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Abstract—Looking at objects is one of the most basic
sensorimotor behaviours, which requires calibration of the
perceptual and motor systems. Recently, we have introduced
a neural-dynamic architecture, in which the sensorimotor
transformations, which lead to precise saccadic gaze shifts,
is initially learned and is autonomously updated if changes in
the environment or in the motor plant of the agent require
adaptation. Here, we demonstrate how the allocentric, gaze-
direction independent memory representations may be formed
in this architecture and how sequences of precise gaze shifts
may be generated to memorised targets. Our simulated robotic
experiments demonstrate functioning of the architecture on an
autonomous embodied agent.

I. INTRODUCTION

Looking, i.e. the ability to direct one’s gaze to an object
of interest, is an amazing behaviour, in which the neural
system of an agent is able to generate a precise motor
command to align the eye (and head) of the agent – and
herewith the rest of its body – with the outside world.
Human looking behaviour consists of fast gaze shifts, called
saccades, separated by periods of fixation, or smooth pursuit.
The saccades bring different portions of the environment
into the highly sensitive fovea, where the visual inputs may
be neurally processed during the fixation periods, creating an
illusion of a stable world around us, available to acting upon
it. The problem of discovering how the brain creates a stable
and coherent representation of the immediate environment of
an agent from the discrete fixations, separated by saccades,
has been posed several decades ago [1], [2].

Several parts of the neural system, involved in genera-
tion of gaze shifts, have been examined since then, and
both neurologically and behaviourally realistic models were
developed. Despite the seeming simplicity of the looking
system, the neural circuitry involved in saccades generation
has an immense complexity [3], [4]. The mapping between
the visual representation of the saccade target and the motor
command has to be adaptive, since the variability in the neu-
romuscular system of the eye calls for a permanently run-
ning calibration process between the retinal representation of
the target and the motor system [5], [6], [7]. Such calibration
processes related to the control of gaze-shifts were found in
cerebellar cortex and are hypothesised to be modulated by
reward-related basal ganglia loops. Apart from this senso-

rimotor mapping, the reference frame transformation from
retinotopic to an allocentric (gaze-direction independent)
coordinate frame [8] is needed to fuse information, collected
during fixations between saccades, in order to generate a
coherent representation of the visual scene. The need for
such a representation is revealed in experiments on memory-
based, double-step saccades. In these experiments, saccades
are generated to two remembered targets in a sequence.
Using retinotopic reference frame leads to an incorrect
second saccade, since its retinal representation shifts during
the first saccade. Developmental studies have shown that the
ability to use a correct reference frame for generation of such
saccades from memory develops over the first months of life
[9]. It is obvious that other movements, directed at visually
perceived objects, as, e.g., reaching movements, also cannot
rely on retinotopic representations (only), since humans are
able to generate such movements based on a remembered
target position.

In this paper, we use the neural-dynamic framework of
Dynamic Field Theory [10] to implement an embodied,
dynamic, autonomous, and adaptive model for looking be-
havior. We have demonstrated the basic functionality of this
model recently [11]. Here, we focus on the capability of
the network to predict the motor outcome of the potential
saccade, to use this prediction to create memories in a
motor-based (non-retinal) reference frame, and, finally, to
perform a sequence of saccades from memory. We show how
errors, caused by the retinotopic saccade plans are corrected
when motor-based reference frame becomes available. This
allows to model a developmental pathway from retinocentric
to allocentric memory saccades.

The properties and functioning of the model are demon-
strated on an embodied (here, simulated) robotic agent.
We connect the robotic camera and the pan-tilt motors of
the camera head to the neural-dynamic architecture and
demonstrate how gaze shifts may be initiated autonomously,
how their errors maybe detected and trigger adaptation of
the saccadic circuitry, leading to autonomous learning of
sensorimotor maps and to memory formation. A transfor-
mation to a body-centred reference frame is performed by
predicting the motor outcome of a planned, but delayed,
saccade, to make memory independent of the current gaze
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direction of the camera. We deal with exploration of a scene
and inhibition of return, which allows to scan the scene with
several objects with different visual features.

The embodied approach, used in our work, enables a
tight integration between modelling and behaviour analysis,
linking the neural, architectural level with the behavioural
level. The architecture may also have technical applications,
being a proof-of-concept demonstration of an autonomous
self-calibrating robotic system, which learns to look at
objects in its environment and to generate a representation
of the visual scene, which may be used to generate object-
directed actions without immediate perception and visual
servoing (see [12], [13] for other examples of similar work).

