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Abstract. Dynamical Field Theory is a neurally based approach to
embodied and situated cognition, in which information is represented
in continuous activation fields defined over metric spaces. The tempo-
ral evolution of activation patterns under the influence of inputs and
neuronal interaction is described by a dynamical system, whose stable
states, localized peaks of activation, are the units of representation. This
approach has been successfully used to capture many elementary forms
of cognition. Communication poses the new challenge of understanding
how different modalities can be integrated in a continuously unfolding
communicative process. In this chapter we give a brief introduction to
Dynamical Field Theory in embodied cognition, and discuss extensions
of its ideas to embodied communication. We sketch a highly simplified
example of how sequence generation may occur in dynamical fields. We
apply these concepts to a specific exemplary problem in embodied com-
munication, turn taking, the temporal structure of which we capture in
a simple model.

Keywords: Neural dynamics, embodied cognition, modelling, turn tak-
ing.

1 Embodied Cognition and Embodied Communication

Over the last decade or so, a reexamination of our understanding of cognition
and cognitive processes has begun which emphasizes that cognition takes place
in organisms who act in complex, structured environments [1–3]. Cognition, in
this view, unfolds in real time, continuously linked to sensory information and
continuously coupled to motor systems, which impact on the sensed world [4].
People bring to any cognitive act a history of prior experience both in the sense
of the immediate behavioral and sensory context, in which the cognitive act
takes place, as well as in the sense of the longer personal history of learning and
development, on which cognition builds. The embodied perspective on cogni-
tion calls into doubt the postulate of universal representations of knowledge, on
which cognition can operate by processing information. Instead, this perspective
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demands that an understanding of cognition be based on principles of neuronal
function, in particular, on the temporally and spatially continuous evolution of
neuronal representations, which may be updated at any time by sensory signals
and which remain linked to motor surfaces at all times [5].

Communication involves, of course, a particularly high level of cognition. Are
the insights from the embodied and situated perspective on cognition relevant
to understanding communication? As this books argues in the most varied ways,
communication is embodied in the obvious sense that natural communication
occurs between people with physical and physiological bodies, and their cognitive
abilities originate from processes in their nervous systems. Each individual brings
his or her particular history of behavior, memories, intellectual capabilities to
a communicative situation. Communication is situated in the similarly obvious
sense that it is acted out in a specific, structured environment, in which the
interaction between communicating people or agents occurs. For each actor, the
actions of other actors shape the environment, in which communicative processes
are embedded. Communication is multimodal, including verbal but also many
non-verbal sensory and motor dimensions such as gesture, mimic, and bodily
pose. Communication happens at different level of awareness.

The most saliently embodied aspect of communication may be turn-taking
[6]. In conversation between two or more actors, almost all time is taken up by
explicit verbal communication. Speaker and listeners switch roles very quickly.
Typical durations of the silences between such switches are of the order of 100 to
300 ms, often faster than even a simple reaction time [7]. Such smooth transitions
may be viewed as evidence for anticipatory planning [8]. They require time-
continuous monitoring of the speaker’s behavior, picking up potentially subtle,
graded cues as to when the turn will be yielded. Such cues include changes of
prosody, gestures, gaze shifts toward the listener, implicit verbal cues such as
filler utterances, or explicit verbal cues such as asking a question.

We will use turn-taking as an exemplary problem in embodied communica-
tion, around which we will highlight how concepts from embodied cognition may
be useful to understand embodied communication. Our mission is to examine
conceptual convergence and interchange between these two areas from the per-
spective of Dynamic Field Theory (DFT), a particular mathematically explicit
theoretical framework within which concepts of embodied cognition can be made
precise [9, 5, 4]. DFT and its neuronal basis will be briefly reviewed in the next
section.

Three aspects of DFT seem to us potentially relevant to understanding em-
bodied communication. The first is autonomy. In cognition, autonomy refers
to the fact that cognitive processes unfold continuously in time on the basis
of the current and past behavior and influenced by current and past sensory
information. Dynamical systems thinking emphasizes autonomy, which may be
contrasted with the input-compute-output perspective on which the framework
of information processing is based. That acts of communication such as a lecture,
a group discussion, or a dialog, unfold in real time is obvious. Such acts are not
appropriately described as series of input-output mappings. Instead, the state of
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the complete system containing communicating partners and the environment
impacts on how the communicative process unfolds. For instance, the inner state
of the participants (their arousal, mood, knowledge, willingness to contribute to
the discussion or to express an opinion), the nature of the interaction (e.g., eye
contact, gesture, prosody), the environmental conditions (e.g., noise level, people
in the background), as well as the behavioral and cognitive context (e.g., nature
of the relationship, recent experiences) all may modulate the multidimensional
behavior of the participants. Turn-taking might be the most accessible signature
of autonomy.

