
Author's personal copy

Neural Networks 23 (2010) 1164–1179

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

An embodied account of serial order: How instabilities drive sequence generation
Yulia Sandamirskaya ⇤, Gregor Schöner 1
Institut für Neuroinformatik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany

a r t i c l e i n f o

Article history:
Received 28 May 2010
Received in revised form 29 July 2010
Accepted 30 July 2010

Keywords:
Dynamic Field Theory
Sequence generation
Embodiment
Neural dynamics
Attractors and instabilities

a b s t r a c t

Learning and generating serially ordered sequences of actions is a core component of cognition both in
organisms and in artificial cognitive systems. When these systems are embodied and situated in partially
unknown environments, specific constraints arise for any neural mechanism of sequence generation. In
particular, sequential action must resist fluctuating sensory information and be capable of generating
sequences in which the individual actions may vary unpredictably in duration. We provide a solution
to this problem within the framework of Dynamic Field Theory by proposing an architecture in which
dynamic neural networks create stable states at each stage of a sequence. These neural attractors are
destabilized in a cascade of bifurcations triggered by a neural representation of a condition of satisfaction
for each action. We implement the architecture on a robotic vehicle in a color search task, demonstrating
both sequence learning and sequence generation on the basis of low-level sensory information.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Even the simplest activities in life involve generating well-
ordered sequences of actions. Preparing a meal and setting the
table, packing the briefcase and driving to the office, or even just
getting up from your desk to refill your glass at thewater cooler are
examples. Playing music, writing, and gesturing all entail serially
ordered sequences of actions. Sequences are also the basis for the
highest forms of cognition such as generating and comprehend-
ing language. Generating such action sequences involves many
different processes including creating, working and long-term
memories for the elements of the sequence, initiating any individ-
ual action while inhibiting other available actions, controlling and
timing elementary actions, terminating a completed action and se-
lecting the next action.

Naturally, how sequences are generated has been a central topic
of psychology since Lashely’s seminal insight that the serial order
in a sequence is a separate and critical dimension of such behavior
(Lashley, 1951). This insight was supported by the observation
of characteristic patterns of errors in serial order tasks as well
as by how response times depend on serial position, sequence
length, and other factors. Modern theoretical work on sequence
generation has addressed aspects of serial order across a range
of tasks including speech production (Dell, Chang, & Griffin,
1997; Hartley & Houghton, 1996), spelling (Glasspool & Houghton,
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2005), action planning (Cooper & Shallice, 2000; Grossberg, 1978),
immediate serial recall (Henson, 1998), and free recall (Farrell
& Lewandowsky, 2002). In many cases, sequences have been
studied and modeled in relatively disembodied form, in which
item and order memory is probed through simple, invariant motor
responses such as keyboarding or button pressing. Such sequences
are typically highly constrained. For instance, playing a piece of
piano music entails sequential key presses, the order and duration
of which is predetermined by the score. What little variance
remains is constrained by speed–accuracy trade-offs (Pfordresher,
Palmer, & Jungers, 2007).

In this paper we look at embodied systems that are situated in
real environments and must make variable movements oriented
at physical objects to achieve the goal of each sequence element.
Setting a table, for instance, is a task that requires that sequences
of individual actions be performed, each directed at an object and
each potentially taking different amounts of time. This example
highlights five critical properties of the embodied sequence gen-
eration.

First, embodied sequence generation is autonomous, that is,
decisions to bring a particular object into the foreground, select it
as the target of an action, and initiate that action are all driven by
intrinsic processes that are coupled to the embodied system’s own
sensory and motor surfaces. As you set the table, nobody triggers
your actions from the outside.

Second, each action within an embodied sequence is part of
a motor and perceptual continuum. The particular movements
required to set the table will vary each time depending on how you
approach the table and where the dishes are stored. The precise
grasp required to pick up a cup will vary with the pose of the
cup which must be estimated from its visual appearance. Any
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stage of the behavioral sequence thus really entails a continuum of
possible percepts and movements out of which a specific instance
is generated in the environmental context on each occasion.
Although the perceptual objects and actions relevant to each stage
of the sequence may be described as belonging to a particular
category, their categorical representation alone is too poor to
explain the observed behavioral flexibility when context varies.

Third, embodied sequence generation is flexibly timed. Even
though each element in the table-setting sequence may take
varying amounts of time depending, for example, on how far you
need to reach to set down a piece, each action is brought to a
conclusion before the next one is initiated. This is true also if an
action suffers perturbations, for instance, if you do not find the
particular dish you were intending to pick up next. Embodied
sequence generation must be stable against variations of the time
needed to terminate each action and must be able to use sensory
information to determine that a subgoal of the sequence has been
reached.

Two additional constraints arise from the demand that an un-
derstanding of embodied sequence generation be based on neu-
ronal principles. Neural processing occurs continuously in time,
sampled by asynchronous neuronal activity and continuously cou-
pled to sensory inputs. Neuronal processing does not consist of dis-
crete computational steps from one action or perceptual state to
the next. Because neuronal time is fundamentally continuous, the
emergence of discrete transitions between different sequence ele-
ments is in need of explanation.

Finally, neuronal representations naturally capture the con-
tinua of possible actions and possible sensory states through
graded representations. That fact that neurons are discrete entities
does not lead to observable discreteness of behavior. This is the
basis for the neuronal concept of population coding (Deadwyler &
Hampson, 1995; Erickson, 1974; Georgopoulos, 1991). Conversely,
there are behavioral signatures suggesting that the metric dimen-
sions of perceptual andmotor representations are encoded. For in-
stance, drift of metric memory over delays and the dependence of
performance on taskmetrics can be accounted for using population
coding ideas (Johnson, Spencer, & Schöner, 2008). How the categor-
ical states that characterize the different stages of a reproducible
sequence emerge from such underlying continua is thus in need of
explanation.

Because current neuronal models of sequence generation
(Botvinick & Plaut, 2006; Brown, Preece, & Hulme, 2000; Burgess
& Hitch, 1999; Deco & Rolls, 2005; Elman, 1990; Houghton, 1990;
Page & Norris, 1998) address these constraints only partially, there
is, to our knowledge, no comprehensive theoretical account for
embodied and situated sequence generation that explains how be-
havioral sequences are acquired and produced in the real world.

Our goal in this paper is to establish such an account. By em-
ploying the framework of Dynamic Field Theory (DFT) we ensure
that this approach is neuronally based and consistent with the
two constraints of time-continuous processing on graded represen-
tations (Schöner, 2008). The units of representation in dynamic
fields are peaks of activation defined over continuous behavioral
dimensions. Such peaks emerge autonomously from the interplay
of neuronal interaction and sensory input and may be localized as
dictated by current input or also be determined by memory traces
acquired during learning. As a result, dynamic fields are capable of
both representing categorical aswell as continuousmetric informa-
tion. Because the peaks are attractor states of the underlying neu-
ronal dynamics, they may be sustained over unpredictable delays
enabling flexibly timed actions.

The critical element of our account is how transitions from one
action to its successor in a sequence are generated. Sensory infor-
mation signals that the condition of satisfaction for the current ac-
tion is met. An instability emerges from the interaction of a neural

field representing actions with the neural field representing their
conditions of satisfaction. That instability drives a transition be-
tween sequential actions.