II. METHODS: DYNAMIC NEURAL FIELDS

The neural-dynamic architecture for looking, presented
here, is built within Dynamic Field Theory (DFT) – a math-
ematical and conceptual framework for modelling cognition
using Dynamic Neural Fields (DNFs) [14], [10]. DNFs are
activation functions defined over different perceptual and
motor variables, which characterise the perceptual states and
motor parameters of actions of an embodied agent.

The DNF activation follows the dynamics, Eq. (1), which
has a characteristic attractor pattern: a localized activity
‘peak’. The peaks are stabilised by lateral interactions in the
DNF against decay and spread. Such peaks of activation are
units of representation in DFT. Because of the stability and
attractor properties of the DNF dynamics, cognitive models
formulated in DFT may be coupled to real robotic motors
and sensors and were shown to generate cognitive behavior
in autonomous robots [15], [16]. In particular, activity peaks
stabilise decisions about detection of a salient object in the
visual input and selection among alternatives; the stabilised
representations are critical to enable stable motor control
and to perform cognitive operations on representations [17].

τ u̇(x, t) =−u(x, t)+h+
∫

f (u(x′, t))ω(x′,x)dx′+ I(x, t) (1)

In Eq. (1), u(x, t) is the activation of a dynamic neural field
(DNF) at time t; x is one or several behavioral dimensions
(e.g., color, space, position or velocity of an effector), over
which the DNF is spanned. τ is the relaxation time-constant
of the dynamics; h is the negative resting level, which
defines the activation threshold of the field; f (·) is the
sigmoidal non-linearity shaping the output of the neural
field; the lateral connections in the DNF are shaped by
a Mexican hat lateral interaction kernel, ω(|x′− x|), with
a short-range excitation and a long-range inhibition parts;
I(x, t) is sum of the external inputs to the DNF, Ii(x, t),
where each of the inputs may either come from a sensor
or from another DNF.

In the simplest case, when the DNF (e.g., u2(x, t)), which
provides input to the DNF u(x, t), is defined over the same
behavioural dimension, x, the input Iu2(x, t) = c f (u2(x, t)),
where c is a scaling factor (Gaussian spreading function
may be used instead). If the DNFs u(x, t) and u3(x,y, t)

have different dimensionality, input is extended or collapsed
in the not-shared dimension. DNFs, which don’t share a
dimension may be coupled through a mapping function
(similar to a weight matrix in standard neural networks).

The basic learning mechanism in the DFT is the formation
of memory traces of positive activation of a DNF [18]. The
memory trace – called preshape in DFT – is a dynamical
layer, which receives input from the respective DNF and
projects its output back to this DNF. The projection can
be positive, facilitating activation of the DNF at previously
activated locations, or negative, inhibiting the DNF at pre-
viously activated locations (such preshape may account for
habituation and facilitate exploration). The preshape layer
follows the equation (3), [17].

τlṖ(x, t) = λbuild

(
−P(x, t)+ f

(
u(x, t)

))
f
(
u(x, t)

)
−

−λdecayP(x, t)
(

1− f
(
u(x, t)

))
. (2)

Here, P(x, t) is the strength of the memory trace at site x of
the DNF with activity u(x, t), λbuild and λdecay are the rates
of build-up and decay of the memory trace. The build-up of
the memory trace is active on the sites with a high positive
output f

(
u(x, t)

)
, the decay is active on the sites with a low

output. The memory trace P(x, t) is an additive input to the
DNF dynamics.

The adaptive model for looking, introduced next, consists
of a number of interconnected DNFs of different dimen-
sionality, a neuronal burst generator, linked to the motors of
the robotic agent, a gain map, which scales the projections
from the retinal representations of the saccadic targets to the
motor command generator, as well as a motor command
integrator and a difference command generator. The latter
two are adaptations of standard mechanisms, which were
developed in neural models of movement generation [19],
other elements may be mapped on different parts of corti-
cal and subcortical structures (e.g., superior calliculus for
saccade target representation, or cerebellum for gain maps
adaptation), involved in saccade generation, as we discussed
recently [20].

