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Abstract—This paper presents a neurally-inspired architecture
for learning to reach toward visually-perceived targets. The whole
behavioural loop from object perception to motor control is
realised in the architecture of interconnected Dynamic Neural
Fields. The sensory-motor mappings, involved in generation of
saccadic gaze shifts and reaching arm movements, adapt in
the system autonomously along with the generated behaviour.
A network of neural-dynamic nodes organises activation and
deactivation of the behavioural modules of the architecture in
time, leading to an autonomous process model of development
of looking and reaching. The architecture was implemented and
validated in a simulated robotic agent.

I. INTRODUCTION

The ability to reach for objects in our immediate environ-
ment appears to be so natural and effortless that the complexity
of the involved neuronal processes may be easily underesti-
mated. However, this complexity is revealed in developmental
studies, which establish that it takes human infants many weeks
of intensive (and highly motivated) practice to develop the
ability to direct their hands toward interesting objects [1]. The
problem of generating a motor plan that directs the hand to
a visually perceived object obviously requires learning the
sensorimotor transformation between the the visual and the
arm systems [2]. This process involves several stages — first,
the visual system learns to transform the retinotopic positions
of targets into body-centred positions, as revealed, e.g., in
developmental studies of double-step saccades [3]. And only
later the infant learns to reach [4], i.e. to align the body-centred
target representation, generated by the looking system, with the
reference frame of the motor system, in which arm movements
are planned. All these sensory-motor transformations have not
only to be learned initially, but have to be updated constantly
as muscles fatigue or the body grows to enable precise looking
and reaching movements without visually-driven control [5].

If these complexities were not enough, let us look at the
process of generating a reaching movement in an embodied,
behaving system. First, a target object has to be selected
on the retina, involving top-down and bottom-up attentional
processes. Second, the representation of this target’s location
has to be stabilised (a) against sensory noise and temporal
decay of retinal activation at this position and (b) against
saccades that might intervene between the initial fixation and
reaching onset. For the second stabilisation, (b), the position
representation has either to be transformed into body-centred
reference frame or the retinotopic representation has to be

updated, taking the intervening eye movement into account [6].
Finally, the target representation in a body-centred reference
frame, aligned with the motor system of the arm, has to be
combined with the current position of the hand to generate
the motor command for the hand. This command has to
be transformed into joint movements and muscle activation,
controlled until the end-point of the movement is reached [7].

Recently, we have introduced a neural-dynamic architec-
ture, based on the Dynamic Field Theory [8], that introduces
learning and adaptation of the sensorimotor transformations
in an architecture, capable to autonomously generate saccadic
eye movements from visual input. We have demonstrated
how the involved sensorimotor mapping between the retinal
positions of the selected objects and the motor commands,
needed to saccade toward these objects may be initially learned
and constantly updated [9], [10], [11]. We have implemented
the architecture to control an autonomous humanoid robot to
show that the model indeed may generate behaviour and learn
autonomously in a real-world setting [12].

Here, we extend the neural-dynamic architecture to enable
reaching movements, directed at visually perceived objects. In
our model for reaching, the gaze-direction independent (body-
centred) representation of the target location is generated by
integrating the saccadic motor signal and summing it with
the memory of the gaze direction before the saccade. The
resulting representation corresponds to the motor state of the
eye, in which the eye would be after a precise saccade. In
the reaching part of the architecture, we use this gaze-based
representation to generate a body-centred target representation,
which may control movements of the arm. The integrating
factor, required to generate the gaze-based representation,
may be learned in order to make a correct prediction of the
motor state of the eye after the saccade [12]. The mapping
between the gaze-based representation and the proprioception-
based representation of hand positions is learned subsequently,
leading to a developmental cascade: from the ability to look,
to the ability to make double-step and memory saccades, and
finally the ability to reach for targets.