The serial order of individual actions is represented in our
account through a network of dynamic neural nodes. The discrete
units in this network project onto continuous dynamic fields that
represent the potential continua of actions and perceptual states.
These perceptual and action representations are linked to the
sensors of the agent, enabling it to learn and monitor sequences,
and to the effector systems of the agent enabling it to generate
context-appropriate actions. The network of dynamic neural nodes
representing serial order is in this sense separate from the sensori-
motor representations. This conception is in agreement with
psychological (Henson, 1998) and neurophysiological (Aldridge
& Berridge, 1998; Procyk, Tanaka, & Joseph, 2000) signatures of
sequential action.

We demonstrate how this architecture can generate sequential
behavior of an embodied agent by implementing the dynamics on
a robot that performs a simple sequential task. In our implementa-
tion, sensory input comes from a camera and photoelectronic sen-
sors. Sensory information is relatively low-level (e.g., unsegmented
color-space distributions) illustrating how action sequences can be
acquired andproduced based on graded, noisy sensory information
from real sensors. The sequence is performed by generating simple
movements (driving around and approaching colored targets) on
a robot that operates in an a priori unknown environment purely
based on its own sensory information. The real-world implemen-
tation of sequence generation under these constraints provides a
sufficiency proof for the embodied nature of our account.

After briefly reviewing the conceptual andmathematical frame-
work of DFT in Section 2, we give a conceptual overview of the DFT
sequencing architecture in Section 3, and a more thorough math-
ematical description in Section 4. An exemplary implementation
of the architecture on a miniature robotic vehicle is described in
Section 5, followed in Section 6 by the results from a series of
robotic demonstrations. The discussion in Section 7 positions our
approachwithin the theoretical literature and reviews its relation-
ship to the relevant neurophysiology.

2. DFT as a framework for embodied sequence generation

Dynamic Field Theory (DFT) is a phenomenological description
of the dynamics of neuronal activation that abstracts from the
discreteness of neurons as units of neuronal networks and from
a biophysical mechanism of spiking (Amari, 1977; Ermentrout,
1998; Wilson & Cowan, 1973). As a theoretical language, DFT
has been widely used to model motor, perceptual, and cognitive
functions (Schöner, 2008). The central idea of DFT is that neural
representations are defined over continuous dimensions such as
the direction and amplitude of a reaching movement or the retinal
location or color of a visual stimulus. These dimensions span
a conceptual motor or feature space, over which an activation
function is defined. For each location, x, along these dimensions,
the activation function, u(x), indicates the presence of information
by high levels of activation and the absence of information by low
levels of activation. High levels of activation imply that neuronal
representations or effector systems onto which the activation field
projects are impacted by the activation variable. Low levels imply
that no such impact takes place. The activation function, u(x, t),
evolves in time, t , as described by the integro-differential equation
(Amari, 1977):

⌧ u̇(x, t) = �u(x, t) + h +
Z

f
�
u(x0, t)

�
!(x � x0)dx0 + S(x, t).

(1)

Here, ⌧ is a time constant of the dynamics that determines how
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quickly the activation function, u(x, t), relaxes to an attractor
state that emerges from the stabilization factor, �u(x, t), and the
additive contributions: the negative resting level, h < 0, the lateral
interactions shaped by the kernel, !(x � x0), and the external
input, S(x, t). The kernel is a bell-shaped function containing both
excitatory connectivity of strength cexc over the range, � , and
inhibitory connectivity of strength cinh over all ranges (2). The
convolution is implemented using periodic boundary conditions.

!(x � x0) = cexc exp

� (x � x0)2

2� 2

�
� cinh. (2)

The homogeneity of the connectivity pattern is characteristic for
dynamical neural fields and, together with the bell-shaped kernel
stabilizes localized peaks of activation as attractor solutions. This
requires a non-linearity, f (u(x, t)), that thresholds the output of
the field’s dynamics as a soft sigmoid:

f (u(x, t)) = 1
1 + exp[��x] . (3)

The field dynamics has different dynamic regimes. In some
instances, these regimes can be determined based on analytical
techniques (Amari, 1977; Ermentrout, 1998; Wennekers, 2002),
which is an advantage of this particular mathematical formulation
of a neural dynamics and one of our motivations for adopting
this form. In the absence of external input, one attractor state
has activity in the field close to the negative resting level, h.
This sub-threshold solution remains stable when weak localized
input, S(x, t), is introduced as long as the summed activation
level, h + S(x, t), does not surpass levels at which the lateral
interaction becomes engaged. When that threshold is passed, the
output, f (u(x, t)), and the interaction function drive the system
through the detection instability, in which the sub-threshold
solution disappears. Activation grows near the field sites at which
localized external input was largest, developing into a localized
peak of activation that inhibits the activation field elsewhere. The
peak solution is stabilized against decay by the local excitatory
interaction and against lateral diffusion by global inhibitory
interaction. Such peaks thus form the second category of attractor
states, which are self-stabilized by intra-field interactions, but also
track changing localized input. Self-stabilized, localized activation
peaks are the units of representation in DFT. For instance, objects
in the visual fieldmay be represented as peaks in a field spanned by
visual features and visual space. Action plans or motor primitives
may be represented by peaks in fields spanned by movement
parameters. In DFT, all motor, perceptual, or cognitive states are
represented by such attractor states, so that they are resistant to
variations in input or coupling across different fields.

The sub-threshold solution may be inhomogeneous with var-
ious localized small bumps of activation due to weak input that
represents learned categories within a feature dimension. Such
inhomogeneities may be amplified into self-stabilized peaks by
pushing the field through the detection instability by an increase
of the resting level that provides a ‘‘boost’’ to the overall level of
activation.

When localized input is removed, the detection instability may
be experienced in reverse. In that forgetting instability, the self-
stabilized peak becomes unstable and the system relaxes to the
sub-threshold attractor. The forgetting instability happens at lower
levels of localized input than the detection instability, so that there
is a bistable regime in which detection decisions are stabilized. For
sufficiently large resting levels, h, or strong lateral excitation in the
neural field, the forgetting instability may not occur even when
localized input is removed entirely. In this case, the self-stabilized
peak is sustained in the absence of the localized input that first
induced it. The forgetting instability may be induced, however, by
lowering the resting level.

CoS field (E)

Action field (D)
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Fig. 1. Functional modules of the DFT sequence generation architecture.

The two instabilities translate graded changes in a neural field’s
input intomacroscopic decisions representedbybifurcations in the
field dynamics. These decisions are elementary forms of embodied
cognitive function. Through these instabilities, dynamic fields pro-
vide an interface between the sensory and motor surfaces and the
associated sensory-motor processes on the one hand, and a cog-
nitive dynamics on the other hand, that enables agents to pursue
goals that are not at all times dependent on sensory input.

3. The DFT sequence generation architecture

Modeling serially ordered sequence generation within the
framework of DFT poses two problems. First, the systemmust rep-
resent at any timewhere it is within a sequence that is either being
learned or being generated. Fields may represent spatial patterns
of activation. Representing such an ordinal position requires, how-
ever, that activation patterns be generated sequentially in time.
Second, achieving the temporal transitions from one activation
pattern to the next requires solving a conflict with the stability of
each of the activation patterns. The prior state in a sequence must
first be destabilized in order to bring about the next state. More-
over, that instability must be induced reliably by sensory signals
that indicate that the ongoing action has been accomplished. Each
stage of a sequencemust, therefore, be represented jointly with its
termination condition.

To solve these problems, we introduce an architecture which
combines neural field representations of different actions with
a neuronal dynamics of discrete nodes that represent ordinal
positions in a sequence of actions. We also introduce dynamic
machinery to trigger a chain of instabilities in the dynamics of
neural fields and discrete nodes that enables the transition from
one action to the next in the sequence. The instabilities can be
induced by a sensory signal or by an internally generated event.
An overview of the DFT sequence generation architecture is given
in Fig. 1.

