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Abstract. Looking is one of the basic sensorimotor behaviours, which entails rep-
resentation of the visually perceived target and transformation of this representation
in a motor signal, which moves the eye to center the target object in the field of view.
Looking facilitates memory formation, bringing objects into the portion of the reti-
nal space with a higher resolution. It also helps to align the internal representations
of space with the physical environment. In this chapter, we present a neural-dynamic
architecture, which integrates several processes, involved in looking, such as target
selection, generation of motor signal, adaptation of gaze shift’s amplitude, memory
formation, scene exploration, and the coordinate transformations. We demonstrate
the functioning of the architecture on a simulated robotic agent and provide a dis-
cussion of its implications in terms of neural-dynamic and cognitive modelling.

1 Introduction

When we look around a room, we don’t even notice our own fast and frequent
gaze shifts - saccades, - which scan the environment around us, bringing potentially
interesting portions of visual input into our fovea for detailed examination. We,
instead, have an illusion of a continuous perception of the room and objects in it,
ready to be acted upon. We can direct actions at objects around us based on our
memory, collected in the fixation periods between discrete saccadic eye movements.
How does our neural system accomplish this task? This question has been asked for
decades now [2, 12]. How may we build an artificial looking system with similar
properties?

Let us follow the processes involved in looking and which our neural system
uses to derive a useful representation of the body’s surroundings from a sequence
of saccades. First, the luminance of light, reflected from objects around us, induces

Yulia Sandamirskaya · Tobias Storck
Insititut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany
e-mail: {yulia.sandamirskaya,tobias.storck}@ini.rub.de

c⃝ Springer International Publishing Switzerland 2015 175
P. Koprinkova-Hristova et al. (eds.), Artificial Neural Networks,
Springer Series in Bio-/Neuroinformatics 4, DOI: 10.1007/978-3-319-09903-3_9



176 Y. Sandamirskaya and T. Storck

activity patterns on the retina of our eyes. This activity is projected onto the visual
cortex and subcortical structures, in which the neuronal attentional mechanisms se-
lect a single target for the next saccade. Next, the precise and fast eye movement is
generated and brings the interesting part of the visual input into the fovea. Falling
onto the fovea, the features of the visual patch may be examined at a better resolution
and the identity of the object in this location may be recognised. Moreover, at this
moment, the location of the visual patch has to be stored in a useful way, i.e. so that
it may be fused with information, collected from previous and upcoming fixations.

Several parts of this process have been examined experimentally, and both neu-
rologically and behaviourally realistic models were developed. Despite the seeming
simplicity of the looking system1, the neural circuitry involved in saccades genera-
tion has an immense complexity. For instance, the selection of the saccade’s target
involves attentional processes, which include both bottom-up, saliency-based com-
putation [17], and top-down influence of context, presence of distractors and alterna-
tive targets, memory, or task cues. The generation of a saccade towards the selected
target, in its turn, is not trivial, since the variability in the neuromuscular system
of the eye calls for a permanently running calibration process between the retinal
frame of reference and the motor system [5, 15, 24]. Such calibration processes
related to the control of gaze-shifts were found in cerebellar cortex and are hypoth-
esised to be modulated by reward-related basal ganglia loops. Finally, the reference
frame transformations between retinotopic, gaze-centred, head-, and body-centred
coordinates are needed to fuse information between saccades, to generate saccades
to remembered targets if intermediate saccades are involved (double-step saccades),
as well as to directed, e.g., arm movements towards visually perceived targets. These
processes are hypothesised to be located in the prefrontal cortex [9].

As summarized by Girard and Berthoz [13], several cortical and subcortical re-
gions are involved in generation of the saccadic eye movements (or gaze shifts)
in humans and primates. Each of these regions, in its turn, has a complex struc-
ture and the modelling and experimental work on untangling these structures – tak-
ing into account the behavioural and neurophisiological data – is far from being
complete yet.

In this paper, we show how a neural-dynamic framework, based on Dynamic
Field Theory, allows to implement an embodied, dynamic, autonomous, and adap-
tive model for looking behavior. We demonstrate the properties and function of the
model by implementing the neural-dynamic architecture on an embodied (here, sim-
ulated) robotic agent, connecting its sensors (camera) and motors to the architecture.
We introduce visual scenes to the robotic camera and observe the behaviour – both
of the network and of the simulated robotic hardware. This approach enables a tight
integration between modelling and behaviour analysis, linking the neural, architec-
tural level with the behavioural level.