III. THE MODEL

A. The DNF architecture for looking

Fig. 1 depicts the overall architecture for looking. This
network of dynamic neural fields implements several be-
havioural functions along with generating gaze shifts to-
wards visually perceived targets (e.g. exploring a scene,
building a long-term memory of the scene, fixation dynamics
and smooth pursuit, planning memory saccades, updating
the sensorimotor mapping). Here, we explain the crucial
elements of the network.

On the left of Fig. 1 (grey shaded rectangle), the cam-
era and the motors of the pan-tilt unit are shown. The
camera provides visual input to the visual perception DNF
and the center of visual field DNF. The first of these
two three-dimensional DNFs builds peaks over color-space
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Fig. 1: The overall neural-dynamic architecture for looking. Arrows represent excitatory connectivity between DNFs, lines
with filled circles show the inhibitory connections. See main text for details.

associations, which correspond to salient portions of the
camera image. A cascade of one-dimensional color-memory
fields with different time-scales of the memory dynamics
keeps track of the colours, which were already brought into
foreground, and temporally inhibit them in order to facilitate
exploration of yet unseen colours. The center of visual field
DNF is activated when the target object is centred in the
visual field of the camera. The current gaze DNF builds
stabilised representation of the state of the motors before
the saccade. These DNFs constitute the perceptual system
of the neural-dynamic architecture (blue shaded rectangle in
the figure).

The center of visual field DNF activates the smooth
pursuit dynamics, which tracks the object during active
fixation. At the same time, the gaze-color memory DNF
accumulates memory for the currently fixated object, storing
its features and location in the gaze-space (i.e., the motor
state is stored when the camera fixates the object in the
centre of visual field). This memory is only formed if no
motion is generated by the smooth pursuit dynamics. The
fixation (F) and the end of fixation (EoF) nodes control
activation and deactivation of the fixation phase of the
camera (eye) movements. This fixation system is marked
with a violet shaded region in the Fig. 1.

The pink shaded rectangle in Fig. 1 markes the saccade
generation circuit, which consists of four dynamical nodes
(zero-dimensional DNFs). The initiation node is activated
by either the retinal or the gaze-based target fields (these
DNFs will be presented further) and, in its turn, activates the
saccade burst node and lifts the resting level of the saccade
reset node. The later two nodes generate one oscillation
of activation: the burst node is activated first, brings the
reset node over the activation threshold, and is eventually

inhibited by the activated reset node. The reset node is left
active by the input from the initiation node until the target’s
representation decays in the target DNFs (this time interval
includes a fixation period, controlled by the fixation and
the end-of-fixation dynamical nodes). The oscillation of the
burst node’s activation has a stereotypical (the same for
all saccades) activation profile, which is scaled by the gain
maps separately for the two motors of the system to result
in a precise saccade. The scaled activation signal is sent to
the motors and sets the velocity of the pan and tilt motors
in our robotic implementation, or it corresponds to a signal,
sent to motor neurons of biological looking systems.

The orange shaded rectangle in Fig. 1 depicts the retino-
topic saccadic circuit, which implements an autonomous
adaptation of the gain maps between the visual target
representation and the motor commands. The gain maps
generate correct amplitudes of the motor signal for the two
motors of the robot (pan and tilt motors of the camera head),
based on the location of the visual input in the retinal target
DNF and the pose of the camera head before the saccade,
stored in the gaze memory DNF.

An error-estimation module estimates the sign and am-
plitude of error of a saccadic gaze shift based on inputs
from the retinal target DNF, which holds the initial position
of the target in the retinal reference frame, and the visual
perception DNF, which holds the position of the target in the
same reference frame after the saccade. The identity of the
target is determined by the color, stored in the color fields
before the saccade, which biases the visual perception DNF
to only be sensitive to objects of the stored color (this bias
is weak, however). The error is estimated in terms of the
saccade being too long or too short in the two directions
of the visual space and respectively decreases or increases
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the values, stored in the gain map (a simple neural-dynamic
circuit performs this estimation, see section III-D for the
formula). The gain map update is performed at locations,
which correspond to the original retinal position of the target
(link from the retinal target DNF) and the pose of the camera
head before the saccade (link from the gaze memory DNF).

The main contribution of this paper are modifications to
the parts of the architecture, marked orange and green in
Fig. 1. These structures enable the system to generate a
sequence of memory saccades and, moreover, switch from
the retina-based memory saccades (which are typical for
young infants) to allocentric, or spatiotopic, saccades, which
characterise looking behaviour of adults (and lead to correct
double-step saccades). Further, we describe these retinotopic
and allocentric (gaze-based) pathways, whereas parts of
the architecture introduced so far are shared by the two
pathways.