First, we step through the main functional components of the
architecture. A set of discrete neural-dynamic nodes represents
ordinal positions within a sequence at which the system is at
any point in time (Fig. 1(B)). This set of ordinal nodes is inspired
by neurophysiological evidence for a neuronal representation of
serial position within a sequence of actions. Neurons respon-
sive to ordinal information have been found in neostriatal cortex
(Aldridge & Berridge, 1998), in motor cortex (Carpenter, Georo-
gopoulos, & Pellizzer, 1999), and in the supplementary motor area
(Clower & Garrett, 1998). The ordinal nodes in our architecture
have bistable activation dynamics that share inhibition so that only
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one ordinal node can be active at a time. Asymmetrical excita-
tory connections between the nodes control the direction in which
activation spreads from the beginning to the end of a seque-
nce. These directed connections are mediated by memory nodes
(Fig. 1(A)) that stay active during a transition phase between two
successive actions.

When an ordinal node is activated, its projection onto an action
field becomes effective. One or multiple action fields (Fig. 1(D))
span the space of actions that are possible at any given stage
of the sequence. Which action is associated with a given stage
is specified by the synaptic connections (Fig. 1(C)) from the
corresponding ordinal node to the action field. During sequence
learning, those connections are strengthened that project onto
the field sites that are activated by the demonstrated action. The
set of synaptic weights thus constitutes the memory for a graded
representation of the action associated with a particular ordinal
position. As an ordinal node becomes active, it induces a self-
stabilized peak of activation at the location, to which the ordinal
node projects. Such a peak in an action field then elicits motor
behavior. The motor system is a dynamics that is controlled by the
movement parameter values, over which the peak in the action
field is centered. This dynamics couples to the effector system
of the agent. The action field may receive perceptual input from
the environment, while a particular action is being executed or
observed. Through this perceptual channel, peaks of activation
may be induced in the action field during sequence learning in
response to a demonstration of a target action. During sequence
production, a lower resting levelmakes that perceptual input alone
not sufficient to induce an activation peak. The action–perception
dynamics controls how this perceptual input is extracted from the
sensory surface.

To solve the problem of destabilizing the stable state that
specifies the current action, we explicitly represent the fact that
this action has achieved its goal. This is inspired by the concept
of a condition of satisfaction in Searle’s analysis of intentional
acts (Searle, 1983). The third component of the architecture is,
therefore, a condition of satisfaction (CoS) field defined over a
relevant perceptual dimension specific to the space of possible
actions (Fig. 1(E)). The CoS field receives localized input from the
active action field. This input pre-activates those locations in the
CoS field that encode perceptual states indicating that the specified
action has terminated. Such pre-activation makes the CoS field
more responsive to input consistent with those perceptual states.
Sensory input signaling the potential termination of actions is
obtained from the CoS-perception dynamics. Where that sensory
input overlaps along the field dimension with the localized pre-
activation induced by the action field, the detection threshold
is reached and a self-stabilized peak is formed in a detection
instability. That peak inhibits the ordinal set and triggers a cascade
of instabilities in the different sub-systems of the architecturewith
the end-result that the next ordinal node is activated and the
system proceeds to executing the next action.

4. Mathematical structure of the DFT architecture of sequence
generation

4.1. Ordinal nodes

The ordinal system consists of ordinal nodes with activities, di,
and associatedmemory nodes with activities, dmi , where the index,
i, counts the actions. The activity of these nodes evolves in time
according to a set of coupled differential equations:

⌧ ḋi(t) = �di(t) + hd + c0f (di(t))
� c1

X

i0 6=i

f (di0(t)) + c2f
�
dmi�1(t)

�

� c3f
�
dmi (t)

�
� IC(t) (4)

⌧ ḋmi (t) = �dmi (t) + hm + c4f
�
dmi (t)

�

� c5
X

i0 6=i

f (di0(t)) + c6f (di(t)) . (5)

To understand the role of different terms here, it is useful to
examine the state of this system at three critical moments in time
during a transition illustrated in Fig. 2 as well as the associated
time courses and dynamics shown in Fig. 3. The first three terms in
Eq. (4) are a dynamic stabilization factor �di(t), a negative resting
level, hd < 0, and a self-excitatory term of strength, c0. Herein,
f (·) is the sigmoidal non-linearity of Eq. (3). Together, these terms
establish a bistable dynamics of each ordinal node which can be
either in an ‘‘off’’ attractor (di < 0) or an ‘‘on’’ attractor (di > 0)
(see the top row of Fig. 3). Inhibition among all ordinal nodes of
strength, c1, allows only one node to be ‘‘on’’ at any time. The
ordinal node at the ith step is excited with strength, c2, when
the memory node of the previous, (i � 1)th, step is ‘‘on’’, but is
inhibitedwith strength, c3,when thememorynode at the same, ith,
step is ‘‘on’’. The first of these inputs drives activation of the next
step, while the second input helps to destabilize the predecessor
of the new action. Loss of stability of the activated predecessor
state requires in addition an inhibitory input, IC(t) = cCoS ·R
y f (UC (y, t))dy, from the condition of satisfaction field, UC (y, t),

Eq. (8).
Memory nodes have the same basic bi-stability between ‘‘on’’

and ‘‘off’’ states established by the first three terms of Eq. (5). The
memory nodes are inhibitedwith strength, c5, by any activity in the
ordinal layer, except for activity at the corresponding ordinal node,
which excites with strength, c6. The strength, c4, of self-excitation
is chosen such that the ‘‘on’’ state is sustained after this excitatory
input has been removed, so that the memory node stays ‘‘on’’ after
the sequence has advanced to the next step.

4.2. Action fields and synaptic projections

Ordinal nodes specify an action by projecting onto an action
field, a dynamic representation of a continuum of possible actions
spanned by an appropriate continuous parameter, x. The dynamics
of the action field, Eq. (6), is set up by the first three terms, which
define the generic neural field dynamics of Eq. (1).

⌧ U̇A(x, t) = �UA(x, t) + hA +
Z

f
�
UA(x0, t)

�
w(x � x0)dx0

+ cord
NdX

i=0

f (di(t))M 0
i (x, t) + cvisIvis(x, t). (6)

The projection from the ordinal nodes, f (di(t)), is mediated
by connection weights, M 0

i (x, t) = Mi(x, t) + 1, where the last
term provides for a global boost of the action field by any activity
in the ordinal set. Mi(x, t) is a matrix of modifiable connection
weights that specify the connection strength between the ith
ordinal node and the site, x, of the action field. The sum is over allNd
ordinal nodes, cord is a constant controlling strength of the ordinal
contribution. The last term is a perceptual input whose strength is
controlled by the factor, cvis.

If the non-zero connection weights, Mi(x, t), are localized
around a particular action characterized by the parameter, x0,
then activation of the associated ordinal node (f (di(t)) > 0)
pushes sites around x0 above threshold and a self-stabilized peak
is induced in the action field after a detection instability. That peak
is a stable neural representation of the action linked to the ith step
of the sequence. Projections from the action field onto the motor
surface steer the system so that it executes an appropriate physical
action. An exemplary implementation of such motor behavior is
given in Section 5 ‘‘Robotic implementation’’. Fig. 4 illustrates how
the ordinal set determines the location of a peak in the action fields
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Fig. 2. The activation levels of the five ordinal (top) and memory (bottom) nodes at three time slices during a transition from the second to the third action in a sequence.
First column: the state of the ordinal systemwhile the second action in a sequence is produced, the second ordinal node is activated and specifies the ordinal position. Second
column: the transition phase, when a condition of satisfaction signal inhibits the ordinal pool. The third ordinal node is less negative, because it receives input from the
second memory node, but is not inhibited by the third memory node. Third column: after the condition of satisfaction signal ceases, the least negative third ordinal node
reaches the threshold for a detection instability and gets activated. Arrows show active excitatory connections, while lines ending with a filled circle show active inhibitory
connections.
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by comparing two moments in time corresponding to the second
(left) and the third (right) steps.

