically organized into sequences based on task-
specific behavioral constraints and online perceptual
information. We demonstrate the viability of our
approach by implementing a neural-dynamic archi-
tecture on the humanoid robot NAO. The system
is capable of producing sequences of EBs that are
directed at objects (e.g., grasping and pointing). The
sequences are flexible in that the robot autonomously
adapts the individual EBs and their sequential order
in response to changes in the sensed environment.
The architecture can accommodate different tasks and
can be articulated for different robotic platforms. Its
neural-dynamic substrate is particularly well-suited
for learning and adaptation.

I. INTRODUCTION

One of the long-standing goals of research in robotics
and artificial intelligence is the design of autonomous
artificial agents capable of interacting with humans and
of helping humans in their natural environments. The
complexity, time dependence, and unpredictability of
such environments, that include the human user, chal-
lenge the robot’s perception systems. Humans, on the
contrary, accomplish tasks in such natural environments
with ease. Reaching the smoothness, speed, and pliability
of human action is a key motivation, so it is natural to
seek inspiration for solutions in how humans achieve this.
A relevant insight from work on human cognition is that
planning is closely coupled to perceptual information,
observed, for instance, in online-updating of reaching
movement at any time during movement preparation
and execution [1]. Robotic approaches to behavioral
organization, in contrast, have typically linked sensory
information to the action planning system through fixed

abstract interfaces and at discrete moments in time when
an update is made.

For instance, in the classical sense-plan-act paradigm,
the sequence of actions is elaborated by a planning algo-
rithm, which operates on objects and states, abstracted
from the physical sensory signals by fixed interfaces (e.g.,
[2], [3], [4]). Such architectures make strong demands
on the quality of perceptual information and have been
criticized for their lack of flexibility. When augmented
by probabilistic techniques [5], such approaches achieve
considerable performance but rely on the adequacy of the
probabilistic models of the environment, which is often
violated in real-world environments.

As an alternative, proponents of the behavior-based
approach [6], [7] suggest that a robot’s behavior should
be generated by combining behavioral modules, each
of which has access to appropriate sensory information
and guides a motor function. Behavior-based approaches
range from purely reactive schemes [8] to methods in-
voking some extent of planning [9], [10]. Since the most
radical, state-less reactive approaches do not scale to
more robust and complex behaviors (as argued in [11],
[12]), hybrid architectures were developed that com-
bine the strengths of behavior-based and of deliberative
approaches (see, e.g., [13]). The limited scalability of
behavior-based autonomous robot systems has led to ef-
forts to add structure to the architectures that facilitates
the accomplishment of complex tasks [14], [11].

The behavior-based approaches share with the sense-
plan-act approaches the attempt to deal with the coor-
dination of behaviors at a level that abstracts from the
sensory details. The processing of rich and complex sen-
sory information is delegated to the lower, sensory layers.
Analogously, the details of motor control are shifted into
a motor execution layer (see, e.g., [15]). Although a useful
heuristic, we believe that this shift prevents systems from
achieving the smoothness and reliability desired in the
behavioral organization of cognitive robots. We argue
that the sensory-motor layer has to be integrated more
intimately with the systems that generate behavioral
sequences. This is because the core elements of sequence
generation—the initiation and termination of an action,
the selection of the next action, and the estimation of the
parameters of an upcoming action—critically depend on
such sensory-motor processes.



The advantage of such tight integration has been
recognized early on [16] and becomes particularly critical
when the robot’s actions are directed at objects in the
world, such as in manipulation tasks. In such tasks,
the low-level perceptual functions, such as segmenta-
tion, localization, and estimation are intertwined with
action selection, action initiation and termination. For
instance, detection of a target object on the sensory array
requires that the object’s representation is stabilized
against noise, occlusions, and distractors before an action
directed at this object may be initiated. If the object
moves, the location and pose of the object must be
tracked, potentially leading to the replanning of the
action sequence. To enable integration of the perceptual,
motor, and cognitive (i.e., action selection) processes, we
need a theoretical and mathematical language that is
shared by the sensory-motor and the cognitive level.