B. The retinotopic pathway

In the retinotopic pathway (orange arrows and boxes in
Fig. 1), the retinal multipeak DNF creates a multi peak
representation of two or more objects, presented to the
system sequentially (or selected sequentially by a saliency-
based exploration mechanisms, not shown here). The serial
order working memory preshape dynamics builds memory
traces of the objects, represented in the retinal multipeak
DNF. In particular, the traces of objects, stored earlier,
have more time to build-up a memory trace and thus their
representation is stronger in the serial order WM. This
mechanism is computationally equivalent to item and order
working memory, originally introduced by Grossberg [21].
Input from the serial order WM biases a sequential selection
of the presented objects in the retinal target DNF. The
representation of the selected object is stabilised and self-
sustained in this DNF, representing the single target of the
upcoming saccade during the eye movement and the fixation
period.

For a retinotopic saccade, an activity peak in the retinal
target DNF triggers a saccade generator circuit, activating
the initiate node. When the first saccade is finished, the
retinal target DNF is inhibited by the end-of-fixation node
and the self-sustained peak in this field decays. A cascade of
instabilities in several nodes follows (the initiation node, re-
set node, end-of-saccade node, fixation, and end-of-fixation
nodes), which eventually releases inhibition on the retinal
target DNF. The next target is selected based on the serial
order WM and the retinal multipeak DNF. In the latter field,
the representation of the first target object has ceased during
the saccade because of the localised inhibition from the
retinal target DNF (inhibition of return). The second saccade
may be performed now based on the same principle, which
results in a sequence of retinotopic saccades, the second of
which misses the target, since its retinal representation is no
longer valid after the first saccade.

C. The allocentric pathway

Since retinotopic saccades lead to errors when performing
more than one saccade from memory, an alternative path
gets recruited, in which the representation of the second tar-
get does not loose its validity after intermediate saccade(s).
In our model, we use a gaze-based target representation
to enable memory saccades. In particular, the locations
of targets are stored in terms of the gaze-angles, which
characterise the camera pose when the robot is fixating the
objects. Using this representation, the saccade towards the
target may be initiated from any initial pose, i.e. after any
number of intermediate saccades. The same representation
is used in our architecture to store long-term memory of the
observed scene. However, to enable memory saccades (e.g.,
as performed in the double-step paradigm), the pose of the
camera (eye) after the saccade has to be inferred, or pre-
dicted, without performing the actual gaze-shift movement.

The gaze-based target representation is shown in the green
shaded region in Fig. 1. The motor command integrator
integrates the velocity signal internally starting with the
current gaze pose of the motors, instead of letting this
command drive the motors. The integrated motor signal
creates an activity peak in the gaze planning DNF at a
location, which corresponds to the gaze angle of the camera
head when it would fixate the object. This rate-to-space code
transformation1 is accomplished by a mechanism, equivalent
to summing-up an input from a set of nodes, sensitive to
different value ranges of the integrated motor signal (this
transformation may also be subject to adaptation, which
however, was not needed in our setting). The resulting gaze
angles are stored in the gaze planning DNF for all objects,
which the system will look at, whereas internally simulated
“looking acts” are generated using the same circuitry as for
the retina-based saccades (the retinal target DNF activated
the saccade generating circuit here).

The serial order WM in the gaze-based pathway, similarly
as in the retinal pathway, creates graded activation levels
for objects, which are put into the gaze planning DNF in
a sequence. The gaze target DNF selects the least recent
object and stabilises this selection decision, while the gaze
exploration DNF weakens the respective location for the
next target selection (the gaze target DNF is inhibited after
the actually executed saccade by the end of fixation node).
The gaze target DNF builds the activity peak when the
system is allowed to generate gaze shifts (go input). An
activity peak in the gaze target DNF activates the difference
command generation module, which subtracts the target
gaze from the current gaze of the camera system. The
generated difference value scales the saccade generator’s
output to generate a precise gaze-based saccade. Since the
memory for saccade targets is held in motor coordinates,
which are independent of the pose of the retina during
planning, a sequence of correct saccades follows.