The second aspect is gradedness. In Dynamic Field Theory (DFT), the state
of a neuronal system may be varying along continuous dimensions, which include
an “intensity” dimension that measures the potential impact of each factor.
In communication, the states of the participants and of the environment may
vary in graded fashion as well. For instance, gestures may differ in their extent
and expressiveness, voices in volume and timbre, the strength of emotions and
their expression through various channels may vary. Those graded factors may
influence the time course of communication by shifting, for instance, points of
turn taking, and the level or tone of the response. Graded variations like these
may potentially lead to qualitative change, switching the overall shape of a
communicative act, say from neutral to hostile.

Such a switch would be an incident of loss of stability. Stability is the prop-
erty of states in an autonomous dynamical system of resisting change. In a stable
state, small changes in conditions lead to small changes in the state of a system.
Given the amazing flexibility of nervous system, any state that persists long
enough to be observable must have some degree of stability, so that it resists
the myriad influences that push the system in other directions. Stability plays a
crucial role in cognitive systems that are situated within time varying real-world
environments. In fact, autonomy, the continuous evolution of a system in con-
tact with such environments, cannot lead to macroscopically coherent behaviors
if mechanisms of stability do not protect the current state of the system from
the ensemble of perturbations coming from within a system as well as from its
environment. Stability is also a prerequisite for the coherence of higher levels of
behavior to be preserved under processes of development, learning and adapta-
tion. In Dynamic Field Theory (DFT), stability is shown to emerge from the
underlying neuronal dynamics [10].

Stability is clearly a relevant concept to understand how processes of em-
bodied communication may unfold continuously in time under the influence of
multiple graded variables. States with a higher degree of stability may persist
of larger periods of time and resist competing influences. In turn taking, for
instance, very stable states of the communication system may prevent a transi-
tion to a new state, while less stable or even unstable states may be both the
prerequisite to change as well as the mechanism through which change comes
about.

A challenge for understanding embodied communication under the constraints
of autonomy, gradedness and stability is sequence generation. Much of cognition,
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but certainly all communication involves sequential changes of state, whose se-
rial order is typically relevant. Generating sequential shifts of states require that
the states are released from stability. On the other hand, a sequence as a whole
must resist perturbations and thus have some sort of stability. Understanding
sequence generation from a neuro-dynamical perspective is not a solved problem,
although a number of efforts exist [11–16] After reviewing the main concepts of
Dynamic Field Theory (DFT), we will therefore provide a sketch of how sequence
generation can be conceived of within DFT.

We will then explore how theoretical concepts from Dynamical Systems
thinking may impact on our understanding of embodied communication. This
we will done by providing an explicit mathematical model of turn taking, with
which we attempt to account for some of the qualities and one quantitative fea-
ture of the phenomenon. The model is, however, largely metaphorical in nature.
It is meant to illustrate, how the time structure of communicative processes may
emerge from time-continuous processes, how categorical change in continuous
representations may emerge from multiple possible causes and how all kinds of
contributions to the system’s dynamics may matter, not only contributions that
are specifically linked to a particular contents. The dynamical systems metaphor,
we thus aim to illustrate, promotes thinking about underlying forces and regular-
ities, from which the complex, multi-facetted patterns of communicative behavior
may emerge.

2 Dynamic Field Theory (DFT)

The following is a brief survey over DFT, which has been reviewed more ex-
tensively elsewhere [9, 17, 4]. The mathematics of DFT come from the field of
dynamical neuronal networks, pioneered by [18], [19] and [20] and currently the
preferred route of many computational neuroscientists to function (e.g., [21],
[22]). On this basis, DFT is an approach that emphasizes concepts that align
closely with the needs of experimenters in human embodied cognition. In DFT,
the basis concepts are inspired by principles of neuronal function in the central
nervous system, but behavioral experiments provide the major constraints for
both modelling and theoretical thinking.

At the core of DFT is the notion of continuous activation fields. While these
have been historically derived as an approximate description of cortical neu-
rophysiology [19], they arise in DFT our of more abstract arguments linked
to an analysis of embodied cognition. This will be our first concern. Next we
will discuss the dynamics of activation fields based on inputs and interactions,
emphasizing peaks as units of representation. Finally, we will take the reader
through three instabilities of the dynamics of activation fields which are criti-
cal to understanding how sequences can be generated from attractor states that
turn unstable.

