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A R T I F I C I A L  I N T E L L I G E N C E

Neuromorphic computing hardware and neural 
architectures for robotics
Yulia Sandamirskaya1*, Mohsen Kaboli2,3, Jorg Conradt4, Tansu Celikel5*

Neuromorphic hardware enables fast and power-efficient neural network–based artificial intelligence that is well 
suited to solving robotic tasks. Neuromorphic algorithms can be further developed following neural computing 
principles and neural network architectures inspired by biological neural systems. In this Viewpoint, we provide 
an overview of recent insights from neuroscience that could enhance signal processing in artificial neural networks 
on chip and unlock innovative applications in robotics and autonomous intelligent systems. These insights 
uncover computing principles, primitives, and algorithms on different levels of abstraction and call for more 
research into the basis of neural computation and neuronally inspired computing hardware.

INTRODUCTION
Making robots and autonomous systems more 
intelligent in unstructured human-centered 
environments is one of the key goals in 
robotics, making it one of the most dynamic 
areas of technological development. The key 
ingredient of such intelligence is the ability 
to understand a complex and dynamic envi-
ronment well and fast enough to reliably 
support other functions, such as motion 
planning and control; safe interaction with 
humans, objects, and other agents; and 
autonomous learning from experience.

Neuronal networks and data-driven train-
ing algorithms have opened two important 
windows into understanding the environment: 
image and sound processing (1). These algo-
rithms achieve state-of-the-art performance 
on a large number of datasets, often even 
surpassing human performance, and are the 
primary candidates to enable intelligent per-
ception and behavior in robotics (2). How-
ever, robotic use cases pose particularly strict 
demands on power consumption, latency, 
adaptivity, and data efficiency of artificial 
intelligence (AI) algorithms (3, 4). Today, 
despite the advantages of neural network–
based algorithms compared with the previous 
hand-crafted AI solutions (5,  6), we are 
still lacking truly intelligent and agile robots 
capable of safely and smoothly interacting 
with objects, each other, and humans in our 
daily lives. This stands in stark contrast to 
even simple animals that can produce intel-
ligent behavior and interact in complex real-
world environments. Animals can quickly 

switch between tasks and adapt to a large 
variety of conditions, often relying on small 
and efficient neuronal networks (anecdotally, 
even the human brain consumes around 20 W 
of power with its 80 billion neurons). Can we 
achieve similar performance with neural 
network–based algorithms if we look closer 
at how biological nervous systems tackle 
the problems of perception, movement gen-
eration, and learning?

Artificial neural networks were originally 
inspired by biological neural systems. They 
compute by passing activation in a massively 
parallel network of simple units that sum 
incoming signals and compute a nonlinear, 
threshold-based function to produce an out-
put. This computing model is very close to 
the early mathematical abstraction of bio-
logical neurons, e.g., the McCulloch-Pitts 
neurons from 1943 (7). Although this com-
puting paradigm mimics computation in 
the brain on some abstract level and certainly 
comes closer to how biological neural systems 
function compared with conventional soft-
ware and algorithms, modern computational, 
cognitive, and systems branches of neuro-
science have delivered a plethora of new in-
sights about biological brains over the past 
seven decades. Some of these biological com-
puting principles, we argue, are crucial for 
making animal brains as power-efficient, 
adaptive, robust, and autonomous as they 
are. By uncovering some of the key comput-
ing principles and algorithms (neural network 
structures or architectures) of biological 
neural systems, we could further enhance 

performance of artificial neural networks in 
robotic tasks.

One particularly striking difference be-
tween biological neural systems and artificial 
neural networks dominating the AI space 
today is the way in which artificial and 
biological neural networks learn. Error back-
propagation is a powerful and generic func-
tion approximation algorithm that led to 
impressive results in approximating complex 
functions in image or sound classification 
tasks. However, it does not reflect the learn-
ing dynamics and the development of bio-
logical neural systems, nor can it approach 
their flexibility, versatility, and ability to learn 
continually. Overcoming the limitations of 
the error backpropagation–based training—
such as its offline character and rigid nature 
of the trained networks, catastrophic forget-
ting, data-hungry procedures, and limited 
generalization and abstraction capabilities—
is one of the key tasks tackled by AI and 
machine learning today. Solving them is 
particularly important for robotic applica-
tions, for which learning from experience 
and observation as well as continual adapta-
tion to changing conditions are more natural 
learning paradigms than offline training with 
labeled data. The biological mechanisms for 
adaptation and learning could bring new 
inspirations in this domain.