The weights of the neural connections, Mi(x, t), are modified
during learning according to a Hebbian-like rule, Eq. (7):

⌧lṀi(x, t) = (�Mi(x, t) + f (UA(x, t))) · f (di(t)) . (7)

Thus, when an ordinal node is active (f (di(t)) > 0), the
weights are strengthened to those sites of the action field at which
positive activation (f (UA(x, t)) > 0) represents the currently
demonstrated action. Below we will show how sensory input
during learning induces localized activation peaks in the action
field. Converging to the output of the action field on the timescale
of learning dynamics, ⌧l, the weight matrix, Mi(x, t), assumes this
localized form, so that a single action is associated with each
ordinal node.

4.3. Condition of satisfaction field

For each action in a sequence, its termination criterion, or
condition of satisfaction (CoS), is represented in a dynamic field,
UC (y, t), defined over a dimension, y, that captures the sensory
states identifying the terminal criterion of an action and need not
be identical to the characteristic dimension, x, of the action field,
Eq. (6). The CoS neural field evolves according to a dynamical
equation Eq. (8):

⌧ U̇C (y, t) = �UC (y, t) + hC +
Z

f
�
UC (y0, t)

�
w(y � y0)dy0

+ cAT (x, y) ⇤ f (UA(x, t)) + cCvisIvis(y, t). (8)
The first three terms here set up the usual Amari field dynamics
with time constant, ⌧ , resting level, hC , and interaction kernel,
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w(y � y0). Positive activation in the action field (f (UA(x, t)) >
0) propagates to the CoS field through the synaptic mapping
T (x, y) which defines the mapping between the dimensions
characterizing actions, x, and their terminal states, y. Sensory input,
Ivis(y, t), of strength, cCvis, induces peaks in the CoS field when it
overlaps in the field dimension, y, with input from the action field;
cA is a constant.

The function of the CoS field is illustrated in Fig. 5. A peak
of activation in the action field (panel A) represents a particular
action and provides localized input to the CoS field (B), making
it sensitive to sensory input (C) at matching sites. When the
terminal state of the action is detected by the sensory system
(F), sensory input to the CoS field overlaps with the preshaping
input from the action field (D). The integrated inputs are sufficient
to surpass the activation threshold of the CoS field and a self-
stabilized peak arises (E). The positive activation in the CoS field
signals the successful accomplishment of the on-going action. This
neural signal is propagated to the ordinal set, where it uniformly
inhibits all ordinal nodes and suppresses any positive activity in
the ordinal systems. This triggers an instability in the dynamics of
the system, which is described in the following subsection.

4.4. The sequential transition as a cascade of instabilities

The concurrent evolution of the ordinal system, the action
field, and the CoS field linked to the environment through motor
behavior and sensory signals leads to the sequential transition
from one action to the next in a cascade of instabilities in the
dynamical sub-systems of the architecture that are illustrated in
Fig. 6.

We look at the system when the second action in the sequence
has been activated and controls the motor behavior. The cascade
of instabilities begins when the terminal condition of that action
is picked up by the sensors. This leads to positive activation in
the perceptual system, which feeds into the CoS field. There, the
perceptual input matches the preactivation from the action field.
The combined input is capable of pushing the CoS field through
the detection instability, leading to a self-stabilized peak. The new
CoS peak inhibits the ordinal system, pushing all nodes including
the activated second one below threshold (a reverse detection
instability). As a result, input is removed from the peak in the

action field, pushing it beyond the reverse detection instability,
so that this peak decays. Its decay removes critical input from
the CoS field, triggering a reverse detection instability there, so
that the CoS peak decays. This removes global inhibition from the
ordinal system. Within the ordinal system, the third node has a
competitive advantage because it is boosted by the memory node
of the second step. It goes through the threshold first, stabilizes its
‘‘on’’ state, and inhibits the other ordinal nodes. The projection of
the third node onto the action field pushes that field through the
detection instability at the location associated with the third node.
The new peak in the action field impacts on the motor behavior of
the system. The system has the equivalent dynamic state as at the
beginning of the cascade, but now with the third rather than the
second sequential action in execution.

Note that each instability within a cascade takes place within
one of the dynamic fields or discrete neural dynamics. In terms
of the complete overall dynamics, a cascade is a single transient
triggered by the detection instability in the CoS field. The robust
temporal order of the instabilitieswithin the cascade is established
by the structure of the neuronal architecture.

The same cascade of instabilities is at work during sequence
learning. During learning, the peak in the action field is generated
by direct sensory input that originates from a demonstration of the
action. The co-activation of an ordinal node and the action field
drives the synaptic weights from the ordinal node to the action
field. Learning of a step in the sequence is terminated by generating
a sensory signal that feeds into the CoS field. This sensory signal can
be delivered by an autonomous action segmentation mechanism.
This triggers the same cascade of transitions illustrated above and
makes the system ready to learn the next sequential action. An
exemplary implementation of the motor and perceptual systems,
and demonstration of components’ integrated dynamics guiding a
real-world action are presented next.

5. Robotic implementation

To demonstrate how the DFT sequence generation architecture
can be linked to simple sensory andmotor systems and thus be em-
bodied, we implement the architecture on an autonomous robot in
a simple task setting, a sequential color-search task. Presenting dif-
ferently colored objects to the robot’s camera in a given order, the
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system is ‘‘taught’’ a sequence of colors (Fig. 7(a)). Here, learning
is not supervised in the traditional sense in that the sensory sig-
nal that drives learning is not an error signal that informs about
what would have been the correct response. Instead, the user’s su-
pervision consists of demonstrating the sequence by creating en-
vironmental conditions conducive to generating relevant sensory
inputs. The acquisition of these inputs is autonomous.

Controlled by a simple behavioral dynamics that comprises
target acquisition and obstacle avoidance, the robot is capable of
searching for an object of a given color within an arena, in which

colored objects are distributed (Fig. 7(b)). The robot does so in
the order in which the colors were presented during learning.
For instance, if taught the sequence ‘‘red–blue–green–red–yellow’’,
the robot will first search for a red object, then for a blue object,
then for a green object, and so on. Each time an object of the
currently requested color looms large on the robot’s visual array,
that object is considered ‘‘found’’ and the robot switches to the next
color in the sequence.

This simple random search scenario demonstrates core proper-
ties of the DFT sequence generation architecture: (1) the capacity
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a b

Fig. 7. Robotic implementation of the sequence generation architecture on a Khepera robot vehicle equipped with a color vision system. (a) A sequence of colors is ‘‘taught’’
to the robot by presenting colored objects in a particular order to the robot’s camera. (b) The robot is then capable of navigating the arena, locating and approaching colored
objects in the learned order.

to derive and maintain stable representations of action goals from
a simple sensory system, (2) the capacity to control real-worldmo-
tor behavior, and (3) the capacity to obtain a reliable sensory signal
that controls the switch from an action to its successor. Because it
takes variable amounts of time to find an object of the requested
color, this task highlights (4) the capacity of the sequence genera-
tion system to stabilize an action goal until it has been achieved.
Finally, the learning phase demonstrates (5) the capacity to au-
tonomously acquire the serial order of a sequence from sensory
signals.