In order to represent metric information in terms of dynamical state vari-
ables, we need two dimensions (Fig. 1). One is the metric dimension along which
information is specified. To model communication, metric dimensions that may
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play a role include the direction of an deictic gesture, a range of visual expres-
sions, a range of prosodic speech patterns, etc. Seemingly categorical aspects of
communication such as the contents of a verbal message may likewise be thought
of as embedded in an underlying continuum, which reflects relationships of se-
mantic similarity [23, 24]. In general, the multi-dimensional metric space spans
the range of possible communicative intentions as a whole, comprising all aspects
of mental state that impact on the communicative process. For now, we shall be
visualizing dynamic fields over a single dimension, however.

Fig. 1. A dynamical field is an activation pattern, u(x, t), defined over metric dimen-
sion, x, at any moment in time, t. Peaks of positive activation represent a decision that
the field has a well-defined state along the dimension, x, specified by the location of
the peak in the field. Patterns of non-positive activation, by contrast, represent graded
information typically derived from input.

The second dimension is the extent to which any given value along the metric
dimension is currently active. This is the activation concept of cognitive science,
known in this form also as the principle of space coding in neuroscience, according
to which the location in the neural network determines what is encoded, while
neuronal activation signals the absence or presence of information [25, 26]. The
activation dimension may also represent graded values such as the strength of
a particular dimension, confidence in an estimate, or how close a particular
representation is to impact on the further evolution of a communicative process.

Activation fields evolve continuously in time under the influence of inputs
and internal interactions. This evolution is described by a dynamical system.
The mathematical description is motivated by the dynamic properties of neurons
in the central nervous system [19, 20, 27, 10]. The fundamental property of the
field dynamics, the stability of activation patterns, emerges from the biophysics
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of neurons irrespective of the specific neuronal model and its implementation
details (see [10] for an argument).

In the absence of any inputs, the resting level of the dynamic field is therefore
a stable state. Inputs may arise from sensory information or from other dynamic
fields. Within the setting of communication, input is expected to reflect the im-
pact of the other communicative partner, sensed in various ways. Additional
inputs may reflect the influence of memory, knowledge, and the sensed environ-
ment. Inputs may be focused on particular field locations and thus specify a
particular value of the metric dimension. Alternatively, inputs may be global
(homogeneous), affecting the whole field and impacting on the dynamic regime
in which the field operates.

Neuronal interaction is the dependence of the time course of activation at one
field location on the current activation at other field locations. Neuronal interac-
tion may stabilize localized peaks of activation, which are the stable objects that
form the elementary units of representation in DFT. Nearby field locations are
assumed to mutually excite each other, driving up activation, while distant loca-
tions are assumed to mutually inhibit, driving down activation. Only sufficiently
activated locations contribute to interaction. This is modelled mathematically
by applying a sigmoid nonlinearity to all activation variables contributing to in-
teraction. This pattern of neuronal interaction is generic in the cerebral cortex,
but can also be observed in many subcortical structures.

Two types of attractor solutions emerge from the interaction pattern in neu-
ral fields. Input-driven attractors are largely subthreshold patterns of activation
in which the contribution of the neuronal interaction is negligible. In such states,
the field merely filters external input, but does not make any selection or de-
tection decisions. One may visualize these solutions as representing a passive,
information processing mode, in which cognition is not yet engaged.

Self-stabilized attractors, by contrast, are localized patterns of activation
with levels sufficient to engage interaction by exceeding the threshold of the
sigmoid nonlinearity. Local excitatory interaction thus lifts activation within
the peak beyond levels induced by input, while global inhibitory interaction
suppresses levels elsewhere below the levels justified by the resting level or by
inputs. Such peaks of activation are stable against small variations in local input
as well as against weak competing inputs at other field locations. Such localized
peaks of activation are the units of representation, their location encoding met-
ric information about the underlying dimension while their level of activation
indicates something like the strength, certainty, or intensity of the represented
value.

In fact, self-stabilized peaks represent the outcome of various forms of deci-
sion making. This can be seen by noting that an instability connects the sub-
threshold, input-driven patterns of activation to self-stabilized peaks. The sim-
plest form is the detection-instability, in which a localized external input is in-
creased in strength (see [4] for a review of this and the following instabilities). At
a critical input strength, the subthreshold pattern of activation becomes unsta-
ble and a localized peak forms. That peak remains stable, even if input strength
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Fig. 2. A one-dimensional field, u(x, t) evolving in time as described by the field dy-
namics. When localized external input arrives at time t = tinpOn (bottom plot), the
field relaxes to the subthreshold pattern of activation defined by the input (top plot).
At the same time the homogeneous resting level begins to be lifted gradually (the rest-
ing level of the field is marked with a dotted line). This induces an instability at time
t = tbif (marked with an arrow on both plots) and the field relaxes to a new attractor,
a self-stabilized peak dominated by interaction. Even later, at t = tinpOff , when the
external input is removed, the localized peak of activation is sustained by interaction.

drops again (within limits, see below). This provides a process model of the de-
tection decisions central to most early psychophysics and often conceived of in
terms of signal detection theory [4].