Another important insight about biological 
computing is that the computing hardware 
matters. Although today’s computers are uni-
versal computing machines and can compute 
any algorithm, including artificial neural net-
works, the efficiency of the implementation 
suffers from a mismatch between the low-
level structure of the computing hardware and 
the algorithm that it runs. This has been 
pointed out by researchers in the field of neu-
romorphic engineering for decades but could 
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be safely dismissed as long as conventional 
computers were becoming faster and gaining 
more memory every year, following Moore’s 
law. Today, as Moore’s law reaches the physi-
cal limits of how small the transistors can get 
while still ensuring reliable computation, neu-
romorphic hardware offers one of the best 
matches to modern biologically inspired com-
puting algorithms (8–11). It has been shown 
that these hardware systems allow us to gain 
orders of magnitude advantages in computing 
speed and power consumption for simulat-
ing brain-like spiking neural networks (12)—
the two performance identifiers of particular 
relevance in robotics. These advancements 
rely on fine-grained parallelism of neuro-
morphic hardware; co-location of memory 
and computing; event-based asynchronous 
communication between computing elements; 
and the implementation of elemental tem-
poral neuronal, synaptic, and learning dynam-
ics (short-term and long-term plasticity) in 
an efficient way using modern digital or 
analog computing technology (13–17).

To use this unconventional computing 
hardware to solve real-world robotic tasks, 
we need to “program” neuromorphic devices, 
i.e., find network structures and learning 
rules that solve relevant tasks in the same 
reliable and adaptive way as animal brains 
and bodies solve them and that, at the same 
time, lead to algorithms that can be bench-
marked and achieve state-of-the-art per-
formance. To arrive at this vision, the three 
fields need to interact more closely: robotics 
providing the understanding of the use cases 
and their challenges, neuromorphic com-
puting enabling the efficient implementation 
of the required computing elements, and 
computational neuro- and cognitive sciences 
providing computational insights into bio-
logical computing principles.

In this Viewpoint, we assess the state of 
the art in neuromorphic computing and en-
gineering and provide an overview of bioin-
spired computing principles on different levels 
of computing hierarchy that can lead to a 
new generation of neuromorphic computing 
systems to enable smarter robots under strict 
power, latency, and form factor constraints. 
We then consider how neuromorphic com-
puting technology has been used in robotics 
so far and provide a vision of how it could 
be deployed in this field in the future.

NEUROMORPHIC COMPUTING HARDWARE
Biological brains constitute a computing “hard-
ware” that differs from today’s predominant 

von Neumann computing architecture in a 
number of important ways. First, in the 
brain, there is no distinction between the 
processing unit and memory. In biological 
neural systems, variables (i.e., signals, mea-
surements, or parameters) are stored as prop-
erties of neurons and (synaptic) connections 
between them, and the same neurons and 
synapses perform the computing operations. 
Thus, there is no “von Neumann memory 
bottleneck”—the separation of memory and 
central processing unit (CPU)—that drains 
energy in today’s computers when running 
neural network–based algorithms (18).

Second, biological neural systems represent 
values of variables in a distributed manner 
in a network of computing elements, each 
of which can be an “unreliable” biological 
cell with stochastic internal dynamics. To 
the contrary, in today’s computers, a lot of 
resources are spent on making individual 
elements reliable and computation exactly 
reproducible. The distributed representations 
enable a more flexible and adaptive allocation 
of resources to represent signals with differ-
ent precision, or resolution, depending on 
the sensor modality and task.

Third, the internal dynamics of biological 
neurons and synapses unfold in time, making 
computation inherently temporal and stateful 
(19). Such neural dynamics are linked to 
real physical time and can be integrated easily 
in the sensorimotor control loops. Compu-
tation can unfold on different time scales in 
different parts of the architecture and does 
not require a global clock that commands 
when the next operation should be per-
formed. Each unit integrates its input con-
tinuously in time and communicates relevant 
signals when those are detected using “spikes” 
(brief activity bursts) in an asynchronous 
manner. Because signal communication is 
an expensive operation, making such commu-
nication sparse and targeted, or event-driven, 
makes computation more energy-efficient.

Neuromorphic computing hardware im-
plements such computation, grounded in the 
dynamics of spiking neurons and dynamic 
synapses, efficiently with analog or digital 
electronic circuits (8, 10, 11, 20). Undoubtedly, 
the full complexity of signal processing in 
biological neural networks is beyond our 
current ability to instantiate it in hardware. 
However, the experimental neuromorphic 
hardware platforms available today can 
emulate some key structural components of 
biological neural networks, which are re-
markably conserved across different animals 
from worms to humans (21–24).