1From a single value of the integrator, which is equivalent to a rate-
code representation in neuronal terms, to a DNF space-code representation,
in which location of the (maximal) activation represents the encoded value.
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D. Learning the gain maps and saccade generation: a
mathematical formalization

The learning mechanism, which updates the Gain maps
between the visual (retinal) representation of the saccadic
target and the amplitude of the velocity profile, amounts to
an adaptation equation, Eq. 3.

τlĠh,v(t;x,y,k, l) = cEoS(t)Sx,y
err(t) ·

· [ f (uTar(t;x,y))× f (u0
gaze(t;k, l))].(3)

Here, Gh,v(t;x,y,k, l) is a matrix of gain values, defined over
the dimensions of the retinal space (x,y) and the space of
initial gazes (k,l) (initial pan and tilt of the camera); t is
time, τl is the time-constant scaling the learning progress.
The two four-dimensional gain maps, Gh,v, scale amplitudes
of the horizontal and vertical eye (camera) movements re-
spectively. cEoS(t) = f (uEOS(t)) is the output of the end-of-
saccade node, which signals accomplishment of a saccadic
eye movement (“condition of satisfaction” of this movement,
[22]); f (uTar(t;x,y)) is the output of the sustained target
DNF, f (u0

gaze(t;k, l)) is the output of the gaze memory DNF,
which holds the memory of the eye position prior to the
saccade. The (Kronecker) product of the outputs of these
fields implements the selection of the region of the gain
map, in which learning (update) is active: the region, where
the DNFs’ positive activations overlap. Sx,y

err(t) is the (retinal)
error signal, which is estimated in two directions based on
the (stored in the sustained activation of the retinal target
DNF) retinal position of the saccadic target and the position
of this target after the saccade, according to Eq. (4) (only x
component is shown here):

Sx
err(t) = c · sign

[∫
(x− xCF) f (uTar(t;x,y)dxdy ·

·
∫
(x− xCF)Iperc(t;x,y,)dxdy

]
. (4)

According to this equation, the error signal is positive, if
activity peaks in the target, uTar, and perceptual, Iperc, DNFs
are located in the same half of these DNFs (defined by
the central position, xCF ), and are negative otherwise. The
amplitude of the error signal is proportional to the offset of
the activity peak in the perceptual DNF (e.g. retinal target
location after the saccade) from the center of visual field. c
is a scaling factor.

The velocity signal, vh,v(t) sent to the two motors of the
robot is calculated based on Eq. 5:

vh,v(t) = N f (uburst(t))
∫

x,y,k,l

((
f (uTar(t;x,y))×

× f (u0
gaze(t;k, l))

)
◦Gh,v(t;x,y,k, l)

)
dxdydkdl.(5)

Here, f (uburst(t)) is the output of the burst node of the
saccade generation circuit (see Fig. 1). ◦ denotes an en-
trywise product, the rest of the notation is the same as
in Eq. (3). In Eq. 5, the velocity signal is scaled with
the normalised sum of the values in the gain maps over

the region, defined by the positive activation in the retinal
target DNF and the gaze memory DNF, which effectively
corresponds to reading out an average value in the gain
map in the region, defined by the positive activation in
the uTar and u0

gaze DNFs. The normalisation factor N =

(
∫

f (uTar(t;x,y))dxdy
∫

f (u0
gaze(t;k, l)dkdl)−1.

IV. RESULTS OF SIMULATED EXPERIMENTS

Gain maps for pan Gain maps for tilt

Fig. 2: A slice of each of the two 4D gain maps for the
initial pose (0, π

4 ) at different time-points during learning.
The color coding of the gain maps corresponds to [-0.5, 2.5].

A. Gain maps learning

Recently, we have demonstrated how the presented archi-
tecture is capable of learning to perform precise saccades
and to adapt to changes in the environment or in the
sensorimotor plant [11]. Here, we modified the learning
processes by initialising the gain maps with small random
numbers and simulating a more natural learning process,
in which the maps are learned in a less controlled learning
session. Fig. 2 shows the gain maps, learned by the modified
system. To learn the maps, an object was randomly placed
in front of the robot in such a way that over several trials the
whole workspace was sampled: both the visual space and the
space of initial poses of the camera head. When the target
object was selected and stabilised in the retinal target DNF,
a saccade was generated, which, however, in the beginning
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of the learning process did not bring the target object to the
center of visual field. The retinal error was detected and its
sign and magnitude were determined in the error estimation
module for each of the two dimensions of the retinal space.
The gain maps were adjusted accordingly.