Another form of this instability is, at first, more surprising (Fig. 2). It arises
starting from a subthreshold pattern of activation. If activation is now boosted
by a homogeneous form of input (modelled, for example, by increasing the resting
level of the field), the field location with highest subthreshold level of activation
first pierces the threshold. This makes the subthreshold solution unstable, and
a self-stabilized localized peak grows out of this event. Because the location of
the peak is determined by preexisting inhomogeneities in the field, this type of
instability could be viewed as a form of categorization [28, 4].

Another way of looking at this instability is that it amplifies small, sub-
threshold patterns of activation into macroscopic decisions, which can be acted
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out. Thus, if small traces of previous patterns of activation can be left by a
simple learning mechanism, then this instability can activate such prior expe-
rience into units of representation. This opens the fields to generate long-term
memory of their own behavioral history. In the context of communication such
a mechanism can be used to model endogenous factors determining the course
of an interchange, beyond a processing of only the incoming information.

If the general level of activation in the field is sufficiently high, interaction
may enable the dynamic field to sustain a localized peak of activation even
after the original localized input has been removed. Such sustained patterns of
activation represent a form of metric working memory [5]. Thus information
about past stimulation can be preserved over much longer time scales than the
dynamic time scale of individual neurons.

Localized peaks may arise from yet another form of decision making, the se-
lection among multiple localized inputs. Selection is also an elementary cognitive
function that can be modelled with dynamic fields. This function too emerges
from an instability. When two metrically close inputs are presented to the field,
the detection instability will lead to a broader peak centered around an averaged
location between the two peaks. When the metric distance between two localized
inputs is larger, however, the dynamic field is bistable and has the potential to
build a peak at either of the two locations. A single peak of activation, which
emerges due to the detection instability, will be centered around one of the two
locations specified by the inputs. The sites which pass the threshold and partic-
ipate in interaction are too distant in this case in order to support each other
due to the local excitation. Asymmetries in input, fluctuations, or prior activa-
tion history may favor one over the other states, but the far-reaching inhibition
prevents simultaneous activation of both locations.

3 Sequence Generation within DFT

Generating sequences of states or actions is central to cognition. A train of
thought could be viewed of as a sequence of mental states. Language is sequential
at many levels — sequences of articulatory gestures, of sounds, of words or
larger syntactical elements, of ideas or arguments. Goal-directed action is another
important form of sequence generation within (embodied) cognition. Think of
the actions needed to make coffee or to fetch an object from a cup-board [29]. In
communication too we observe sequences of mental states, utterances, gestures,
and other communicative acts.

Sequence generation is conceptually cheap in classical information processing
approaches such as those based on the analogy with the digital computer. In
fact, those approaches are essentially based on the concept of processing by
moving from one step in a sequence to the next. This processing is, in a sense,
atemporal, because it doesn’t matter, how much real time elapses while such a
step is made. The advance of information through the processing system itself
marks time. In contrast, in an embodied vision of cognition, all processes are
temporally autonomous, may at any time be linked to new sensory information
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or to ongoing motor behaviors or even to other processes running concurrently.
Stability is critical for such highly interlinked processes to stay on track. Because
stable states resist change, they are capable of persisting under time-varying
conditions. But there is a dilemma. The very resistance to change makes it
difficult to conceive of the generation of a sequence of states. After all, moving
from one state to the next requires that the previous state be released from
stability, that is, become unstable, so that the system is driven toward the next
state.

That it is not impossible to reconcile this need for stability and instability in a
dynamic approach to embodied cognition is illustrated by the simple model that
will be briefly sketched now [30]. It is not in the nature of this chapter (and of
the volume in which it appears) to provide a detailed mathematical description
of this model (nor of next section’s turn taking model). Therefore, we focus
on sketching the main ideas of the model, explaining the overall architecture,
variables, and dynamical principles. The equations are listed in the appendix in
enough detail to be implementable by the mathematically skilled reader, but are
probably not accessible to the typical reader.