Similar to biological neural networks, in-
formation processing and storage take place 
in neurons and synapses on a neuromorphic 
chip. Neurons integrate inputs in a continual 
manner, often with nonlinearities realized 
with dendritic “compartments.” The analog-
to-digital signal transformation happens 
when an integrated input reaches the activa-
tion threshold, which results in spike gener-
ation. Spike-based communication is more 
reliable than analog communication of sig-
nals. Most neuromorphic chips emulate the 
typical leaky integrate-and-fire dynamics of 
neurons (8, 25). Mixed-signal neuromorphic 
devices use analog circuits to emulate the 
dynamics of neurons and synaptic connec-
tions (26, 27). The binary spikes in these 
systems are communicated as digital signals 
using the address-event representation, i.e., 
a spike carries a digital package with the ad-
dress of the emitting neuron. The address is 
used to deliver the spike to its destination in 
the digital routing circuitry (28). A system of 
routers or a network-on-chip brings spikes 
to their destination neurons. At the destina-
tion, the binary spike is “unpacked” by the 
synapse as an analog signal that is injected 
into the postsynaptic neuron over time with 
exponential decay. The resulting mixed-signal 
neuromorphic systems emulate the continuous 
temporal dynamics of biological neurons 
(11, 15–17, 29–31). Table 1 lists some of the 
neuromorphic computing platforms available 
today with their key characteristics.

Recently, alternative materials and elec-
tronic devices are being explored that have a 
memristive property: the ability to hold the 
state induced by a transient spike. These 
memristive devices could make analog neu-
romorphic circuits even more efficient and 
compact in the future, when technological 
challenges of variability and reliability of 
such devices are overcome (32). There are 
several laboratories and startups that develop 
mixed-signal neuromorphic computing hard-
ware, harnessing its ultralow power, adaptivity, 
and continuous in-time computing (17, 29, 33).

Another approach to neuromorphic hard-
ware, adopted by the semiconductor com-
panies, is based on the conventional digital 
complementary metal-oxide semiconductor 
technology. Digital circuits can efficiently 
implement the key characteristics of neuronal 
computation—the event-based sampling of 
signals—and run the required neuronal dy-
namics in simple cores with local memory. 
Digital circuits have an advantage of time 
multiplexing, which allows the chip designers 
to integrate many more synapses and neurons 
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into the same amount of silicon area. Multi-
plexing the routing network allows a great 
range of network topologies. Examples of 
such platforms include SpiNNaker, developed 
in the neuromorphic computing pillar of the 
Human Brain Project (13, 14); Loihi, a neu-
romorphic research chip from Intel (10, 12); 
TrueNorth, the first widely distributed neu-
romorphic chip from IBM (9); the Tianjic chip 
(34); or the Dynap-CNN chip from the com-
pany SynSense (35). Table 1 lists some of 
these devices. A recent review has demon-
strated that this type of hardware shows sev
eral orders of magnitude advantages in the 
energy-delay product on many workloads, 
in particular those relying on recurrent neural 
network architectures (12).

Figure 1 shows how both ultralow-power, 
small mixed-signal, and larger-scale digital 
devices can be used in different parts of the 
robotic signal processing and control pipe-
lines. Thus, ultralow-power, mixed-signal, or 
analog devices, such as proposed by Innatera 
or the ROLLS/DYNAP-SE family from Uni-
versity of Zurich and SynSense company, or 
the HBP development BrainScaleS, to name 
just a few, are well suited for embedded signal 

processing in an always-on setting or for 
local processing on a particular sensor or motor 
unit. The larger-scale digital devices, such as 
SpiNNaker or Intel’s Loihi, can take more 
elaborate workloads, integrating multiple 
sensory channels, processing high data rate 
visual information, or solving optimization 
tasks of motion planning and control.

To move the frontier of neuromorphic 
computing to the next level, several func-
tionally important characteristics of biolog-
ical neurons, synapses, and networks could 
be supported in hardware in the future. For 
instance, although spike-based communi-
cation is commonly used in neuromorphic 
computing (10, 13, 36) and modeled in com-
putational neuroscience (37–39), it is not the 
only form of information propagation in bio-
logical networks. Electrical synapses (40), for 
example, enable the direct exchange of ions 
between neurons, allowing analog commu-
nication and network-wide propagation of 
signals, resulting in waves, oscillations, and 
other dynamical patterns. Neuromorphic 
implementation of electrical synapses could 
simplify the computing architecture, re-
duce energy expenditure, and help transfer 

information across large neural networks. Such 
implementation has been attempted recently 
in the NeuroGrid neuromorphic device (29).