We implement our extended model on a simulated robot to
validate its functioning in an embodied setting and to demon-
strate that the system may be used to autonomously calibrate
the camera-arm system of a robotic agent. Typically, such
calibration is achieved in a manual calibration procedure [13].
Several architectures were developed, which allow to learn



the proper mapping between visual and arm systems [14],
[15], [16]. These architectures use biological inspiration, in
particular observation of how human infants learn to coordinate
their gaze and arm movements over many trials [17].

In our work, we emphasise the autonomy of learning
the sensory-motor transformations. In biological systems, the
behaviour and learning are interwoven naturally, the system has
to take decisions about when and what to learn based on its
own sensory information. The increased autonomy compared
to other state-of-the-art systems, in which the sensorimotor
transformations are learned on robots in a similar way (e.g.,
[18], [19]), is realised by a system for behavioural organisation
of human and robotic behaviour based on neural dynamics,
which we have developed recently [20]. This system activates
and deactivates actions — such as attentional shifts, looking
movements, and arm movements — and activates learning when
appropriate (e.g. when the representations on both sides of a
mapping are in correct states, or when an expectation mismatch
is detected after an action). We implemented the model in a
physically simulated robot CAREN, which consists of a pan-
tilt camera system, a KUKA lightweight robotic arm, and a
SCHUNCK hand. The respective hardware setup is available
in our lab and will be used to validate and refine the learned
mappings in subsequent work.

II. METHODS
A. Dynamic Neural Fields

In our work, we use Dynamic Neural Fields [21], [22],
[23] as the mathematical framework for development of the
cognitive architecture. From computational perspective, DNFs
are attractor dynamics, which stabilise the neural states against
noise, fluctuations, and other states, competing for activation.
These continuous in time and in space dynamics allow to
couple the controlling architecture to real physical sensors and
motors, while providing an interface to discrete, or symbolic,
cognitive representations [8]. Using DNFs, the whole robotic
architecture, including the perceptual and memory systems,
behaviour organisation (or planning), learning, and motor
control, is formulated as a single (but modular) dynamical
system, leading to natural and seamless integration of different
components.

The dynamics of a DNF is described by an integro-
differential equation, Eq. (1):
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Here, u(z,t) is the activation of a dynamic neural field (DNF)
at time ¢; x is one or several behavioural parameters (e.g.,
colour, location on the retina, postural state, or velocity), over
which the DNF is spanned; 7 is the relaxation time-constant of
the dynamics; h is the negative resting level that defines the
activation threshold of the field; f(-) is the sigmoidal non-
linearity shaping the output of the neural field; the lateral
connections in the DNF are shaped by a Mexican hat lateral
interaction kernel, w(|z’ — z|), with a short-range excitation
and a long-range inhibition parts; I(z,t) is the sum of the
external inputs to the DNF.

Lateral interactions of the DNFs bring about the existence
and stability of a localised-peak solution that is the computa-
tional basis for modelling elementary cognitive processes of
categorisation, detection, selection, and memory in the DNF
framework [8].

Learning in a DNF architecture amounts to an adaptation
process in a coupling function, described by the differential
equation Eq. (2), [23]:
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Here, W (z,y,t) expresses the strength of the coupling be-
tween two DNFs, e.g., u(x,t) = W(z,y,t) - v(y,t). This
coupling reaches an attractor state with a time-constant 7;. The
attractor equals the Kronneker product of the outputs of the
two fields. The coupling function is only updated when the
external learning signal, ¢jeqrn (), is positive and only where
the Kronneker product of the outputs of the two coupled DNFs
is positive. This learning mechanism expresses an externally-
driven (by a system for behavioural organisation or external
rewards) associative learning, that increases coupling strength
between locations in two DNFs that are activated simultane-
ously as long as an external signal marks a learning window.
Such learning rule is a neural-dynamic equivalent of a neuronal
Hebbian learning rule according to which the connections are
strengthened between two neuronal populations that are active
at the same time (“Fire together, wire together”).

The two equations, Eq. (1) and Eq. (2), are used to build the
adaptive neural dynamic architecture for generation of looking
and reaching, presented next.