The model consists of an ensemble of activation fields (Fig.3). All fields rep-
resent metric or categorical information relevant for what happens at any stage
within a sequence of actions (e.g., feature values, movement parameters, descrip-
tors of utterances or gestures). A set of fields (arranged in a stack in Figure 3)
represents the ordinal position within the sequence. Each field in the stack is
responsible for one step in the sequence. This encoding comes about through a
coupling among the fields that guarantees their sequential activation: Each field
provides spatially homogeneous, excitatory input to its “successor” field, that is,
the field that represents the next ordinal position in the sequence. In addition,
each field inhibits its predecessor. As a result, only one field in the ordinal stack
can be activated at a time.

Beyond the stack of ordinal fields, one additional output or “motor” field rep-
resents the currently activated action plan (Fig. 3). This field receives localized
(one-to-one) input from all ordinal fields. The motor field activates the sensori-
motor action system that brings about the planned action. That sensori-motor
system is modelled for now only by assuming that sensory feedback about the
successful termination of an action is provided at a variable time after initiation
of the action (a more specific model will be provided in the next section). This
signal represents the “condition of satisfaction” [31] of the planned action and
generates spatially homogenous excitatory input into all fields in the ordinal
stack. This input triggers an instability through which the currently activated
ordinal field becomes deactivated and its successor becomes activated. This is
the elementary transition in sequence generation from step in a sequence to the
next.

All activation fields are endowed with the neuronal interaction that leads to
the selection of a single peak even when multiple localized inputs are present.
As a result, except for the brief moment of transition from one step to the next,
there is always a peak present in one field of the stack of ordinal fields and
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Fig. 3. A sequence generation model based on dynamic fields whose stable states are
single localized peaks. A stack of such activation fields, ui(x, t) (solid lines), encodes the
ordinal position of steps, i = 1, 2, 3, in the sequence. All fields are defined over a shared
metrical dimension, x. The fields may be preactivated by localized input (dotted lines)
representing information about what action is expected at each step in the sequence.
Each field excites its successor and inhibits its predecessor, so that only a single field
can be active at a time (u1(x, t) at the depicted instant). The output or “motor” field,
v(x, t) (bottom of stack) receives localized input from all ordinal fields and thus carries
a peak matching the currently active ordinal field.

one matching peak in the motor field. Where the peaks are located within the
fields and thus, what action is planned and triggered at any particular point
in a sequence is determined by localized inputs into the fields. There are two
potential sources of such localized input that determine the “contents” of the
sequence: external input from sensory systems or internal input from a memory
trace that represents earlier experience, when the sequence was first learned or
imitated. In summary, localized input determines what is done at each step.
Sensory feedback representing the “condition of satisfaction” determines when
the transition to the next step is made.

The notion of a neural representation of the ordinal position of an item in
a sequence is consistent with the neurophysiology of frontal cortex, in which
neurons tuned to ordinal position have been found and lesions of which affect
the capacity to generate sequential action [32, 33]. The proposed dynamical ar-
chitecture addresses the fact that the “acting out” in time of action sequences is
flexible, so that the system is capable of remembering where in a sequence it is
even as variable amounts of time elapse while each individual action is realized.
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Fig. 4. Left: A histogram of the durations of silences between turns observed experi-
mentally in actual human conversation is drawn from the data provided in (M. Wilson
& Wilson, 2005). Right: A corresponding histogram generated from the dynamic turn
taking model. As the time scale in our model is arbitrary, we compare only the overall
form of the distributions of the silent periods’ durations. See Fig. 6 for how silences
are measured in the model.

4 A Dynamic Field Model of Turn Taking

Generating the amazingly smooth and fast transitions between turns requires
that inherently time-variant events, the individual speaking turns, be coordi-
nated with good temporal precision. Some authors have postulated that turns
are governed by oscillators, so that their durations are multiples of a base unit
[7]. This does not seem to capture the full level of temporal flexibility of embod-
ied communication as reflected, in fact, by the distributions of silent intervals at
turn switches observed experimentally by these very authors (Fig. 4, left). These
distributions have a lot of counts at surprisingly short times (of the order of 100
milliseconds!) but are still broad relative to their means.