We propose such a language, inspired by theoreti-
cal approaches to modeling human embodied cognition
[17]. We humans solve similar problems as those aris-
ing in autonomous robots while acting in only loosely
constrained environments. The human nervous system
generates behavior based on uncertain and incomplete
sensory information, which may vary in time in unpre-
dictable ways. Analogously to the debates about sense-
plan-act vs. behavior-based autonomous robotics [18],
the theoretical stance of embodied cognition is aimed
at overcoming the traditional segregation of cognitive
functions from the sensory motor processing that is at
the basis of human behavior.

In the field of embodied cognition, the attractor dy-
namics approach [17] is one of the successful theoretical
frameworks. The attractor dynamics approach to behav-
ior generation has also been shown capable of generating
robotic behavior [19], e.g. to integrate target acquisition
and obstacle avoidance on robot vehicles [20] or robot
arms [21]. Moreover, the attractor dynamics integrate the
low-level sensory-motor layers, at which information is
noisy and highly variable, with more abstract cognitive
layers. At both layers, meaningful states of the system
are represented by attractors of the underlying neural
dynamics, providing stability and robustness.

Dynamic Field Theory (DFT) [17] is an extension of
the attractor dynamics approach to embodied cognition
that endows neural-dynamic systems with graded rep-
resentations, enabling richer perceptual representations
as well as representations of plans and intentions. The
dynamics of (neural) activation fields may model metric
working memory, the detection of salient inputs, atten-
tional processes, as well as processes of selection among
alternatives. In each case, instabilities mark the deci-
sions, separating qualitatively different attractor states
[22].

In this paper, we sketch how DFT may be used to
organize robotic behaviors. The core functions of the
architecture are to select an elementary behavior under
the appropriate conditions, activate the selected behavior

at an appropriate moment, and deactivate the behavior
when successful completion is signaled. Since all decisions
are stabilized against fluctuations in sensory or internal
state variables, the architecture may be coupled to low-
level sensors and simple motor interfaces. To demonstrate
how this coupling may be achieved and how the DFT
architecture may generate action sequences, we imple-
ment the architecture on a humanoid robotic platform.
The action sequences are flexible in that a reorganiza-
tion occurs autonomously in response to changes in the
environment. We describe the mathematical formulation
of the model and provide means of implementing the
architecture for different tasks and on different hardware,
as well as applying learning techniques.

II. THEORY AND METHODS

A. Dynamic Field Theory

Dynamic Field Theory (DFT) [17] is a variant of
the attractor dynamics approach to embodied cognition,
in which states of a behaving agent are described by
continuous activation functions defined over behaviorally
relevant parameter spaces of different dimensionality.
These dynamic activation functions—the dynamic fields
(DFs)—evolve in time according to the dynamic equation
(1).

τu̇(x,t) = −u(x,t) + h + S(x,t)

+

∫
f(u(x′, t))ω(x− x′)dx′ (1)

In Eq. (1), u(x,t) is the activation of the DF; x is the
parameter space, e.g., the one-dimensional hue space of
the input from the vision sensor, the two-dimensional
visual space, or the three-dimensional space of target
positions of the end-effector of the agent; t is time; τ is
the relaxation constant of the dynamics; h < 0 is a resting
level to which the DF converges without input and work-
ing memory of previous activity; S(x,t) is the external
input to the DF; f(·) is a sigmoidal non-linearity that
shapes the output of the DF. The last term formalizes the
homogeneous lateral connectivity (and interaction) in the
DF: the output of the DF is convolved with a Gaussian
interaction kernel, ω(x− x′). The interaction kernel has
two components, local excitation and global or mid-range
inhibition, which stabilize the localized peak(s) solution
of the DF.