III. THE NEURAL-DYNAMIC ARCHITECTURE
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Fig. 1: The dynamical modules of the DNF architecture for
learning sensorimotor transformations for looking and reach-
ing.



The neural-dynamic architecture developed in this work
is presented in Fig. 1. The robot (shown by a green box on
the bottom of the figure) consists of a camera, mounted on
a camera head motor unit, and a robotic arm. The camera
drives the looking system (left on the figure), which generates
saccadic (i.e. ballistic) camera movements toward objects
(here, the salient portions of the visual input). This adaptive
looking system has been introduced recently [11], [12], [10]
and is described briefly in this paper for completeness in
Section III-A. The looking module generates motor commands
that drive the motors of the camera head (the pink solid line in
the figure), and at the same time creates a representation of the
selected object in the gaze-direction space, i.e. in terms of the
motor state of the camera head when the robot directs its gaze
at the object (top left in the figure). This representation may be
generated in the looking module even if the looking movement
is not performed by a predictive mapping that generates —
from the retinotopic (i.e., image-based) location of the target
combined with the current gaze-direction — a representation of
the gaze direction when the object is centred in the camera
image (see predicted gaze-direction DNF on Fig. 2 below).

On the right hand-side of Fig. 1, the arm movement system
is depicted, described in Section III-B. The arm movement
system receives input from the arm motors about the current
position of the end-effector and drives the arm toward the
desired end-effector position using standard inverse kinematics
and attractor dynamics for movement generation [24]. The
desired position of the end-effector coincides with the position
of the target object in the proprioceptive space, i.e. the space, in
which the end-effector positions resume based on the forward
kinematics of the robot (top right in Fig. 1). The mapping
between the gaze-direction space and the proprioceptive space
allows to generate motor targets based on the visual input.
How this mapping is learned autonomously is described in
Section III-C.

Next, we describe the individual modules of the architec-
ture in as much detail as space allows us.

A. Looking

Fig. 2 shows the portion of the neural-dynamic architecture,
which generates adaptive gaze shifts (the content of the “Look-
ing dynamics” block in Fig. 1). In this system, the camera
provides input to the perceptual Dynamic Neural Field (DNF)
— a three-dimensional DNF, defined over the dimensions of the
camera image (x,y) (only these two dimensions are shown in
the figure), and colour (hue value of the image pixels). The
strength of the camera input is the luminance of the image
pixels here, although more complex saliency calculations are
compatible with this representation [25]. The perceptual DNF
builds localised activity peaks over the most salient regions in
the retinal (image-based) space.

The target DNF receives the positive activation of the
perceptual DNF as input and selects one of the salient regions
as the target of the upcoming gaze-shift (saccade) and stabilises
the activity peak over this location, transitioning in a self-
sustained state. The activity peak in the target field triggers
the saccadic burst generator — a number of interconnected
dynamic nodes (zero-dimensional DNFs), which generate an
oscillation of activation that defines the velocity profile of the

upcoming gaze-shift. This velocity profile is multiplied with a
gain factor before it is directed to the two motors of the robot
(controlling the pan and tilt of the camera head).

The value of the gain factor depends on the location of
the target in the image space (larger gains for targets further
away from the central part of the image, ‘the fovea’) and the
position of the camera head before the gaze shift. Thus, the
gain factors form a map of adaptive gains, which receives
inputs from the target DNF and the motor memory DNF. The
motor memory DNF keeps — as a sustained activation peak —
the position of the camera head motors before the gaze shift.
These two inputs, on the one hand, define the region in the
gain map, which is read out during saccade generation to scale
the oscillation of the saccadic burst generator. On the other
hand, these two inputs define the region of the gain map, in
which adaptation takes place after an erroneous saccade: i.e.
a saccade that did not bring the target object into the centre
of visual field, as detected in the direction of error estimation
module. After each gaze shift, the gain maps may be adapted
if visual errors are detected and ultimately form a mapping
between the image-based space and the motor space of gaze-
shift commands.