Our model integrates several functional components, which evolve around look-
ing behaviour. In particular, the agent is able to calibrate itself and learns to look
at objects based on a vision-based error-estimation module. The agent is able to

1 Looking is probably the most basic behaviour, which arises on the intersection between
the sensory input and motor control; compare it with arm movements, for instance.
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adapt to abrupt changes in the sensorimotor plant or in the environment, as demon-
strated in adaptation experiments. Moreover, the robot builds a memory of the ob-
served scene, which integrates the feature information about the objects in the scene
with spatial information. A transformation to a body-centred reference frame is per-
formed to make memory independent of the current gaze direction of the camera.
We deal with exploration of a scene and inhibition of return, which allows to scan
the scene with several objects with different saliency. We demonstrate memory and
double-step saccades, as well as simulate an experiment on saccadic adaptation.

Certainly, the model does not address all issues and does not tackle all problems,
involved in understanding the saccade generating circuitry. However, it makes an
important step towards this understanding, by, first, testing a framework, in which
neuronal mechanisms may result in real world behaviour, bridging the mechanistic
and behavioural levels. Critically, in this framework, the modelled neural circuitry
may be simulated continuously in time and may be linked to noisy and varying real-
world sensory inputs and effectors. Second, the framework allows to integrate many
functional modules and thus study the saccadic system as a whole, in an integrative
framework, instead of looking at its subsystems in isolation. Such a ‘wholistic’ ap-
proach provides additional constraints for modelling, which are set by considering
the system as a whole, instead of looking at it as a sum of its components. Finally,
the functionally-driven approach allows to look beyond a mechanistic devision of
the saccadic system according to neurophysiological units, found in the brain, and
allows to consider solutions, in which particular function is served by several such
units and is not localised to a particular brain structure. We believe that such func-
tional models will ultimately shed light on how the brain solves the problem of
generating precise saccades.

The model, presented here, is not claimed to be complete and we also didn’t aim
at relating its elements to the neuronal structures, although such mapping will be ex-
emplarily done in the discussion, but is an initial presentation of the neural-dynamic
modelling framework with, hopefully persuasive, demonstration of its power to un-
derstand the neural circuitry in behavioral terms. The architecture may also have
technical application, being a proof-of-concept demonstration of a self-calibrating
robotic system, similar to a model presented in [3], but with an increased auton-
omy, which learns to look at objects in its environment and autonomously update
the involved internal sensorimotor mappings when needed.

2 Methods

The architecture for generation of adaptive looking behaviour, which we present
in this chapter, is built within Dynamic Field Theory (DFT) – a mathematical and
conceptual framework for modelling cognition based on population-level descrip-
tions of neuronal dynamics [1, 33]. In DFT, continuous activation functions, called
Dynamic Neural Fields (DNFs), represent different perceptual and motor variables,
critical for behaviour of an embodied agent. The DNFs may be coupled through
mappings, analogous to weight matrixes of neural networks, which are subject for
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adaptation and learning. Critically, DNFs follow the dynamics, which allows for
localised attractor patterns – peaks of activity, which make DNF architectures be-
haviourally robust – the behaviourally relevant states of the dynamics correspond to
attractors and thus the correct behaviour may be guaranteed.

Here, we present the main functional and structural units of DFT, used in the
architecture, whereas a more thorough discussion of the DFT framework may be
found in [32, 29].

2.1 Dynamic Neural Fields

Dynamic Neural Fields describe activity of populations of biological neurons in
terms of continuous functions, defined over behavioural parameters, to which the
neurons are sensitive. These continuous functions are descriptions, which abstract
away the discrete nature of individual neurons, as well as the spiking character
of their activity. A differential equation (1) specifies how the activation functions
evolve in time in DFT, as analysed by [42, 14, 1].

τ u̇(x, t) = − u(x, t)+ h+
∫

f (u(x′, t))ω(|x′ − x|)dx′+ I(x, t). (1)

In Eq. (1), u(x, t) is the activation of a dynamic neural field (DNF) at time t; x is
one or several behavioral parameters (e.g., color, pitch, space, or velocity), over
which the DNF is spanned; τ is the relaxation time-constant of the dynamics; h is
the negative resting level, which defines the activation threshold of the field; f (·)
is the sigmoidal non-linearity shaping the output of the neural field when it is con-
nected to other fields or self-connected; the self-connections of DNFs are shaped by
a Mexican hat lateral interaction kernel, ω(|x′ − x|), with a short-range excitation
and a long-range inhibition; I(x, t) is the external input to the DNF from the sensory
systems or other DNFs.