Another view is that turn taking requires anticipation, that is, predicting
when a chance to switch may occur [8]. Here we present a dynamical field model
that is primarily a metaphor for how the timing properties of turn taking may
arise. Within this picture, there is no fixed underlying oscillator, although the
duration of each act is timed and may thus be predictable. The model does
not have an explicit mechanism for anticipation, but turn switching is based
on receiving a graded signal from the communication partner. This may, in
effect, generate anticipation. The model does not address the rich inner structure
of dialog, nor the multi-modality of its embodiment, and thus remains at a
much more metaphorical level than has typically been the case for DFT based
models. Hopefully, the model can provide a perspective for how the framework
of dynamical systems thinking may help understand the autonomous, graded,
and real-time structure of embodied communication.
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Fig. 5. The dynamic field model of turn taking consists of a dynamic sequence gen-
eration model for each of two communication partners “A” and “B” (stacks of fields
on the left and the right). The action system itself, which generates communicative
acts, is modelled by a neuronal oscillator, which generates a single timed event when
activated and then deactivates itself. The action systems of the two partners compete
so that only is active at a time. Another channel of interaction is the reaction model
which provides localized input into the sequence generation system of one partner (at
the depicted instant: “B”) based on the current action of the other partner (at the
depicted instant: “A”).

We sketch the conceptual structure of the model. The mathematical equa-
tions are listed in the Appendix. Consider two partners, “A” and “B”, communi-
cating with each other (Fig. 5). Each actor is modelled as a sequence generation
system defined over a metric dimension, x, that represents a feature value that
characterizes each communicative act. For our simple toy model, this feature
dimension was simply the planned duration of each communicative act.

There are two contributions to the contents of the sequence. One represents
a prior plan of a series of communicative acts, modelled by localized inputs
associated with each step in the sequence. The other is a reactive component,
represented by localized input generated at each turn by the action of the other
partner. Presently, this is merely a random mapping from the feature value of
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that other partner’s action onto a feature value of the present partner’s sequence
plan.

Assume, for now, that communicator “A” has generated the beginning of a
planned sequence, so that a peak in ordinal field number 1 is located over the
associated input (left panel of Fig. 5). This leads to a matching peak at location,
xp1, in that actor’s motor field (bottom of the stack). Communication partner
“B” might be in another state. This communicator may have no peak at all
(no communicative intention). More typically, however, this partner may have
some communicative intention represented by a peak at a particular location in a
particular ordinal position of a prior communicative plan. In the figure, partner
“B” is at the second ordinal position in an ongoing sequence having generated
a peak in the second ordinal field together with the matching peak at location,
xp2, in the motor field. Thus, communicator “B” faces the action of “A” already
with some communicative intention, a prepared communicative act.

We model turn taking by providing a caricature of the action system that
each communicator uses to “act out” communicative intentions. These systems
generate single “actions” with a well-defined duration by starting a limit cycle
oscillator with a specific frequency. In fact, the frequency of the oscillator and
thus the duration of its “action” is encoded along the metric dimension of the
sequence generation systems. Thus, different actions take different amounts of
time. Each oscillator has two inner state variables (excitation and inhibition).
Excitation arises from zero, reaches a maximum, and falls back to zero for each
cycle of the oscillator. After a single cycle, the oscillator turns itself off. This is
controlled by an activation variable, which is either in an “on” state or an ‘off”
state. Input from the motor field and absence of competition from the other
actor turns the activation variable “on”. When the associated oscillator reaches
the end of a cycle, then the activation variable is switched to an “off” state
through a dynamic instability.

The level of the activation variables controlling each oscillator is exchanged
between the two communicators as a signal for how close they are to yielding
the turn. A large level of activation of action system “A” inhibits action system
“B” and vice versa.

Figure 6 illustrates simulations of this complete model by showing for both
actors the time courses of a state variable characterizing the respective oscil-
lator. Episodes of oscillator activation are individual communicative actions.
These episodes vary in duration as dictated by the frequency of the limit cycle
oscillators encoded by the location of peaks in the neural fields of the sequence
generation systems. An action system, whose state variable is below a thresh-
old, is in the off state waiting its turn. When the state variables of both action
systems are below threshold, then both action systems are in the off state and
a period of silence between turns is observed. The amount of silence at each
turn switch varies because the state variables change at variable rates due to the
variable durations of actions. Moreover, turn switches involve instabilities in the
dynamics of the action systems. This gives noise a sizeable influence on the exact
time at which a transition is realized. As a result, the histogram of the durations
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Fig. 6. Sample trajectories of turn taking generated by the model. The activity of
each of the oscillators modelling the action systems of actor “A” (solid lines) and “B”
(dotted lines) is shown by plotting one of two oscillator state functions. Positive values
beyond a threshold (solid horizontal lines) signal that the oscillator is in the “on”
state and a communicative act is ongoing. When the state variables of both actors are
below the threshold, then this is interpreted as a silence interval the duration of which
contributes to the histogram shown in Fig. 4.

of silent intervals obtained from an ensemble of simulation runs shown in Fig. 4
is quite broad, although centered on a most frequent interval. This characteristic
of a small mode and long tail matches the shape of the distributions obtained
from human data shown in the same figure on the left.