In real biological networks, the short-term 
synaptic dynamics, with a slow decay time 
course in the range of 50 to 150 ms (37, 38), 
limit the spiking rate in most neurons to 
~100 Hz. This makes the activation sparse 
(i.e., saving energy), but, more importantly, 
this short-term synaptic dynamics provides 
unique computational advantages. For in-
stance, short-term depression of synapses 
(41) allows rapid event onset detection, con-
tributing to biological event–based visual 
processing and detection of temporally co-
incident events. Short-term facilitation, in its 
turn, improves the sensor sensitivity in low-
light conditions. These properties have been 
implemented in some of the mixed-signal 
neuromorphic devices (15, 16) and can be 
emulated in computationally more flexible 
digital ones (10, 13) but have not yet been ex-
plored in neuromorphic algorithms or ap-
plications in robotic tasks. Note that low 
firing rates of individual neurons do not 
prevent fast reaction times of neural populations 
because the first spike can be emitted with a 

Table 1. Overview of some of the neuromorphic chips available today. 1 K = 1056; 1 M = 1 million; Y, yes; N, no; SNN, spiking neural network; HPC, high 
performance computing. 

Company/Lab Chip type #Neurons/
synapses On-chip learning Power Software Applications

ROLLS (16) Mixed-signal 256/64 K Y ~5 mW Custom python Research

DYNAP-SE (15) Mixed-signal 4 K/4 M N ~5 mW Custom python Research

NeuroGrid 
(BrainDrop)/
Stanford (29)

Mixed-signal 1 M/billions N ~3 W NEF Real-time SNN 
emulation

Innatera Mixed-signal 256/64 K N ~1 mW PyTorch Smart sensing

BrainScaleS 1/
Universität 
Heidelberg (17)

Mixed-signal ~180,000/40 M  
(in 352 chips) N ~300 W BrainScaleS OS Accelerated SNN 

emulation; HPC

BrainScaleS 2/
Universität 
Heidelberg (30, 31)

Mixed-signal 512/~130,000 Y ~1 W BrainScaleS OS Edge processing, 
robotics

TrueNorth/IBM (9) Digital 1 M/256 M (in 4 K 
cores) N ~0.3 W Custom DNN acceleration

SpiNNaker/University 
of Manchester (13) Digital

1B/10 kilobytes  
(in 64 K x 18 ARM 

cores)
Y ~kW PyNN, NEST

Real-time 
simulation of SNN; 

HPC

Loihi/Intel Labs (12) Digital ~128,000/128 M per 
chip (scalable) Y ~1 W Lava Research chip

Dynap-CNN/
SynSense Digital ~327,000/278,000 N ~5 mW Rockpool, PyTorch Smart sensing

BrainChip/Akida Digital Configurable, 8-Mb 
SRAM Y ~30 mW TensorFlow, CNN 

→ SNN
Smart sensing, 

one-shot learning

Tianjic/Tsinghua 
University (34) Digital 40,000/10 M (on 

156 cores) N ~1 W Custom ANN/SNN 
acceleration
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short latency and can have an immediate influ-
ence on downstream systems through pop-
ulation effect.

Adaptive spike threshold (38, 42) is an-
other mechanism that is important for sig-
nal processing in biological neural networks. 
In neurons, the voltage threshold, at which 
a spike is generated, depends on the tempo-
ral derivative of the voltage and controls the 
neuronal integration time window and slope 
(43). Regulation of the temporal dynamics 
of the raising and decaying part of the spike 
affects the computational capacity. This, as 
shown in a recurrent spiking neural network 
realized with resistive memory circuits, im-
proves classification accuracy and can sup-
port, e.g., speech processing (43).

Direct one-to-one connections between 
neurons in biological and neuromorphic 
neural networks can form feedforward and 
recurrent connectivity patterns, which are 
likely sufficient to propagate sensory infor-
mation, create neural representations, and 
control movement (22). However, context- and 
task-specific information processing seems 
to additionally require neuromodulatory 
transmission, including but not limited to 
dopamine and serotonin (44). Coactivation 
of the excitatory glutamatergic neurons 
and dopaminergic neurons, for example, 
can modulate the sign of synaptic plasticity: 
whereas glutamate and dopamine in isolation 
induce synaptic potentiation of the synaptic 

communication, and when they are core-
leased, they induce synaptic depression (45). 
Thanks to the recent exploitation of tunable 
charge carriers in electronic devices (45), the 
neuromorphic hardware toolbox can be ex-
panded with a new class of synaptic circuits, 
allowing reinforcement learning mechanisms 
to be implemented directly in computing 
devices. Digital neuromorphic devices also 
support three-factor learning rules and global 
modulatory signals. Recently, models that 
make use of astrocytes—non-neuronal cells 
in the brain—in modulating plasticity have 
been implemented in the Loihi neuromorphic 
device (46, 47).