The scaled motor signal is not only sent to the robot’s
motors, but is also integrated internally and summed with the
output of the motor memory DNF, leading to a prediction of
the gaze, which the robot would have after the respective sac-
cadic gaze shift. This prediction is a representation of the target
object in gaze-based coordinates (one of the body-centred
coordinates), which may be used to guide other movements,
e.g. the arm movement toward the visually perceived object.
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Fig. 2: Architecture for learning to look.
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Fig. 3: The simulated robot.

B. Arm movement

The robotic arm used in our simulated experiments is an
eight degrees of freedom KUKA lightweight arm, shown in
Fig. 3. The arm movement may be controlled by providing the
target position for the end-effector (the hand) in robot-centred
coordinates. To calculate the joint-velocities from the target
and the starting end-effector positions, the attractor dynamics
approach is used, in which the attractor dynamics is defined
for the direction of the end-effector movement, Eq. (3):

T¢(t) = Ftu7'(¢a ¢tu7'a t) + Fobs (¢7 ¢0b37 Tobs» t) (3)

Here, ¢ is the direction of the end-effector velocity vector
relative to an arbitrary reference direction; ¢, is the direction
of the line, connecting the current position of the end-effector
and the target; ¢ops, Tobs are the direction and distance toward
eventual obstacles; Fi, and Fj,s are functions that shape the
attractors and repellers of the dynamics, respectively (see [26],
[24]).

This dynamics drives the end-effector to the target by
setting an attractor for the heading direction of the end-effector
movement on the direction toward the target (deviating from
this direction if obstacles are encountered on the way). In
each iteration of the dynamics, the velocity of the end-effector,
v = (¢, v4.) (vg, is the translational component that depends
on the distance from the target and obstacles), is translated into
joint-velocities using standard inverse kinematics techniques,
involving a pseudo-inverse for the redundant manipulator [27].

Thus, the only missing component to perform the arm
movement now is the position of the target object in robot-
centred (“proprioceptive”) coordinates. The mapping between
this proprioceptive representation of the target objects and the
gaze-centered representation obtained in the looking system
may be learned as described next.

C. Adaptive mapping

The mapping between the gaze-direction space and the end-
effector position space is a four dimensional weights function
(implemented as a matrix), which is updated according to
Eq. (2), where = (Zhand, Ynand) are coordinates of the hand
in the plane, parallel to the table, and y = (pan, tilt) are the
pan and tilt motor components of the robot’s gaze. The third
component of the hand position — its height over the table —
is considered to be constant here.

The external learning signal ¢jeqrn (t) = voos(t) is the out-
put of the condition-of-satisfaction (CoS) node, which signals
that the gaze-direction of the robot is aligned with the position

of the hand (the robot “looks” at its hand) (see Section III-D).
If this CoS node is active, the weight matrix is updated.

The update happens in the region in the matrix, defined
by the Kronneker product of the output of the gaze-direction
DNF wgq.c(pan, tilt) and the proprioceptive target position
DNF Upand(Thand, Yhand) (the gaze-direction space and the
proprioceptive space DNFs in Fig. 1 respectively). In this
region, the weights approach the output of the Kronneker
product, which is positive in the region of the 4D space, where
the activity peaks in the two two-dimensional fields overlap.

D. Behavioral organisation of looking, reaching, and learning

In order to organisae activation and deactivation of look-
ing, reaching, and learning dynamics at appropriate times, a
framework for behavioural organisation with DNFs, developed
recently, was used [20].