5 Discussion

We presented a simple mathematical model of turn taking as a metaphor for how
the time structure of embodied communication could be understood within the
neuronally based theoretical framework of Dynamic Field Theory. The dynamic
activation fields and dynamic action systems in the model generate their time
courses autonomously, based on continuous time. They are not paced by a rigid
input-compute-output cycle, but are open to sensory input at any time. Because
the systems are almost always in a stable state, such continuous coupling does
not prevent the systems from performing their assigned function. The systems
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are sensitive to input only while near an instability, which leads to a switch of
turn.

These instabilities start at the level of the action system, which turn on
and off in response to graded signals received internally as well as from the
communication partner. The instabilities amplify small graded changes of signals
into macroscopic changes. This is how dynamical systems can make sense of and
depend on graded variables while at the same time being able to make categorical
decisions and to discard graded information as they set on the course of a new
action step.

The simplistic models of the action systems as self-controlled, one-shot oscil-
lators stands in for the much richer action systems engaged when people com-
municate. These include the speech articulatory system, systems controlling the
prosody of their utterances, gesturing, controlling facial expression and body
posture. All these systems may have graded components, from which commu-
nication patterns may derive signals for how close the actor is to yielding the
turn. That we model such complex systems as stable limit cycle oscillators is a
deliberate scientific move. The coupling among stable oscillators is the basis for
coordination of timed actions [34, 35]. Thus, it is easy to imagine how the mul-
tiple action involved in generating communicative acts maybe coordinated with
each other as well as across two communication patterns through couplings of the
kinds modelled in simplified form here. This metaphor may provide an avenue
toward an account for the remarkable temporal regularity and order observed in
embodied communication [36].

The meaning transmitted in and expressed through communicative acts has
been modelled only minimally here. In DFT, meaning is encoded through con-
tinuous metric dimensions. The location of peaks along such dimensions signifies
specific instances of such metric information. In principle, coupled networks of
dynamic fields may generate distributed representations of perceptual objects
(see [37] for an example). The multiple modalities and perceptual dimensions
that are relevant to embodied communication could easily be cast in dynamic
field terms. Within the toy model presented here, the field dimension represented
the duration of a planned communicative act and in that respect acted merely
as a place holder for more substantive communicative meaning.

The field dynamics provides a framework for integrating different sources of
specification of meaning. For instance, a memory trace of previously activated
or stimulated patterns of activation may bias the ordinal fields to particular
locations. On the other hand, current input from the other actor’s communicative
act may be overlaid and fused with such a prior plan. This may lead to the
selection of activation patterns that in some way match the received message.
The metrics of patterns of activation within continuous activation fields forms the
basis for determining such matches. This metrics can be exploited by conceiving
of structured forward mappings, like those of connectionist networks, to replace
the random world matrix of our toy model.

Thus, much of the machinery needed to enrich the processing exists within
connectionist and dynamical systems approaches. The challenge will be to trans-
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late insights obtained from substantive models of the information processing in-
volved in embodied cognition [8] into dynamic terms. What is needed for this
to happen is that aspects of embodied communication that provide entry points
into dynamical systems thinking are identified and collaboratively explored in
both theory and experiment. During the research year, from which this book
emerged, first steps in such a direction were made. We are looking forward to
the new and exciting ideas that may emerge from this ongoing research effort.

A Mathematical Description of the Models

The sequence generation model. The dynamic fields, uA
i (x, t), represent the or-

dinal position, i = 1, . . . , N , of items in the sequence of communication partner,
A, along the feature dimension, x, and evolve in time, t, according to:

τo u̇A
i (x, t) = −uA

i (x, t) + hA
o +

∫
f
(
uA

i (x′, t)
)
woo(x, x′)dx′

+ C+Fenv
∫

f
(
vA(x′, t)

)
f
(
uA

i−1(x
′, t)

)
dx′

− C−

∫
f
(
uA

i+1(x
′, t)

)
dx′ + PA

i (x, t)

+
∫

WorldModel(x, x′)f
(
vB(x′, t)

)
dx′. (1)

The analogous equation for communication partner, B, is obtained by switching
upper indices A and B. The symbols represent the following:

– τo: the time constant of the field dynamics;
– hA

o : constant resting level of the field;
– f(u) = 1/(1+exp(−β(u−uo)): a sigmoidal function, where β is a parameter

and u0 a threshold;
– woo(x, x′) = −winhib +wexcite exp(−(x−x′)2/2σ2): the “mexican-hat” inter-

action kernel with parameters winhib, and wexcite;
– C+Fenv: models sensori-motor feedback about accomplishment of the cur-

rent action, defined below;
– C−: strength of backward inhibition along the stack;
– Pi(x, t): localized preactivation of the ordinal field number i encoding what

is represented or planned at that ordinal position in the sequence;
– WorldModel(x, x′): a N × N matrix models communication by associating

an output of partner B within an input to partner A’s ordinal stack. Here a
random matrix.