Such neuromodulatory mechanisms are 
also crucial in memory formation. Biological 
neural networks store memories transiently. 
For example, the short-term adaptation of 
electrochemical dynamics through modulation 
of neurotransmitter release and receptor de/
sensitization provides information storage 
across pairs of neurons for a few seconds 
(41). Synaptic potentiation and depression, 
which are commonly implemented through 
Hebbian learning, realized with different 
spike timing–dependent plasticity rules, ex-
pand the time course to hours and spatial 
scale to local populations of neurons (48, 49). 
Longer-term storage solutions require wiring 
reorganization, i.e., structural plasticity, and 
various neuromodulators regulate informa-
tion storage at the network level for shorter 

periods of time (24, 44, 48). The transient 
nature of memory storage does not counter-
act the permanence of certain memories. 
Neuromorphic implementation for permanent 
storage of information could take advantage 
of information recall and reconsolidation 
(50), possibly during “sleep,” similar to ac-
tive system reconsolidation observed in ani-
mal and human brains (51).

All these elementary computing capabil-
ities could support the development of neu-
romorphic robotic architectures, harvesting 
low-power neural network processing in 
neuromorphic hardware. Figure 2 shows 
the analogy between computing hierarchy 
of biological neural systems and neuromor-
phic systems, with characteristic dynamics 
on each level of abstraction. Neuromorphic 
computing requires understanding of these 
dynamics and thus computing primitives 
and algorithms on each level of abstraction.

TOWARD NEUROMORPHIC ROBOTICS
To be successful in real-world tasks, smart 
robots need to process multisensory signals 
on different time scales to support senso-
rimotor loops with different latencies and 
control rates; interpret complex and dynamic 
environments based on the sensor signals and 
memory; plan and execute actions directed at 
some objects in the environment and avoiding 
other ones; interact and communicate with 

Fig. 1. Neuromorphic computing hardware in robotics. We envision that low-level sensory signal processing can be facilitated by ultralow-power mixed-signal and analog 
neuromorphic hardware, making sensors in different modalities—visual, auditory, tactile, or proprioceptive—smarter by enabling intelligent computation even before 
measurements turn into digital representations. The multisensory integration, planning, decision-making, and task-level control can be realized in large-scale neuromorphic 
devices such as Loihi, SpiNNaker, TrueNorth, or Tianjic chips, to name just a few research devices available today. These devices often comprise multiple computing cores and 
can host large and heterogeneous neural network architectures. On the motor side, low-power and fast neuromorphic computing could support local reflexes and central 
pattern generators that simplify the high-level movement control and add the type of embodied intelligence so prominent in the animal motion control. All levels of perception, 
cognition, and control need to be bidirectionally and efficiently interconnected, forming feedback loops on different time scales, resembling the architecture of biological brains.
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humans and other agents; and learn and con-
tinually adapt to the changing conditions 
and contexts. These capabilities will allow 
robots to collaborate with humans and act 
in real-world environments that are often 
complex and ever changing.

Neuromorphic computing systems have 
a lot of potential for the development of 
smart robots and embodied AI for robotics. 
First, they natively support multiple parallel 
and asynchronous processing streams at very 
low power, high throughput, and low latency, 
leaving enough time and energy to perform 
intelligent computing. Second, they can run 
neuronal networks with a wide range of 
topologies, including sparse networks and 
feedback loops on different spatial and tem-
poral scales, supporting massively parallel 
distributed algorithms. Last, local always-on 
plasticity in neuromorphic hardware enables 
continual learning to shape and adapt neu-
ronal networks using both training data and 

behavioral experience. Thus, neuromorphic 
hardware can enable perceptive and cognitive 
capabilities that are extremely costly in conven-
tional computing hardware. Neuromorphic 
hardware continues to develop and can be further 
enriched with the alternative computing prin-
ciples derived from neuroscientific insights, 
as briefly, albeit not exhaustively, discussed 
above. Next, we review some examples of 
applications of neuromorphic hardware in 
robotics that have already shown promise.