In the figure, you can see how the structure emerges in
two of the gain maps (one for the pan and one for the
tilt motors of the robot). The shown maps correspond to
the following initial pose of the camera head before each
saccade: pan = 0 and tilt = π

4 (the overall motor space was
sampled in the range of pan = [−π , π] and tilt = [0, π

2 ]).
Note the curved shape of the mappings, which results from
non-linearity of the sensorimotor transformation from the
image space to the space of motor poses of the camera head.

B. Formation of motor-based representation

Snapshot 1: before first gaze

Snapshot 2: after gaze 1 

Snapshot 3: after gaze 2 

Snapshot 4: after gaze 3 

Fig. 3: The simulated robotic setup during memory forma-
tion.

Fig. 3 shows the simulated robot and the scene, rendered
by its camera. The three objects are fixated by the robot
sequentially, driven by the saliency of the color blobs and a
habituation dynamics, which makes the color of the previ-
ously fixated objects less attractive for further fixations. The
allocentric (gaze-based) scene representation, stored in the
gaze-color memory DNF, for this scene is shown in Fig. 4.

Only the spatial projection of the memory DNF is shown
here. Each activity “bump” (red region in Fig. 4) is located
in the third, color, dimension of this three-dimensional DNF
according to the perceived color of the respective object.

Gaze-based scene memory: spatial projection

tilt, motor units

pa
n,

 m
ot

or
 u

ni
ts

Fig. 4: The gaze-based memory for the visual scene.

C. Double-step saccades

The retinotopic pathway (orange in Fig. 1), after learn-
ing the gain maps, leads to precise saccades to visually
perceived targets (see Fig. 3). Even for these visually-
driven saccades, the non-retinal information is used, since
selection of the correct gain map relies on the proprioceptive
information about the gaze direction prior to the saccade2.
However, the output of the gain maps encodes the saccade
amplitude implicitly, by defining the peak velocity of the
movement (remember that the output of the gain map serves
as a scaling factor for the oscillation, generated by the
saccade generator and that the motor signal is the velocity
signal). Thus, this representation does not automatically lead
to correct saccades from memory. In particular, if two targets
are stored in the retinotopic representation (i.e. in the retinal
multipeak DNF in our model), the location of the second
target has to be updated after the saccade to the first target.

The green pathway in Fig. 1 performs such an update.
Moreover, in this pathway the targets of all saccades (includ-
ing the first one) are stored in a gaze-based representation.
The motor signal generated by the retinotopic pathway, in
this case, does not go to the motors of the robot, but is
instead integrated internally and the integrated value is used
to predict the pose of the eye, which it would have if the
eye movement were executed. This pose is stored in the gaze
planning DNF. Moreover, a number of future targets may be
stored in this field sequentially, as described in Section III-C.
When the system is allowed to perform eye movements,
the gaze-based target representation is used to derive the
amplitude of the movement based on the sustained target
representation in gaze coordinates and the current position
of the eye, expressed in the same coordinates, as delivered
by the proprioceptive inputs. The resulting activation is used
to scale the output of the saccadic time-profile generator, the

2The gain maps in the Fig. 2 look differently for different initial gaze
directions of the camera head because of the geometry of the robot; similar
effect is caused by the anatomy of eye muscles in biological systems
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initiation node of which is now activated by the gaze target
DNF.

Fig. 5 shows traces of two saccades, performed using the
retinal frame of reference (top), and using the gaze-based
reference frame (bottom). The locations of objects, used in
this experiment are shown as red circles in the figure.
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(a) Retina-memory saccades (‘young model’).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
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(b) Motor-memory saccades (‘older model’).

Fig. 5: Projection on the table-top surface of the gaze-angles
of the camera during the two saccades in the simulated
double-step experiment

V. CONCLUSION

In this paper, we have further explored capabilities of
the recently introduced neural-dynamic model for generation
of adaptive looking behaviour. The emphasis here was on
formation of gaze-based memory and generation of memory
saccades, which requires an allocentric representation of the
visual targets. We have incorporated both retinotopic and
gaze-based pathways in our model, which allows to use
this model to study the developmental process, leading to
more frequent and fast recruitment of the more allocentric
representations in generation of saccadic eye movements
and other object-directed actions. We used integration of
the motor signal and creation of an anticipatory motor
representation to create a gaze-direction independent target
representation.
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