The two neural-dynamic networks for behavioural organ-
isation are shown in Fig. 4: (a) for generation of reaching
movements toward visually perceived targets and (b) for learn-
ing the mapping between the gaze-based and proprioceptive
reference frames. At their core, the two architectures differ in
one node only — the precondition node — which defines whether
the camera head is moved first to direct the robot’s gaze to
an object and the arm is moved then to this object (when
reaching action to a visually perceived target is performed),
or whether the hand is moved first to an internally generated
proprioceptive position and the camera head is moved then
to look at the hand (when learning the reference frames
transformation). On the periphery, the visual parameter that
biases the target object selection in the perceptual DNF of the
looking system (Fig. 2) is changed between the two regimes:
the target object colour is selected for reaching movement
generation and the colour of the robotic hand is selected as
the target colour for learning.

In the figure, the red nodes represent intentions of the
involved actions [20], and the blue nodes — the respective con-
ditions of satisfactions (CoS), which signal, that the respective
action is finished.

For network in Fig. 4a, first, the “Reach” intention node
is activated and activates the “move head” and “move hand”
intentions, as well as the precondition node between them,
which inhibits the “move hand” intention node. The respective
CoS nodes are preactivated, but are only activated when the
looking system provides feedback about a completed gaze
shift (input (4) from the end-of-fixation (EoF) node of the
looking system, see Fig. 2) and when the arm moving system
provides feedback about the completed motor action (input
(5)). When both actions are complete, the respective CoS
nodes are activated and jointly activate the joint CoS node
(centre bottom of Fig. 4a). This CoS node inhibits the “Reach”
intention node and, consequently, looses its own activation.
The “Reach” intention may be activated again now.

For network in Fig. 4b, first, the “Learn” intention node
is activated (equivalent to the “Reach” node above), which
activates the “move hand” and “move head” intention nodes
and the precondition node, which, this time, inhibits the
“move head” intention, ensuring that the hand movement is
accomplished first, based on a proprioceptively defined target
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location. When the head movement is completed too and the
robot “looks” at its hand, learning process is activated through
the output (3) (vcos(t) in Section III-C). When learning
has saturated, the input (6) activates the CoS that inhibits
the “Learn” intention node. Loosing input from the “Learn”
intention node, the CoS’s activation ceases, the intention node
is released from inhibition, and the new learning act may begin.

Numbers on the input and output arrows in Fig. 4 corre-
spond to numbers in Fig. 1: (1) is the input to the init node of
the looking dynamics, which initiates a gaze-shift action, (4)
is the output of the end-of-fixation (EoF) node of the looking
dynamics that signals that the gaze-shift is finished, (2) is the
input that initiates arm movement dynamics, (5) is the output
of the arm movement system, which signals that the hand has
reached the target, (3) activaties adaptation of the coupling
function, (6) signals that the adaptation iteration is complete.
Lines with circles in Fig. 4 mark inhibitory connections in the
network.

The networks in Fig. 4 allow the system to perform reach-
ing movements toward visually perceived targets and update
the mapping in order to generate precise arm movements
autonomously. Switching between these two regimes is done
manually here, but could be organised in a hierarchical system
for behavioral organisation [28].

IV. RESULTS

The model, described above was implemented in a sim-
ulated robot CAREN, Fig. 3. The looking part of the model
controlled the robot’s head and received input from the robotic
camera, the arm movement dynamics moved the robotic arm,
as described above. Next, we present some results of the
simulated experiments, which demonstrate how the mappings,
involved in looking and reaching, were autonomously learned.

The four-dimensional weight matrix, learned for our sim-
ulated robot, is shown in Fig. 5. The tiles in the figure span
the proprioceptive motor space (positions of the hand over
the table in body-centred coordinates used to move the arm).
The tiles are aligned along visual gaze-direction coordinates
(pan and tilt of the camera head). The red regions in the map
are regions with positive values, which connect the locations
in the gaze-based body-centred space with the locations in
the proprioceptive body-centred space. Blue regions represent
small values that are close to zero. The map is updated in the
regions that were visited by the gaze and the hand during the
learning process. Some degree of generalisation is achieved,
because the learning regions have a finite width, defined by
the width of the activity peaks in the gaze-based and the
proprioceptive DNFs (and are not single points).