One of the key tasks in mobile robotics 
is simultaneous localization and mapping 
(SLAM). This task requires estimation of 
the state of a mobile agent—its position and 
orientation in an environment—based on 
the available sensor information and motor 
commands. Most approaches to SLAM are 
based on the integration of the sensory in-
formation with the current state estimate, 
where uncertainty in the estimate is typically 
expressed in a probabilistic, e.g., Bayesian, 

framework (52). A biologically inspired ver-
sion of SLAM, called RatSLAM, approximates 
the spatial computations of the hippocampal 
and entorhinal cortex in the rat brain and 
has shown competitive performance in a 
real-world map formation task (53, 54). 
Modern implementations of this neuronal 
architecture in neuromorphic hardware 
show that SLAM can be solved efficiently in 
neuromorphic hardware (55–57): e.g., 100× 
lower dynamic power consumption has been 
shown in Intel’s Loihi compared with con-
ventional CPU in a simple proof-of-concept 
implementation (36).

Apart from the state estimation, full SLAM 
relies on visual place recognition, which 
helps to localize a “lost” robot or triggers the 
loop closure events—events when the robot 
revisits the same place, detects this fact, and 
uses it to correct the accumulated localiza-
tion errors. This capability requires storing of 
visual appearances associated with different 

Fig. 2. Principles of information processing in biological networks and in neuromorphic circuits. The signal flow in biological and neuromorphic circuits unfolds on 
different spatial and temporal scales. A hierarchy of closed-loop control flows can be built both for biological neural systems and neuromorphic systems. In biology, these 
loops start with molecular dynamics of neurotransmitters, followed by dynamics of neurons and synapses, then local network circuits (e.g., the hippocampal circuits 
shown here), different sensory-motor cortical maps, ultimately leading to behavior. In a similar fashion, starting with dynamics of individual transistors and simple circuits, 
dynamics of neurons and synapses can be built, followed by networks, network modules, and whole architectures that can control autonomous behavior of a robot. We 
need to build theory, computing framework, and algorithmic understanding on these different levels of abstraction.C
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locations and an ability to retrieve previ-
ously stored views based on the current 
observation. This is a computationally ex-
pensive task on a conventional processor. 
On a neuromorphic device, a search among 
stored patterns can happen in parallel and 
be refined over several time steps of recurrent 
dynamics, showing promise for fast embedded 
implementation (58–60).

Another example of a robotic capability 
that can be brought to a new level with neu-
romorphic hardware is fast, online learning 
of patterns. Although deep learning has shown 
impressive results in solving image classifi-
cation tasks on a given dataset (61, 62), the vari-
ability of object appearance, camera parameters, 
and viewpoints in a typical robotic setting 
(63) limits the utilization of large networks 
pretrained on common image datasets. 
Neuromorphic hardware platforms support 
continual learning: The synapses (their weights 
and delays) in the network can be updated 
at any time. This property, along with bio-
logical learning architectures, could inspire 
new learning algorithms and network to-
pologies, not relying on slow gradient-based 
backpropagation, leading to fast learning 
of visual and other sensory patterns, more 
suitable for online adaptation and learning 
in robotic scenarios. Today, examples of 
workloads with fast learning include online 
learning of gestures (63), learning visual-
tactile associations (64), one-shot learning of 
odors (65), and fast learning of object views (66).

Neuromorphic hardware could also en-
able performance breakthroughs in motion 
control. Today, control methods include 
proportional integral derivative (PID) con-
trollers for systems, in which fast feedback 
control is possible, and no precise model of 
the actuator dynamics is needed, as well as 
model predictive control (MPC) for com-
plex motor plants, for which a precise model 
is available (67). The latter approach achieves 
impressive results with complex and com-
pliant robots; however, it can be computa-
tionally expensive. Neuromorphic hardware 
has been shown to decrease the computa-
tional load in motor control for adaptive PID 
controllers (68, 69). In MPC, an important 
component of the controller is a constrained 
optimization problem solver that finds an 
optimal command sequence in the current 
sensed state. Such constrained optimization 
problems have been shown to run orders 
of magnitude faster and more efficiently in 
spiking neural network-on-chip (12, 70, 71), 
pointing at another promising application 
direction for neuromorphic hardware in 

robotics, possibly also to motion and action 
planning tasks. Naturally, biologically inspired 
methods for movement generation, e.g., based 
on central pattern generators found in spinal 
cords of many animals, can run efficiently 
in neuromorphic hardware (72–75), whereas 
cerebellum-inspired models could be used 
for learning inverse and forward kinematic 
models (76).