The lateral interaction within the dynamic field also
provides for the working memory in the DF: at suf-
ficient levels of local excitation, the DF sustains the
activity peak even if the initial input ceases. Within
DFT, localized peaks are units of representation. The
distributed, ambiguous, fluctuating, and noisy input
typical for low-level physical sensors leads to local-
ized, consistent, persistent, stable states in the DFs.
An instability separates a peak-attractor of the DF’s
dynamics from a sub-threshold attractor and thus the



field’s dynamics performs and stabilizes a “detection”
decision about presence of a particular characteristics, as
well as a “selection” decision between competing inputs,
and supports memory for previously encountered states.
These properties form the basis for the power of DFT
as interface between low-level sensory-motor and more
abstract cognitive computations [23].

Since the behaviorally meaningful states in DFT are
attractors, we need a dynamical mechanism to destabilize
the current state and to proceed to the next state in a be-
havioral sequence. To address this need, we have recently
implemented the principle of intentionality [24] in DFT.
In particular, we argued that each action-related state of
the system’s dynamics needs a correspondent condition
of satisfaction (CoS) state, which signals accomplishment
of the current action and triggers a sequential transition
[25], [26].

Here, we further develop this mechanism, introducing
a concept of elementary behavior (EB), which comprises
both high-level representation of the intention and CoS
of an action, as well as sensory-motor representations,
which receive input directly from sensors of the robot. A
number of EBs are organized in an architecture, in which
different constraints (e.g., precondition or competition)
between the EBs are represented by dynamical nodes.

Next, we describe the DFT architecture for behavior
organization in detail. The entire architecture is built
from dynamic fields (DFs), each described by Eq. (1),
where x are spaces of different dimensionality (here,
zero to three). The DFs of the architecture are coupled
through weighted connections, a mechanism described in
[27]. The detailed mathematical description of the model
is presented in Section V.

B. Model

1) Elementary behavior: A task, such as grasping an
object, may be subdivided into motor and perceptual
processes (e.g., locating the target object, moving the
end-effector, or closing the gripper), all of which we
refer to as elementary behaviors (EBs). Each EB has
two dynamical elements: an intention and a correspond-
ing condition of satisfaction (CoS). Both elements are
represented by zero-dimensional DFs, that is, by neural-
dynamic nodes. The dynamics of the nodes is bi-stable
with an “on” and an “off” attractor. The intention and
CoS nodes are coupled to multi-dimensional DFs that
represent the graded parameter(s) of the intention and
of the CoS, respectively (see Fig. 1).

An active intention node induces a localized peak of
activation in the intention field. This peak impacts on the
sensory-motor dynamics downstream from the intention
field. In particular, it provides input to perceptual DFs
over relevant feature spaces that are accessible to the
sensors of the robot. It also provides input to DFs
that represent movement parameters and are coupled
to an effector dynamics (see Fig. 2 for an exemplary
architecture). Activation peaks in perceptual and motor

Fig. 1: DFT-based model of an elementary behavior
(EB). See text for details.

DFs set attractors of the motor dynamics, which drive
effectors of the robot. At the same time, the CoS field
receives input from both the intention field and the
perceptual fields. If these two inputs match, a peak in
the CoS field arises and signals the successful completion
of the EB. In this way, the CoS field detects that the
predicted sensory consequences of the motor act have
been observed. The space over which the CoS field is
defined is chosen accordingly. An activity peak in the
CoS field activates the CoS node, which in turn inhibits
the intention node of the EB. Consequently, the peak in
the intention field decays and the impact of the intention
of this EB on the sensory-motor systems of the agent
ceases. The system transitions to the next EB.

2) Architecture: The neural-dynamic structure of ele-
mentary behaviors (EBs) ensures that each action within
a behavioral sequence is initiated, executed by the motor
system, and brought to an end. A set of EBs comprises
the behavioral repertory of the agent. Activation of these
EBs has to be organized in time. To accomplish this,
we introduce interneurons (i.e., dynamical nodes), which
encode constraints on the sequential activation of EBs.
In the architecture that we present here, two types of
constraints are important: the precondition constraint
and the suppression constraint.