5.1. The action and condition of satisfaction systems

The action and condition of satisfaction fields work on the
basis of fairly low level sensory information. Because color is
the perceptual dimension that specifies which action within a
sequence is currently activated, the action field is defined over
hue as the dimension, x. A supra-threshold peak of activation in
the action field provides ridge-shaped input to a perceptual color-
space field defined below. Such input is localized along the color
dimension, but constant along space.

The condition of satisfaction field should generate a peak
when a block is approached whose color matches the hue values
currently activated in the action field. The condition of satisfaction
field is, therefore, defined over the same hue dimension, labelled y
when referring to the condition of satisfaction field. Formally, the
mapping, T (x, y), in Eq. (8) is the identity in this simple example. A
peak in the action field centered over the hue value, x0, provides
localized input to the condition of satisfaction field around that
same value. Perceptual input to the condition of satisfaction field is
received from a central portion of the camera image. The dynamics
of this field is tuned such that the detection instability is reached
onlywhen a sufficiently large blob of pixels register hue values that
match the input from the action field.

5.2. The color-space field: interface to sensors and motors

The two-dimensional color-space field (Fig. 8(A)) plays a dual
role. On input, this field performs a parallel visual search, gener-
ating a peak at a spatial location at which the hue of a contiguous
blob of pixels in the camera imagematches the localized in hue in-
put from the action field. On output, this field provides the target
direction for the robot’s movement towards the location at which
the color match has been detected. The color-space field is defined
over dimensions of hue and horizontal axis of the image plane (the
horizontal spatial dimension is sufficient to control the vehicle’s

heading direction). Fig. 8 shows how the sensory input to the color-
space field is computed from the camera image: The distribution of
hue values within a vertical column in the image, Fig. 8(B), is com-
puted at each location, xim, along the horizontal axis of the image
plane, Fig. 8(C).

During sequence production, the color-space field is tuned such
that a peak can be generated only when input from the camera
overlaps sufficiently with ridge input from the action field that
represents the color currently searched for (see the ridge along
the spatial dimension in Fig. 8(A)). Sufficiently strong and spatially
focused input from the camera, that falls onto the ridge, drives the
field through the detection instability. The emerging peak signals
that a suitably colored object has been found within the visual
array. This peak then sets an attractor for a dynamics of heading
direction that controls the robot’s movement (see Appendix A for
details). As a result, the robot turns to and moves towards the
suitably colored object. As the robot approaches the object, its
visual projection onto the image plane grows in size until it triggers
a peak in the condition of satisfaction field and the transition to the
next color task in the sequence unfolds.

The strength of attraction toward the target direction scales
with the size of the peak in the color-space field. The dynamics
of heading direction also receives contributions from distance
sensors for obstacle avoidance. In the absence of a peak in the color
space field, these obstacle avoidance contributions are thus alone
in determining the robot’s movement. In this mode, the robot will
effectively wander around within an enclosed arena, generating
what amounts to random search behavior. The velocity of the
robot is controlled by a separate dynamics, that depends on the
measured distance values, slowing the robot down in the vicinity
of obstacles.

During sequence learning, a homogeneous input (boost) to the
color-space field ensures that the input from the camera alone is
sufficient to induce a peak in the color-space field. Such a peak
represents the detection and, in the presence of multiple colored
objects, selection of a colored object. The color information is
passed on to the action field. Specifically, for each hue value, x,
the maximal value of activation in the color-space field along the
spatial dimension, xsp, is fed into the action field. In the learning
mode, the central portion of the camera image also provides input
to the condition of satisfaction field.When a colored block is shown
to the robot sufficiently close and centered on the robot’s camera,
the condition of satisfaction field generates a peak that inhibits
the ordinal set and thus stops the strengthening of the synaptic
weights. Due to the high resting level of the perceptual field in the
learning mode, the peak in the CoS field remains stable until visual
input ceases, for instance, because the teacher removes the colored
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block from the field of view of the robot’s camera. The transient to
the next item in the sequence is then accomplished. When a new
object is presented, its color representation is associated with the
next ordinal node.

6. Results: the model in action

6.1. Sequence learning

Fig. 9 illustrates how the robot is taught a sequence of colors.
When the first block is presented to the robot’s camera (Fig. 9, first
column), the prevalent color in the image induces an activation
peak in the perceptual color-space field. This peak is projected onto
the color dimension of the action field and induces a peak there.
Note that this reversal of the direction of coupling compared to
the sequence production mode is brought about merely by the
boost of activation to theperceptual color-space field. Thepresence
of a peak in the action field, while a particular ordinal node is
active, strengthens the synaptic connections from that node to the
activated sites of the action field.

The activation peak in the action field also provides localized
input to the condition of satisfaction field. Therefore, as soon as
perceptual input to the condition of satisfaction field is sufficiently
strong – because the object is brought sufficiently close to the
camera – an activation peak is induced in the condition of
satisfaction field. This peak then inhibits the ordinal set (Fig. 9,
second column), leading to activation in the ordinal system to drop
below threshold. The strengthening of synaptic weights stops at
this point. When the teacher removes the colored block from the
robot’s view (Fig. 9, third column), the activation peaks in the
action and the condition of satisfaction fields decay completely,
releasing the ordinal set from inhibition. Due to the dynamics of
the ordinal and memory nodes, the next ordinal node becomes
activated.

When the next block with the next color is presented to
the robot, the new color is detected in the color-space field

(Fig. 9, last column) and passed on to the action field in the
same fashion. Synaptic connections between the next ordinal node
and the activated sites of the action field are strengthened. The
procedure continues until all color blocks have been presented
to the robot. The outcome of the learning procedure is a set of
learned connection weights from the ordinal nodes to the action
field, whichmay now direct the flow of activation during sequence
generation.

6.2. Sequence production

Fig. 10 illustrates how sequential color search behavior is
producedby the robot. An active ordinal node induces an activation
peak in the action field through the learned synaptic connections
(Fig. 10(A)). The location of this peak specifies the color that
must now be searched (here, ‘‘green’’). The localized output of
the action field sends ridge-shaped input to the perceptual color-
space field (Fig. 10(B)), facilitating activation of that field at ‘‘green’’
sites. Thus, the locations of green objects in the camera image
(Fig. 10(C)) compete for activation in the color-space field. A
location receiving input from the largest green object surpasses
the activation threshold first. Lateral inhibitory interaction within
the color-space field selects and stabilizes the representation of
this object (Fig. 10(B)). This activation peak in the color-space field
now controls the robot’s movement by specifying an attractor in
its heading direction dynamics. As the robot moves, the shifting
location on the sensory surface of the visual projection of the
selected green object is tracked by the peak in the color-space field.

The activation peak in the action field pre-activates the condi-
tion of satisfaction field (Fig. 10(D)), making it sensitive to ‘‘green’’.
When the robot has approached the target block, the associated
color blob takes up a large portion of the image (Fig. 10(H)). As a re-
sult, perceptual input to the condition of satisfaction field, summed
with the prior input from the action field, surpasses the activa-
tion threshold of the detection instability (Fig. 10(I)). The emerg-
ing activation peak in the condition of satisfaction field signals the
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Fig. 9. Sequence learning in the DFT architecture, driven by a user-presented visual input. See text for details.
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Fig. 10. Two snapshots of the dynamics of the DFT sequencing architecture during sequence production on a real robot. See text for details.

successful accomplishment of the color-search action at this stage
of the sequence.