Last, one of the missing elements to en-
able real-world robotics is a link between 
advanced visual perception and motor con-
trol. One of the challenges in this task is the 
latency of advanced visual processing: Al-
though an image can typically be analyzed 
within 100 ms, motor control pipelines often 
run at kilohertz rates and can tolerate delays 
that are below 10 ms. Neuromorphic com-
puting, in combination with event-based 
vision, the sensor part of neuromorphic en-
gineering, can help to enable ultrafast vision 
for control applications (77, 78). Thus, it has 
been shown that control rates of up to 20 kHz 
with a delay of less than 5 ms are possible 
using event-based cameras (79–81). The 
visual processing in this example amounted 
to tracking a horizon line on a plane in front 
of a rotating drone; scaling up this neural 
network to tackle more complex visual tasks 
is the subject of current research. These 
more complex tasks could enable fast object 
detection, tracking, and trajectory prediction; 
object localization for reaching; or shape 
estimation for grasping—tasks that would 
benefit from real-time integration of visual 
feedback in the control loop. Some examples 
of efficient control rely on small neural net-
works, inspired by visual systems of insects, 
rather than mammals (82–84).

This list of examples is certainly not 
exhaustive—almost every neuromorphic 
chip has been tested in some robotic tasks. 
The ones we listed show the promise of this 
technology by comparing the computing 
time, power consumption, and accuracy to 
more conventional approaches. Still, the ex-
amples show individual capabilities on fairly 
simple versions of the tasks. There are sev-
eral challenges that make progress in the 
field of neuromorphic robotics difficult: lack-
ing tools for configuring and debugging 
spiking neural networks; low number of 
datasets and shared tasks for benchmarking; 
and missing standards for interfacing to 
conventional sensors, motors, and computers. 
These problems are being tackled by the com-
munity as the field matures (85). The largest 
challenge and ongoing task for the field 
of neuromorphic robotics, however, is the 

development of algorithms that are well 
suited for neuromorphic hardware—the prob-
lem addressed in the next section.

PROGRAMMING NEUROMORPHIC 
HARDWARE FOR ROBOTS
Similar to conventional computers, neuro-
morphic hardware requires algorithms to 
solve practical tasks. These algorithms have 
a different nature and require a different 
theory to measure their complexity and 
performance than algorithms developed for 
conventional processors. A neuromorphic 
algorithm is a neural network architecture 
with a particular connectivity structure, pa-
rameters of neurons, synapses, and learning 
rules that effectively create a dynamical sys-
tem in the robotic, closed-loop setup. We 
are not yet in a position to sketch the theory 
for this algorithmic space, but we can pro-
vide some examples of computing elements 
and principles that are known from biology 
and might be useful in robotic applications.

The first observation to note about bio-
logical brains is how heterogenous they are. 
Neurons in different brain regions feature 
distinct internal dynamics and connectivity 
patterns, facilitating different computations, 
e.g., the grid cells that contribute to mam-
malian navigation (54, 86), hippocampal 
circuits responsible for the formation of 
episodic memories (87), basal ganglia orches-
trating activation of discrete actions (88), or 
cerebellar circuits adjusting sensorimotor 
mappings leading to smooth continuous 
movement control (76), to name just a few 
examples. Brains of simpler animals, e.g., 
insects, feature even more special-purpose 
structures with fascinating behavior and 
repeatability between individuals (89, 90). 
Although learning and plasticity play an im-
portant role in how the brain processes 
signals, the network connectivity is largely 
prearranged for a given set of computational 
functions, as defined by genetically encoded 
developmental programs (91). From these 
biological circuits, we could learn about algo-
rithms or network structures that evolved to 
solve different tasks and thus draw inspira-
tion for new neuromorphic algorithms.

For instance, deep convolutional neural 
networks were also inspired by the basic 
feedforward structure of the visual pipeline 
in mammals. Today, we know more about 
visual processing in the brain. Sensory input 
is not just passed through a sequence of layers 
in the cortex to arrive at a more abstract 
and invariant representation. Instead, the 
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top-down feedback filters and selectively 
amplifies different sensor modalities and 
attributes, often refining representations in 
multiple recurrent loops (92). Behavioral con-
text, task, and previous decisions of the ani-
mal all play a role in signals being amplified or 
attenuated. Throughout the mammalian cor-
tex, well-preserved connectivity between 
up to six cortical layers seems to implement 
recurrent local connectivity with important 
filtering properties. This “canonical circuit” 
connectivity (39, 93) integrates bottom-up 
and top-down information in a way that 
resembles predictive coding and surprise-driven 
computing models (94, 95). Understanding 
and modeling such local connectivity pat-
terns can help us develop building blocks 
for the powerful neuromorphic perception for 
robots that feature attentional attenuation 
for efficiency and self-supervised learning 
for increased autonomy.