Fig. 2 illustrates, amongst others, a precondition be-
tween the EBs “open gripper” (EB1) and “move arm”
(EB2). The precondition constraint is encoded by a
dynamical node that inhibits the intention node of EB2,
which should not be activated unless the gripper of the
robot is open. The precondition node is, in turn, inhibited
by the CoS node of EB1. Thus, when the CoS node
is activated, the intention node of EB2 is disinhibited.
As a result, EB1 and EB2 are activated sequentially.
A suppression constraint, e.g. between the EBs “move
left arm” and “move right arm” (not shown in Fig. 2),
suppresses one of these EBs as long as the other one
is active, leading to a competition between the EBs. A
number of precondition and suppression constraints im-
plicitly encode a sequence. For instance, the constraints



shown in Fig. 2 result in the grasping behavior of the
robot.

3) Tasks and switching dynamics: A set of EBs
with associated behavioral constraints forms a task,
which is realized by one or multiple complete behav-
ioral sequences—examples are pointing or grasping. A
dynamical task node (not shown in Fig. 2) activates the
intention nodes of all EBs involved in a task as well as
the respective constraint nodes. The sequence emerges
then from the activation of those EBs that do not have
preconditions, or whose preconditions have been met.
Fig. 2 illustrates portions of an architecture for the task
of grasping.

III. RESULTS

In this paper, we present three sets of results. First, we
demonstrate the basic functionality of the architecture by
implementing different tasks (i.e., sequences of EBs) in
simulation and on the robot. Second, we show how the
perceptual, bottom-up input impacts on the behavioral
sequences along with the top-down constraints between
EBs. And finally, we demonstrate the ability of the
architecture to detect changes in the perceptual state
that require returning to a previous EB in the sequence.

All robotic experiments were performed on a humanoid
robot NAO in a table-top scenario. NAO was facing
a table of 30 cm height with several colored objects
(1x2.5x5 cm) in different arrangements for different runs
of the experiments. The target object was placed in the
15x15 cm area in front of the robot, because of the limited
operation range of the arms of the version of NAO we
used. The color camera of the robot provided input to
the perceptual DFs, the dynamics of which effectively
performed detection, segmentation, and selection of the
colored objects. The raw camera input and input from
the other robotic sensors was used to emphasize that our
approach stays robust even if linked directly to a low-
level sensory-motor system.

A. Basic demonstration: Acting out task-driven behav-
ioral sequences

The architecture that is partially shown in Fig. 2 is
comprised of the EBs “find object color”, “move head”,
“open left/right gripper”, “find end-effector marker
color”, “move left/right arm”, “visual servoing”, and
“close left/right gripper”. When the task node “grasping”
is activated, it sends excitatory input to the intention
nodes of these EBs and to the precondition nodes shown
in Fig. 2.

The EBs “find color” and “move head” do not have
preconditions and can become active. The intention field
of the EB “move head” requires a perceptual input in
order to be activated, which specifies the location of
the target object in the image. This perceptual input
is delivered when the EB “find object” succeeds. The
intention field of “move head” sets an attractor for the
dynamics that controls the movement of the robot’s

head, making it center the target object in the camera
image. When the CoS of the EB “move head” detects
the presence of the target object in the central part
of the camera image, it is activated and inhibits the
precondition nodes of the EBs “open left/right gripper”.
Since the target object is located in the right portion
of the workspace, the intention field of the “open right
gripper” field is activated. When this EB is completed,
the “move right arm” EB is activated analogously. The
intention field of this EB sets an attractor for the arm
movement dynamics, estimated from the pitch and yaw
of the robot’s head. The EB “move right arm” is finished
when the robot’s gripper appears in the camera input.
The EB “visual servoing” is then activated until the
robot’s thumb is aligned with the target object. This
match is detected in the CoS field of the EB “visual ser-
voing” and the final EB “close right gripper” is activated.
The whole sequence is completed when the robot’s hand
grasps the object.

In simulation, we modeled sensory inputs as localized
distributions over dimensions of the perceptual DFs. The
exemplary tasks which we looked at in simulation were
five different sequences of the EBs depicted in Fig. 2.
We conducted 20 runs of the simulation for each task,
varying locations and strengths of the perceptual inputs
to verify the robustness of the DF representations and
the switching mechanism between the EBs. We also
tested at which amount of noise in neural dynamics and
sensors the behavior of the system becomes unstable.