Apart from this “local” generalisation, the quality of the
learned map depends on the learning process and the environ-
ment, in which the autonomous learning unfolds. If learning is
performed in a stationary environment, mapping can be learned
only for the positions, at which the objects are present.

Fig. 6 shows values of the reaching errors depending on
the position of the target on the table after the map was
learned. During learning, objects were placed in the simulated
environment on the table on a grid with 10cmx10cm cells.
The error stays below Scm in all tested positions, even those
between the grid nodes.

Fig. 7 demonstrates the autonomy of the process of gen-
eration of reaching and looking movements during learning.
In particular, the sigmoided activation of the intention nodes
of the system for behavioural organisation in a learning ex-
periment (Fig. 4b) are shown. First, the look and learn node
is activated, followed shortly by the move hand node. When
this arm movement to an internally generated motor target' is
completed, the respective CoS node is activated and inhibits the
move hand intention, as well as the precondition node, which
was inhibiting the look at hand intention (Fig. 4b). The look
at hand intention node is activated then and drives the camera
head to direct the robot’s gaze to the robot’s hand. When this
movement is completed (as detected by the respective CoS
node, which receives inputs from the saccadic burst generator

1“goal babbling” could be performed here, but a systematic presentation of
motor goals from a grid that sampled the motor space over the table, was used
here instead



Fig. 6: Reaching errors depending on the position of the object
on the table.

of the looking system), the look at hand intention is inhibited
and the learning process is activated, updating the coupling
function according to Eq. 2. The “look and learn” intention is
deactivated when the learning process saturates, which results
in a short learning window between the drop of the red curve
and the drop of the green curve in Fig. 7.
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Fig. 7: Time course of activation of the intention nodes of the
network for behavioural organisation during three successive
looking and reaching movements during map learning.

Note, that during the second activation of the “look and
learn” intention, the move hand intention (blue line in Fig. 7)
is only activated briefly, since the robot performs only a
short movement to the next position on the exploration grid
(remember, the motor goals are presented to the robot in an
ordered way here). When this short movement is completed,
the CoS of the move hand action is activated and triggeres
the next behaviour. The system can handle such different
durations of actions since the behaviour organisation network
ensures that every module of the neural-dynamic architecture
is activated and deactivated as appropriate.

Fig. 8 shows the precision of the learned movements. Blue
circles show the position of the robotic hand at the end of

each movement after learning the map, red crosses show the
projection onto the table of the gaze direction of the robot (the
point on the table which was in the centre of the camera image
at the end of the respective gaze shift). The black dot represents
the target object. The scales on the axes are in cm. The small
rest variability comes from the distributed representation of
the mapping, updates of the mapping that co-occur with the
behaviour, and imprecisions in localisation of the objects in
the perceptual and target DNFs. This variability is comparable
to the variability of human reaching and looking movements
[29], [30].
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Fig. 8: Errors of looking and reaching.

Fig. 9a shows looking and reaching movements, performed
autonomously toward three targets, present on the tabletop.
Each target was accessed three times in a succession. The
targets were selected autonomously, as well as the move-
ments were performed and their completion was detected
autonomously. Fig. 9b shows looking and reaching movements
towards nine different targets, located on an arc in front of the
robot. Again, the targets were selected autonomously and the
looking and reaching movements initiated and terminated au-
tonomously using DNF dynamics and networks for behavioural

organisation.
V. CONCLUSION

This paper presents a neural-dynamic architecture for au-
tonomous generation of reaching movements toward visually
perceived targets. The model comprises the whole behavioural
loop from selection and stabilisation of the visual target,
generation of camera movement and adaptation of the involved
sensory-motor mapping, learning of transformation between
the visual gaze-based space and the proprioceptive hand-
space, and generation of the goal-directed arm movement.
Autonomous learning of the transformation, which maps the
gaze-based representation of the target onto the proprioceptive
representation of the target, which may be used to drive arm
movements, is the focus of this paper and was demonstrated
in a number of simulated robotic experiments.
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