The peak in the condition of satisfaction field inhibits the or-
dinal nodes, triggering the cascade of transition instabilities. The
peak representing the current action in the action field decays,
which causes decay of the peak in the condition of satisfaction
field. Ultimately, the representation of the next action in both or-
dinal and action systems is activated. The previous color loses its

advantage in the color-space field, where the peak decays. Con-
sequently, the attractive force in the heading direction dynamics
wanes. The green block now only acts as an obstacle, helping the
robot to get on its way towards searching for the next color.

Fig. 11 shows the time course of the dynamics of the ordinal
nodes, the action field, the condition of satisfaction field, and
the spatial projection of the color-space field during learning and
production of a sequence ‘‘red–blue–green–blue–yellow’’ (RBGBY).
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In the following, we present several runs of the robot system in
different environments, merely varying which sequence of colors
is taught during sequence learning and the physical arrangement
of objects in the arena during sequence production. Exactly the
same parameter setting is used for the neural dynamics in all
demonstrations.

6.3. Timing of actions

The core property of the DFT architecture is the stability
of action representations at each ordinal position enabling the
system to tolerate variable durations of the individual actions
when the sequence is executed in an unknown environment. In
the simulations illustrated in Fig. 12, the durations of actions
range from a few seconds to two minutes due to different spatial
arrangements of obstacles and targets.

6.4. Flexibility of sequence generation: no problems with repetitions

The DFT architecture does not make use of direct connections
between the representations of actions at different stages of the
sequence (no ‘‘chaining’’ mechanism), nor is inhibition of the
previous items essential for sequence learning and production.
This makes it possible to learn any sequence, including those in
which the same actions are repeated at different, even adjacent
ordinal positions. This is demonstrated by the run illustrated in
Fig. 12(a), in which the ‘‘blue’’ is searched at the second and fourth
step. In the run illustrated in Fig. 12(b) the same color ‘‘green’’ is
requested twice in a row. Disentangling ordinal information from
the content of each action enables this form of flexibility.

6.5. Noisy environments

To illustrate the robustness of sequence generation in the DFT
architecture, some sequences were acquired outside the arena.
Thus, during the learning phase inputwasmore complex, no longer
dominated by a single prevalent color. Fig. 12(c) shows that the

system was still able to detect the most salient color during the
learning phase and to learn the correct sequence. Note that a
more complete architecture capable of representing objects and
scenes (Faubel & Schöner, 2008) must replace the simple color-
space perceptual field in order for this system to function robustly
in complex, feature-rich environments.

7. Discussion

How humans and cognitive robots generate sequences of
actions is constrained by their embodiment and situatedness
(Riegler, 2002). The physical properties of the body imply, for in-
stance, that actions take characteristic amounts of time that may
vary depending on circumstances. Physical environmentsmayvary
in time on their own characteristic timescale. Sensory and motor
systems operate in continuous time and have graded state vari-
ables that are subject to spatio-temporal fluctuations. Sequence
generation must be capable of integrating these constraints in or-
der to produce stable behavior.

In this paper, we set out to develop a theoretical framework and
model that address sequence generation under the constraints of
embodiment and situatedness. Dynamic Field Theory (DFT) pro-
vides a theoretical language that captures principles of neural
function, in particular, the autonomous, graded, and temporally
continuous nature of neuronal processing. DFT resolves two inher-
ently contradictory constraints for sequence generation that arise
out of embodiment. On the one hand, any particular actionwithin a
sequence must be stable and resist change as environmental con-
ditions vary. On the other hand, to bring about the transition to
the next action, the current action must yield. In the DFT sequence
generation model, action states are attractors that become unsta-
ble when sensory information signals successful completion of an
action. In order for sensory information to play such a role, the
switching signal itself must be represented stably. The condition
of satisfaction system, inspired by Searle’s philosophical analysis of
the structure of intentionality (Searle, 1983), provides such a stable
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(a) Sequence RBGBY acquired and produced in the arena.
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(b) Sequence RGGBY acquired and produced in the arena.
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Fig. 12. Three demonstrations of sequence learning and production. Left: The time courses of activation in the functional modules of the DFT sequencing architecture. Right:
The weights holding the sequence of colors after learning. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

representation. This likewise goes through instabilities, first when
sensory information activates the condition of satisfaction signal,
and then again when the successful transition to the next element
of the sequence destabilizes the condition of satisfaction signal.

We have demonstrated the fluent execution of serially ordered
actions in a physically embodied agent. The exemplary laboratory
task included searching for a particular kind of object as a relevant
actionwithin each sequence. Searching exemplifies the problem of
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varying time demands of each element of a sequence because the
timeneeded to find a particular kind of object varies unpredictably.
The capacity to stabilize a state of a sequence over variable
durations also enabled our system to learn from demonstration
without particular requirements for the timing of the teaching
events. The teacher may present colored objects quite freely to
the robot, the color of the object in view being detected and the
connection weights being learned within a few milliseconds as
determined by the time constant of the learning and field dynamics
(see parameter values listed in Appendix B).

The concept of creating stable states at each stage of a sequence,
which lose stability in a bifurcation, sets our approach apart from
related neural dynamics models (Deco & Rolls, 2005; Rabinovich,
Huerta, & Afraimovich, 2006; Selinger, Tsimring, & Rabinovich,
2003). These models share with our approach the commitment
to principles of neural processing. They generate sequences of
semi-stable states through carefully designed transient dynamics.
The timing of the sequential transitions is controlled, however,
by the internal dynamical properties of the neurons and thus
resides at the neural timescale. Constraints that arise from acting
out the behavioral sequences by embodied agents in time-varying
environments are not addressed. This is true also for theoretical
proposals for how to bridge, in principle, the gap between neural
and behavioral timescales (Maass, Natschläger, & Markram, 2002;
Melamed, Gerstner, Maass, Tsodyks, & Markram, 2004). The
self-stabilization and switching mechanisms postulated for the
encoding of serial order in amodular neural networkmodel (Beiser
& Houk, 1998) come closer in spirit to the DFT approach.

A conceptual approach toneural dynamics that is closely related
to DFT is based on the notion of Hebbian cell assemblies. In
that framework, ensembles of dynamical neurons are effectively
bound together by strong excitatory interaction in the presence
of global inhibitory coupling (Wennekers, 2006; Wennekers &
Palm, 2007). Like DFT, this approach accounts for stable patterns of
population activity. The concept of dynamic neural fields has been
shown to emerge as a limit case when the coupling structure is
homogeneous (Deco, Jirsa, Robinson, Breakspear, & Friston, 2008;
Potthast & beim Graben, 2009). Within the framework of Hebbian
cell assemblies, amodel of sequence generation has been proposed
that shares key ideas with our architecture (Wennekers & Palm,
2009). In thatmodel, sequencesmay be generated transiently from
semi-stable states of neuronal assemblies (‘‘autonomous mode’’),
but may also emerge from actual attractor states. The attractors
can be switched by a global signal, similar to the condition of
satisfaction signal of our model.

Embodiment is only a secondary concern for the broader and
more abstract neural dynamic models of sequence generation
(Gnadt & Grossberg, 2007; Grossberg & Pearson, 2008) that
are based on Grossberg’s proposal of a neural mechanism for
serial order (Grossberg, 1978). Here, sequences are stored as
spatial gradients of neural activation. A volitionally-activated non-
specific rehearsal wave controls the fluent unfolding in time of
a sequence at production. An inhibition of return mechanism
switches sequential elements off a fixed time after their activation.
By varying the speed of movement generation through a graded
‘‘go’’ signal, the authors modeled variable timing of sequential arm
movements including anticipatory preparation to the up-coming
action (Grossberg & Pearson, 2008). Unexpected variation of the
time needed to terminate an action was not addressed.