In the robotic implementation, we let the humanoid
robot NAO act out two of the six simulated sequences
that result in meaningful behaviors (i.e., “grasp” and
“point”). Fig. 3a illustrates the pointing sequence by
showing the time courses of the activations of the in-
tention nodes involved in the task. Fig. 3b shows the
analogous plot for the grasping task. The two tasks
differ in the order of some EBs (i.e., opening/closing the
gripper). Comparing Fig. 3a and 3b additionally shows
that the architecture can deal with varying durations of
execution time for each EB in the sequence (e.g., “visual
servoing”), since the successful completion of EBs is de-
termined based on perceptual input only. We have tested
performance in these tasks at different arrangements and
colors of the target and distractor objects.

B. Influence of the perceptual input on the sequences

In this experiment we demonstrate that not only task-
specific behavioral constraints determine the behavioral
sequence, but the perceptual input from the environ-
ment also influences the executed EBs. In particular, we
demonstrate how the architecture stabilizes a selection
decision to move the left or right arm depending on the
position of the target object on the table. Out of 40 trials,
in which the object is situated in different locations to
the left and to the right of the robot in 20 cases each, the
robot always chooses the correct arm to grasp the object.
Even if the target object is close to the midline, there are
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Fig. 2: DFT architecture allowing for tasks that consist of an arm movement toward a target object of an arbitrary
color. This particular setup is intended to lead the controlled robot to grasp the target object. Other tasks, such
as pointing or pushing of the target object, can be realized by enforcing different behavioral constraints through
task input (not shown here). Pointing arrows represent excitatory input, whereas arrows with circular heads denote
inhibitory connections. Arrows ending in an orthogonal line represent a global boost of the corresponding DF.

no oscillations between the “left” and “right” decisions.
Fig. 4 shows the trajectories of both end-effectors for
six exemplary trials with different target locations. In all
trials, only one of the end-effectors moves, while the other
remains stationary. Some of the trajectories (e.g., trial 2
and 5) also show the switch from the first approximate
arm movement of the EB “move arm” to the visual
servoing of the end-effector.

C. Reactivating EBs and returning to earlier elements of
a sequence

Here, we demonstrate the flexibility of the architec-
ture. The robot is able to detect if the environmental
situation changes and returns to prior elements within
a sequence. To accomplish this, the CoS node of some
EBs (called reactivating EBs) loses its activation if the
sensory input that induced it ceases. The suppression
and precondition nodes that were inhibited by the CoS
of such an EB get reactivated. These nodes inhibit any
active intention for which the reactivated EB has to be
completed. Since the execution of any EB depends on
the perceived state of the environment, the subsequent
behavioral sequence may differ from the one before the
CoS of the reactivating EB ceased.

During execution of the “grasping” task, described in
Section III-A, the target object is moved from the right to
the left side of the table when the robots starts to move
its right arm within the EB “move right arm”. Since the
object is no longer in the center of the robot’s camera,
the peak in the CoS field of the EB “move head” decays.
The CoS node loses its activation as well and since it no
longer inhibits the intention node of the EB “move head”,
the intention node is reactivated. The precondition node
of the EB “move right arm” is also reactivated and sup-
presses this EB. Since the target object is now perceived

on the left side of the workspace, it provides input to
the intention field of the EBs “open/close left gripper”
and “move left arm”. The intention fields of these EB
are activated in the subsequent behavioral sequence—
the robot autonomously uses its other arm to grasp the
object.

IV. CONCLUSIONS

The framework based on Dynamic Field Theory that
we presented here is aimed to organize behavior in au-
tonomous robots while continuously coupling to sensory
information that may be low-level, time-varying, and
fluctuating. The neural dynamics enable the system to
stabilize decisions against variations of sensory input
until a critical level is reached, at which the system
may flexibly activate, through an instability, an alternate
behavioral sequence. The completion of behavior at any
given step in a behavioral sequence is likewise controlled
by an instability that triggers the transition to the next
step, which is then stabilized in turn.