Similar principles are observed not only 
in the visual pipeline but also in other senso-
ry channels such as auditory (96), tactile (39), 
olfactory (97), or proprioceptive (98). 
Understanding the basic principles of signal 
processing, transfer, and recovery in these 
sensorimotor pathways—or, more precisely, 
loops—will possibly lead to a new generation 
of sensing technology, e.g., smart electronic 
skin, chemical sensors, proprioceptive sens-
ing, and also smarter (e.g., active) visual and 
auditory sensors.

On the actuation side, mechanisms of bio-
logical movement generation often lead to 
power-efficient and safe motor control solu-
tions, which rely on motion primitives or 
central pattern generators (72, 73, 94). A 
detailed understanding of movement plan-
ning and control and its link to distal (visual 
and auditory) and proximal (sense of touch 
and proprioception) perception is still evolv-
ing in neuroscience and could inform future 
neuromorphic control and actuation systems 
for autonomous systems and robots.

Theoretical models of adaptive control 
loops that underlie cognitive brain dynamics 
could guide development of neuromorphic 
algorithms in the future (99–101). Translating 
these mathematical and conceptual models, 
or cognitive architectures, into neuronal net-
work language would not only unleash them 
as a programming framework for neuro-
morphic hardware but also shed light on the 
neural basis of behavior and cognition, finally 
bridging the symbolic and connectionist view 
on behavior and cognition. First examples of 
using cognitive architectures to program neu-
romorphic hardware show how large-scale 

behavioral models can be implemented and 
solve different tasks autonomously (102–104).

Following the example of biology is, of 
course, not the only path toward “program-
ming” neuromorphic systems in robotic 
applications. Another avenue for structuring 
neuronal networks to solve different tasks is 
to gain inspiration from conventional algo-
rithms, e.g., Kalman filter, Bayesian Fusion, 
control theory, or decision-making systems. 
Because the units that perform computation 
are fundamentally different from conven-
tional computers, we need a different inter-
pretation of these algorithms that do not 
rely on sequential code, separation of memory 
and program, or digital numerical variables 
but instead take advantage of the features of 
neuromorphic hardware (12, 85).

Another fascinating possibility is to re-
visit algorithms that one would never dream 
of efficiently executing on traditional hard-
ware, for example, algorithms for interactive 
maps (105, 106), factor graphs (107), constraint 
satisfaction solvers (70), and other optimi-
zation techniques (108). There is one theo-
retical issue to keep in mind when transferring 
algorithms into the neuromorphic domain. 
Neuromorphic computing is based on asyn-
chronous signal processing with events, or 
spikes, triggered by threshold-crossing. On 
the contrary, at the core of today’s informa-
tion processing theory is the Shannon sam-
pling theory, which relies on the temporally 
homogeneous sampling of signals. Although 
having only a minor influence in many cases, 
in the long run, we need a better under-
standing and mathematical formulation of 
metrics in nonhomogeneously sampled 
signals to build a reliable and precise neuro-
morphic computing system (109).

CONCLUSION
We believe that neuromorphic computing 
hardware is a milestone in the development 
of artificially intelligent systems, which makes 
it possible to follow the footprints of biolog-
ical perception, movement generation, and 
cognition in the development of robotic con-
trollers. Neuromorphic hardware has reached 
a maturity that allows us to use it in practical 
applications. The missing elements are neural 
architectures or algorithms for neuromorphic 
hardware. Developing such architectures will 
require a better understanding of the algo-
rithmic space that neuromorphic comput-
ing substrates enable and facilitate. We have 
scratched the surface of this algorithmic 
space with deep and convolutional neural 

networks, but there is still a lot to learn from 
the brains and nervous systems that have 
evolved in the animal kingdom. Insights from 
models of biological neural systems could 
drive innovation in neural network archi-
tectures, improving flexibility, versatility, and 
efficiency of artificial neural networks. We 
hope that this Viewpoint will inspire research 
and development into neuromorphic algo-
rithms to unfold the true potential of neuro-
nal network–based technology and AI.
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