A series of neural dynamics models of motor control (Stringer,
Rolls, & Taylor, 2007; Stringer, Rolls, & Trappenberg, 2004) have
a considerable conceptual and mathematical overlap with our
approach. The models are based on continuous attractor networks
that could be viewed as particular mechanistic implementations
of neural fields. Within this framework, associating subnetworks
that represent a state with motor networks makes it possible to

learn arbitrary motor sequences (Stringer, Rolls, Trappenberg, &
De Araujo, 2003). The sequences are performed autonomously,
without feedback control, but at variable speeds producing
different levels of force. To reach to the more flexible, cognitive
level at which our approach is aimed, the motor control model
would need to be embedded in an architecture that would include
mechanisms for how information from the environment control an
unfolding sequence.

The embodiment of sequence generation is, to a limited extent,
addressed by architectures based on recurrent neural networks
(Botvinick & Plaut, 2004; Dominey, Arbib, & Joseph, 1995; Elman,
1990). Here, the weights of a neural network are trained by ex-
posing an agent to different behavioral sequences. The resulting
network produces an appropriate sequence of outputs represent-
ing actions in a simulated environment. The environment provides
input after each sequential action, which, combinedwith the inter-
nal state of the network, leads to the next output value. How that
perceptual input is acquired from noisy environments is not ad-
dressed nor is the time course of action controlled and stabilized.
Neural networkmodels of this type have not been implemented in
real-world agents and such implementation would require solv-
ing these problems. Relatedly, recurrent neural network architec-
tures do not model the process of acquiring an action sequence
in a natural setting with a single or few demonstrations. The
back-propagation algorithm, that these networks rely on, requires
extensive learningunder supervision. Themodels do address, how-
ever, empirical findings on routine sequences and may provide in-
sights into action slips (Botvinick & Plaut, 2004).

Naturally, the problem of embodiment is addressed within the
domain of autonomous robotics and autonomous agents research.
Here, sequence generation is more typically looked at as a prob-
lem in behavioral organization, in which rules determine the se-
quential ordering of actions (Steinhage& Schöner, 1998). From that
perspective, serial order is the simplest case, in which any order
is possible (although serial order includes the problem of learn-
ing such arbitrary sequential arrangements). A typical approach is
to represent actions as discrete nodes at one or a number of hi-
erarchical levels. Directed links between these nodes define the
logical structure of behavioral organization, whereas inputs repre-
sent goals and environmental conditions. Such architectures have
demonstrated behavioral sequencing in simulated environments
and simple robotic demonstrations (Maes, 1989; Payton, Rosen-
blatt, & Keirsey, 1990; Tyrrell, 1993). In order to apply thesemodels
in the robotic domain, the temporal continuity of the actions and
their finite durationmust be taken into account. Oneway to do that
is to use event-driven processing in finite statemachineswhich are
in stationary states between transitions (Arkin &MacKenzie, 1994;
Kosecka&Bajcsy, 1993). In this view, cognitive architectures are ef-
fectively decoupled from the sensory systems. The downside is that
the stability problem is shifted to the level of sensory preprocess-
ing, at which the relevant problems of sensor fusion, salient events
detection, and segmentation of relevant objects are still broadly
unsolved. Because many of these processes are actually cognitive
in nature, their relegation to a system outside behavioral organiza-
tion may be problematic.

The rich and complex flow of sequential actions in daily life is
likely to be strongly constrained by the inherent logic of action
(e.g., you cannot put down an object before grasping it), analogous
to the rules of behavioral organization in robots. In cognitive psy-
chology, however, sequence generation has more commonly been
considered as a problem of serial order, that is, the arrangement of
actions in an arbitrary but fixed order. The large literature on the-
oretical models of serial order aims at understanding the structure
of the underlying memory systems and uses errors of serial order
production as well as response times as constraints. These models
are typically disembodied, that is, not concerned with the physical
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production of each action and the acquisition of relevant sensory
information. A useful classification of these models distinguishes
between chaining, ordinal, and positional theories (Henson, 1998).
Chaining theories postulate that serial order is stored in directional
links between the successive states. A number of arguments can be
advanced against chaining theories (Cooper & Shallice, 2000; Dell
et al., 1997; Henson, 1998), although elements of chaining may
be relevant to behavioral organization (Botvinick & Plaut, 2006;
Hikosaka et al., 1999). Ordinal theories postulate that the order of
an item in a sequence is represented in an activation gradient over
a network that represents item information (Glasspool, Shallice, &
Cipolotti, 1999; Grossberg, 1978; Page&Norris, 1998). Ordinal the-
ories seem to contradict some experimental data on human (Hen-
son, 1998) and animal (Eichenbaum, 2007) behavior, however. To
date, positional models are the most successful candidates in ad-
dressing behavioral data on serial order (Burgess & Hitch, 1999;
Dell et al., 1997; Henson, 1998; Houghton & Hartley, 1995). In po-
sitional theories, the item information is associatedwith a location
that encodes ordinal position. This makes it possible to both ac-
count for ordinal errors through disruptions within the positional
representation of serial order as well as to account for similarity
effects and the influence of the domain structure.

The DFT architecture could be considered a neural implementa-
tion of a positional mechanism for encoding and producing serially
ordered actions. Item information is represented by activation dis-
tributions within neural dynamical fields, whereas the serial order
of items is represented separately by the location of the activated
node within the ordinal network. Ordinal nodes project onto the
neural fields, associating ordinal position with item information.
This marks the contrast with chaining theories, in which item in-
formation of each step is directly linked to item information of the
consecutive step.

Neurophysiology provides convergent evidence for such a
positional account. Although much remains to be known about
the neuronal basis of sequential behavior, neurons coding for
ordinal position have been found in a number of relevant
neuronal structures (Tanji, 2001). Neurons in the supplementary
motor area were found to become active for specific movements
within a movement sequence, but not when those movements
were performed outside the sequence context (Shima & Tanji,
1998). In anterior cingulate cortex, some neurons showed activity
selectively for a particular ordinal position, but independent of
which particular movement was performed at the upcoming,
preceding or subsequent stage of the sequence (Procyk et al., 2000).
A similar pattern was found when investigating the difference
in neural activations during ‘‘syntactic’’ and ‘‘natural’’ grooming
sequences in rats (Aldridge & Berridge, 1998). A population of
dorsolateral neurons in this study was active only during the
particular sequential patterns of grooming movements, and not
when the same patterns occurred outside the grooming sequence.
These populations thus appeared to encode the serial order and
not the motor properties of constituent movements. Neural pools
responsive to serial information were even found in the motor
cortex (Carpenter et al., 1999). The ordinal nodes of the DFT model
are inspired by these neural signatures. Prefrontal regions play a
role in the executive control of sequential action (Fujii & Graybiel,
2003). Prefrontal neural activity may sustain information about
sequences between trials (Averbeck & Lee, 2007). Activity after a
learning trial and before production of a sequence predicts which
of a number of learned sequences is going to be initiated. Different
patterns of neural activitywere observed during the preparation of
a movement sequence, before a particular ordinal position, and in
specific time intervals between serial items (Tanji, 2001). Overall,
these findings support the notion of a positional code for ordinal
system.