Conceptually, the DFT framework is compatible with
the ideas of behavior-based robotics. Earlier efforts to
organize behavioral sequences in such systems did not
address the stability issues at a theoretical level [28]. We
believe this to be a limiting factor for such architectures
and that it makes debugging and parametrically tuning
such architectures difficult. In a way, our framework is a
renewed building of a behavior-based approach to behav-
ioral organization that now provides an explicit concep-
tual basis for stability and coupling. Unlike the simulated
work [28], most implemented behavior-based robots have
addressed navigation, locomotion, or expressive gesture
generation [29]. In contrast, in our demonstrations, the
sequences included motor behaviors that were directed at
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Fig. 3: Activation patterns of the intention nodes of
all EBs relevant to the pointing (a) and grasping (b)
tasks. The sequence of EBs emerges autonomously from
behavioral precondition constraints, which are activated
between EBs by task-specific input. Note the varying
amount of time needed for each EB to complete, both
among each other and when compared to their counter-
parts in the grasping task.

perceived objects. This was possible, because perceptual
representations are part of DFT.

Classical, decision theoretical approaches to behavioral
organization have typically operated off-line and not in-
vestigated online coupling to noisy sensory information.
The on-line updating has recently been addressed [30].
However, conceptually these are time-less approaches
that make a new decision at every time step. Our ap-
proach is, in contrast, based on dynamical coupling. The
complete system is a single dynamical system that spends
most of its time in an attractor state. We believe this
to be an advantage when control-theoretical properties
of the coupled effector-environment play a role. In our
demonstrations, this becomes visible in Fig. 4, in which
both approach and visual servoing were achieved within
the unified DFT framework.

The theoretical language of DFT lends itself to include
online learning processes in the architecture. Couplings
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Fig. 4: Trajectories of both end-effectors for six trials of
a grasping task, in which the object is located either to
the right (a) or left (b) of the robot. The trajectories
are projected onto the table surface and the origin of
the coordinate system lies between the robot’s feet. The
movements result from a sequential activation of the EBs
“move left/right arm” and “visual servoing”.
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Fig. 5: Photos of a grasping task, in which the target
object is moved to the other side of the table during the
approach of the robot’s right end-effector.



between the different EBs and the associated intention
and condition of satisfaction fields may be modified by
graded, dynamic learning rules. We are currently inte-
grating methods of value-based reinforcement learning
and Hebbian learning into our approach with the goal of
enabling the system to learn behavioral constraints from
experience.

V. APPENDIX: MATHEMATICAL

DESCRIPTION OF THE MODEL

In this section, we present the dynamical equations
of the DFT architecture for behavioral organization.
First, we introduce a notation for the generic part of the
dynamical equation for a dynamic node (Eq. (2)) and a
dynamic field (DF) (Eq. (3)):

Fv(v(t)) = −v(t) + hv + cexc
v f(v(t)), (2)

Fu(u(x, t)) = −u(x, t) + hu +

∫
f(u(x′, t))ω(x− x′)dx′

(3)

We denote activation of all dynamic nodes with v and
all dynamic fields with u; the subscripts are “int” for
intention, “cos” for condition of satisfaction, “perc” for
perceptual, and “task” for task. h is a negative resting
level, t is time. f(·) is a sigmoidal non-linearity that
shapes the output of nodes and DFs

f(u) =
1

1 + e−βx
, (4)

and ω is a sum-of-Gaussians interaction kernel

ω(x− x′) = cexc
u e

−
(x−x

′)2

2σexc − cinh
u e

−
(x−x

′)2

2σinh . (5)

We also introduce the following notation for projec-
tions between dynamic nodes and dynamic fields of
different dimensionality

fpr(u) = cu
pr

∫
f(u(x, t))dx̄, (6)

where x̄ is a subspace of the space x of the dynamic field
from which the projection is performed (u here). This
subspace is comprised of dimensions that are not present
in the space, over which the receiving dynamic field is
defined (the field on the left-hand side of the following
equations). x, y, and z are different spaces, over which
intention, condition of satisfaction, and perceptual fields
are defined, respectively.