The motor field, vA(x, t), of partner A is governed by:

τM
˙vA(x, t) = −vA(x, t) + hA

m +
∫

f
(
vA(x′, t)

)
wmm(x, x′)dx′

+ ΣN
i=0

[ ∫
f
(
uA

i (x′, t)
)
wmo(x, x′)dx′ + C+

∫
f
(
uA

i (x′, t)
)
dx′

]
(2)
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Again, the analogous equation applies to communication partner, B. The new
symbols represent the following:

– hA
m: resting level;

– wmm(x, x′): interaction kernel analogous to woo(x, x′);
– wmo(x, x′): a gaussian projection kernel from the ordinal position stack to

the motor field.

The turn taking model. The sensori-motor system that generates a communica-
tive act is described by two action variables, xA, and yA. In the present model
the only significance of these action variable is to signal that an action is ongo-
ing. This happens when the associated dynamics has a limit cycle solution. The
Hopf normal form generates such a limit cycle:

τhẋA = gA

[
γ(µ− x2

A − y2
A)xA − ωAyA

]
− (1− gA)xA

τh ˙yA = gA

[
γ(µ− x2

A − y2
A)yA + ωAxA

]
− (1− gA)(yA − 1) (3)

This is the equation for partner A. The analogous equation applies to partner
B. The symbols mean the following:

– τh: time scale of the oscillator dynamics;
– γ: parameter determining the relaxation rate of the limit cycle;
– µ: parameter determining the amplitude (= 2

√
µ) of the limit cycle;

– gA (and the analogous gB): dynamic neuronal activation variables described
below that turn on (gA = 1) and off (gA = 0) the stable limit cycle solution.
When they are off (1 − gA = 1), the dynamics has a fixed point at (xA =
0, yA = 1).

– ωA determines the frequency of the limit cycle and is determined from the
motor field by

ωA = C

∫
xf(vA(x, t))dx (4)

where the constant C is a normalization factor.

The neuronal activation variables gA and gB evolve according to a compet-
itive dynamics that is built from two normal forms of the degenerate pitchfork
bifurcation, coupled competitively:

τg ġA = αAgA − |αA|g3
A − g2

BgA + ξ (5)
τg ġB = αBgB − |αB |g3

B − g2
AgB + ξ (6)

The coupling makes that only one neuron may be activated at a time, e.g.,
gA = 1 and gB = 0 (see [38] for mathematical analysis). The factors αA or αB

determine which of the two neurons is activated. These factors are designed to
be positive (enabling the associated neuron to be turned on) only if there is
a peak in the motor field of the corresponding communication partner. They
become very small when the associated oscillator is near one end of its limit
cycle (e.g., xA ≈ −√µ), generating a tendency for the associated oscillator to be
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turned off. These factors αA and αB also serve to generate the signal, Fenv, that
provides the “condition of satisfaction” to the stack of ordinal fields. Because the
competitive dynamics go through a degenerate pitchfork bifurcation each time
an oscillator is turned on or off, noise ξ is essential to push the neurons away
from unstable states.
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17. Erlhagen, W., Schöner, G.: Dynamic field theory of movement preparation. Psy-
chological Review 109 (2002) 545–572

18. Grossberg, S.: Biological competition: Decision rules, pattern formation, and os-
cillations. Proceedings of the National Academy of Sciences (USA) 77 (1980)
2338–2342

19. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of
cortical and thalamic nervous tissue. Kybernetik 13 (1973) 55–80

20. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields.
Biological Cybernetics 27 (1977) 77–87

21. Wilson, H.R.: Spikes, Decisions, and Actions: Dynamical Foundations of Neuro-
sciences. Oxford University Press (1999)
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35. Schöner, G.: Timing, clocks, and dynamical systems. Brain and Cognition 48
(2002) 31–51

36. Streek, J.: Gesture as communication i: Its coordination with gaze and speech.
Communication Monographs 60(4) (1993) 275–299
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