The basal ganglia play a role in the temporal organization
of actions. The basal ganglia neurons are active during both the

learned motor or cognitive tasks and during learning of novel
motor behavior (Hikosaka, Takikawa, & Kawagoe, 2000). The
inhibitory connections are established from the discrete regions
of basal ganglia to separate cortical regions (Parent & Hazrati,
1995). As this structure is also considered to participate in
reward anticipationmechanism, the function of the presented here
condition of satisfaction system might resemble that of the basal
ganglia structures.

Clearly, multiple mechanisms support the production of se-
quentially ordered actions in natural and artificial systems. TheDFT
architecture developed in this paper demonstrates how sequential
neuronal states can be generated from a continuous-time dynam-
ics that is coupled to graded, time-varying sensory inputs and con-
trols the movement behavior of a physical agent situated in the
real world. The robotic implementation forced us to take the per-
ception–action loop seriously and thus to address the constraints
that arise from embodiment and situatedness. This led to the con-
cept of each stage of a sequence being instantiated as an attractor
state that becomes unstable in a bifurcation under the control of
a condition of satisfaction system. The switch to the next stage of
the sequence thus occurs in a controlled fashion, enabling flexible
timing. Internal simulation of the behavior that generates a condi-
tion of satisfaction makes it possible to emulate the fixed timing
observed in a number of motor skills (Sandamirskaya & Schöner,
2006). Beyond serial order, we believe that the DFT model pro-
posed here may provide the basis for a comprehensive account for
behavioral organization and goal-oriented sequence generation.

Appendix A. Representation of the motor and perceptual sys-
tems

A.1. Motor system

In our example, the movement of the robot is controlled by
dynamics of heading direction of the robot, Eq. (A.1) (Schöner,
Dose, & Engels, 1995). The desired change of heading direction,
1✓ = ✓̇(t)1t , at each time step, t , of the dynamics’ integration is
translated into a difference of commands for the twowheels of the
robot, and causes the desired rotation. The new heading direction,
✓ , is never computed explicitly here, but the robotic hardware, as
part of the loop, ‘‘integrates’’ Eq. (A.1).

⌧nav✓̇(t) = �obsFobs,i(t) + �tarFtar(t). (A.1)
Here, �obs and �tar are constants controlling the strength of

the target (attractor) and obstacles (repellors) contributions. The
functions, Fobs,i and Ftar, describe the contributions to the dynamics
from obstacles and the target perceived by the robot. The obstacle
contribution is calculated with Eq. (A.2).

Fobs =
X

i

Si(t) · exp

�  i

2Robs,i(t)2

�
. (A.2)

Here, Si(t), i = 1, . . . , 8, are the signal strengths and  i are
angular locations relative to the heading direction of the eight
infrared sensors of the robot. Si(t) are calculated according to Eq.
(A.3). Robs,i(t) = arctan

h
tan

�
1 
2

�
+ R

R+Di(t)

i
is the angular range

of an obstacle, that depends on the size of the robot, R, opening
angle of the sensor,1 , and distance to the obstacle, Di(t). Di(t) is
the distance to an obstacle in the direction of the ith sensor that is
calculated from the sensor’s value through an empirical calibration
function, Di(t) = 0.9 · exp(�0.007 · Iri(t)) (mm), where �1,�2 are
numerical constants.

Si(t) = �1 · exp
✓

�Di(t)
�2

◆
. (A.3)

The target contribution is calculated by extracting the spatial
information from the output of the color-space field, P(x, xsp, t),
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Table B.1
Numerical values of parameters used in implementation of the model. Units are
displayed where applicable.

Name Value Name Value

⌧ 10.0 (ms) ⌧nav 80.0 (ms)
⌧l 20.0 (ms) ⌧vel 30.0 (ms)
hd �5.0 �tar 0.2
hm �2.0 �obs 1.0
hA �1.8 �1 15.0
hC �2.0 �2 30.0

cA,C
inh 5.0  i [�90, �45, �9, 11, 45, 90] (°)
� 100.0 vtar 60.0 (pulse/s)
cA,C
exc 0.9 vobs 30.0 (pulse/s)
� A,C 3.0 R 100.0 (mm)
cCoS 15 1 45.0 (°)
cvis 2.0 hP �2.0/ � 1.0 (learning)

cvis,C 1.0 cPA 2.5

cord 10.0 cPvis 2.0

c0 7.2 cPinh 0.5
c1 3.6 � P [3.0, 3.0]
c2 0.9 cPexc 0.6
c3 0.8 cp 1.0
c4 3.5 cA 1.5
c5 2.0 N 180
c6 2.6 Nsp [160, 120]

Eq. (A.6). Thus, the target contribution is proportional to a distance
from the peak of activity in this neural field to the center of the
field, both calculated for the spatial projection, Ppr(xsp, t), of the
two-dimensional neural field’s output, Eq. (A.4).

Ftar(t) =
Z N

0
Ppr(xsp, t)

✓
xsp � N

2

◆
dxsp. (A.4)

Here,N is the (arbitrary) size of the perceptual color-space field,
Ppr(xsp, t) = f

�
P(argmaxx(P(x, xsp, t)), xsp, t)

�
is a projection

of the output of the color-space field on the spatial dimension, xsp;
x is the color dimension of the color-space field. Thus, integrating
Eq. (A.1), the robot minimizes the angular distance between the
current heading direction, ✓ , and the direction to the target, ✓tar,
both of which, however, are not calculated explicitly.

The dynamics, Eq. (A.1), integrates impacts of the two sensor
modalities—color vision and infrared sensing. The color vision is
responsible for target acquisition and is in its turn affected by the
dynamics of sequence generation. The sensori-motor dynamics,
Eq. (A.1), thus provides for a low-level behavior organization.

The speed of the robot is controlled by Eq. (A.5):

⌧velv̇(t) = �v(t) + (1 � �v
obs(t)) · vtar + �v

obs(t) · vobs, (A.5)
where vobs > vtar are constant velocities with and without an
obstacle in the vicinity of the robot respectively; �v

obs is a switch,
that turns non-zero if an obstacle is perceived by an infrared
sensor; ⌧vel is the time constant of the dynamics.

A.2. Perceptual representation

The perceptual system in our example is the two-dimensional
color-space field, Eq. (A.6), spanning the dimensions of color and
horizontal position in the image. This field receives visual input
from the camera of the agent: for each column in the image the
color distribution is extracted and input to the corresponding row
of the color-space field (see Fig. 8 and Section 5.2 ‘‘The color-space
field: Interface to sensors and motors’’).
⌧ Ṗ(x, xsp, t) = �P(x, xsp, t) + hP

+
Z

f
�
P(x, xsp, t)

�
w(x � x0, xsp � x0

sp)dx
0dx0

sp

+ cPA f (UA(x, t)) + cPvisV (x, xsp, t), (A.6)

where cPA is the constant characterizing strength of the input from
the action field,UA(x, t), Eq. (6), that represents the ongoing action;
V (x, xsp, t) is the visual input from the camera of the robot with
amplitude cPvis. Other notations are the same as in Section 2 ‘‘DFT as
a framework for embodied sequence generation’’, the interaction
kernel w(x � x0, xsp � x0

sp) is a two-dimensional symmetrical
Gaussian.

A large continuous single-color blob in the image induces a
localized peak of activation in the color-space field, that is the
representation of a colored object at a certain position in the
image. Location of the peak along the spatial dimension defines the
contribution of the target for the navigation dynamics, Eq. (A.1).

Appendix B. Parameters used in implementation of the model

See Table B.1.
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