Taking these notations into account, an elementary
behavior within our architecture may be described by
the following set of non-linear differential equations.

The intention node

τ v̇int(t) = F (vint(t)) + ci,tf(vtask(t))

− ci,cf(vcos(t)) −

∑
p/s

ci,p/sf(vp/s(t)) (7)

receives a positive input from the task node, scaled by a
parameter ci,t, a negative input from the respective CoS
node, scaled by a parameter ci,c, and a negative input

from the active constraints nodes, each scaled by a factor
ci,p/s.

The condition of satisfaction (CoS) node

τ v̇cos(t) = F (vcos(t)) + cv
c,if(vint(t)) + cv,u

c,c fpr(ucos) (8)

receives positive input from the respective intention
node, scaled by a factor cv

c,i, and positive input from the
CoS field, scaled by c

v,u
c,c . The projection fpr is typically

simply an integral over the DF ucos.
The intention field

τu̇int(x, t) = F (uint(x, t)) + c
u,v
i,i (x, t)f(vint(t))

+ ci,percfpr(uperc) (9)

receives a positive input from the intention node, scaled
by a weights function c

u,v
i,i (x, t), which may vary in a

learning process, and a positive input from (typically a
single) perceptual DF, scaled by a factor ci,perc and, if
needed, projected down or up.1

The CoS field

τu̇cos(y, t) = F (ucos(y, t)) + cu
c,i(x,y, t)f(uint(x, t))

+ cperc,cfpr(uperc) (10)

receives positive input from the intention DF through a
weight function cu

c,i, which accomplishes a transformation
from the space x of the intention field to the space y

of the CoS field (x and y are often, but not always,
identical). The CoS field also receives positive input from
(typically a single) perceptual DF through a projection,
scaled by a factor cperc,c.

The precondition constraint node

τ v̇p(t) = F (vp(t)) + cp,taskf(vtask(t)) − cp,cf(vcos(t))
(11)

receives positive task input of strength cp,task and neg-
ative input from the connected CoS node, scaled by
a factor cp,c. The node needs the CoS input to be
deactivated.

The suppression constraint node

τ v̇s(t) = F (vs(t)) + cs,taskf(vtask(t)) + cs,if(vint(t))
(12)

receives positive task input of strength cp,task and posi-
tive input from the connected intention node, scaled by a
factor cs,i. The node is inactive when the intention input
ceases.

The task node

τ v̇task(t) = F (vtask(t)) + Icontext(t) (13)

is activated by the contextual input Icontext(t), which,
in our experiments, is simply a numerical input emitted
from a GUI, but could also be the output of a perceptual
DF module that detects particular contexts in which
tasks should be activated.

1Up-projection converts input from a lower-dimensional DF to a
higher-dimensional DF by repeating input over additional dimen-
sions.



A perceptual field

τu̇perc(z, t) = F (uperc(z, t)) + cperc,ifpr(uint) + Is(t)
(14)

receives positive input from the intention DF, scaled by
cperc,i and, typically, projected up (when the perceptual
field has a higher dimensionality than the intention
field) or down (when the perceptual DF has a lower
dimensionality). Additionally, it receives a direct input
Is(t) from the associated sensor, which could, e.g., be a
hue-value distribution over the image.

The motor dynamics

τφ̇ = −φ+ forcelet(fpr(uperc),fpr(uint),φ) (15)

is defined for the motor variable φ, the dynamics of which
has an attractor set by a forcelet that is constructed
depending on the peculiarities of the motor controlled
by φ. The motors of the robot are driven according to
the value of φ. Examples of use of such dynamics may
be found in [20], [21].

A particular architecture is assembled from a number
of such elements (see, e.g., Fig. 2). The parameters of DFs
and couplings c are subject to neurally inspired (Heb-
bian) learning and may potentially be tuned based on
the experience of the agent using reinforcement learning
techniques, imitation, and scaffolding or, alternatively,
through evolutionary optimization.
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