Equation (1) defines an attractor for the activation function, which is determined
by the external input, I(x, t), the resting level of the field, h, and the lateral interac-
tions, specified by the kernel, ω(|x−x′|). Critically in the DFT framework, a distinc-
tive type attractor of a DNF is a localized activity peak, which may be “pulled up”
by the lateral interactions from a distributed input with inhomogeneities. Such peaks
of activation are units of representation in Dynamic Field Theory [33]. Because of
the stability and attractor properties of the DNF dynamics, cognitive models formu-
lated in DFT may be coupled to real robotic motors and sensors and were shown
to generate cognitive behavior in autonomous robots [32, 6]. In particular, activity
peaks stabilise decisions about detection of a salient object in the visual input and
selection among alternatives, the stabilised representations are critical to linking to
motor control and performing cognitive operations on representations [29].
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2.2 Autonomous Control in DNF Architectures

A single DNF converges to an attractor – one or several localised activity peak(s) –
in response to its inputs and would stay in this state unless inputs change, bringing
about a different attractor. In this “passive” mode, a DNF could serve as a detec-
tion mechanisms, but wouldn’t be able to autonomously control actions of an agent.
To overcome this limitation, the DFT framework has been extended recently with
dynamical structures, which enable activation and deactivation of DNFs depend-
ing not only on the sensory inputs, but also on the cognitive task, which the agent
faces [31, 27]. These dynamical structures are zero-dimensional DNFs, or dynami-
cal nodes, with an activation following the Equation (2).

τ ṅ(t) = − n(t)+ h+ c f (n(t))+ I(t). (2)

The dynamics of activation function n(t) of a dynamical node is equivalent to
dynamics of a zero-dimensional DNF. This dynamics is bi-stable: the node can be
in an active (i.e., activation is above the threshold, defined by the sigmoidal output
function f ) or in an inactive state. An active state may be sustained event if the ex-
ternal input, I(t), which initially activated the node, decreases below the activating
levels. The self-excitatory term with a strength c accounts for this behavior. If the
self-excitation parameter is high enough, the node may stay active even if the ini-
tial input, which caused its activation, ceases completely. In this case, an external
inhibitory input is needed to deactivate the node.

For autonomous control of DNFs, two such nodes are introduced for every ele-
mentary (cognitive) behaviour in the agent’s repertory: an intention node activates
DNFs, which bring about a particular (motor or intrinsic) action, and a condition
of satisfaction node is activated when the desired action outcome is perceived to be
achieved and the intention can be inhibited [30].

In our looking architecture, these nodes play an important role in starting and
finishing different phases of the gaze shift – the saccade initiation and termination,
activation of the fixation, learning, and memory formation processes.

2.3 Learning with DNFs

The basic learning mechanism in the DFT is the formation of memory traces of
positive activation of a DNF [41]. The memory trace – called preshape in DFT –
is a dynamical layer, which receives input from the respective DNF and projects
its output back to this DNF. The memory trace projection facilitates activation of
the DNF at previously activated locations (positive preshape), or inhibits DNF at
previously activated location (negative preshape, which accounts for habituation and
exploration). The preshape layer follows the equation (3), [29].

τl Ṗ(x, t) = λbuild

(
−P(x, t)+ f

(
u(x, t)

))
f
(
u(x, t)

)
−

−λdecayP(x, t)
(

1− f
(
u(x, t)

))
. (3)
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Here, P(x, t) is the strength of the memory trace at site x of the DNF with activity
u(x, t) and output f

(
u(x, t)

)
, λbuild and λdecay are the rates of build-up and decay

of the memory trace. The build-up of the memory trace is active on the sites with
a high positive output f

(
u(x, t)

)
, the decay is active on the sites with a low output.

The memory trace P(x, t) is an additive input to the DNF dynamics.
Two DNFs may be coupled through a higher-dimensional memory structure, sim-

ilar to a weight matrix in the standard neural networks. In DFT, such weight matrix
is adapted through the mechanism of memory trace formation, which is in this case
equivalent to a Hebbian learning process. The coupling is strengthen between loca-
tions in two DNFs, which are activated simultaneously, according to Equation (4).

τẆ (x,y, t) = ε(t)
(
−W(x,y, t)+ f (u1(x, t))× f (u2(y, t))

)
·

·
(

f (u1(x, t))× f (u2(y, t))
)
. (4)

Here, the weights function, W(x, y, t), which couples two DNFs, u1(x, t) and u2(y, t)
has an attractor at the intersection between positive outputs of the DNFs. The in-
tersection is computed as a sum between the output of u1, expanded along the di-
mensions of the u2, and the output of the u2, expanded in the dimensions of the u1,
augmented with a sigmoidal threshold function (this neural-dynamic equivalent to
the Kronecker product is denoted by the × symbol). Learning is only active at the
intersection of the active regions in fields u1(x, t) and u2(y, t) to prevent spontaneous
forgetting of previously learned associations. The shunting term ε(t) limits learning
to time intervals, specified by the autonomous control of the overall architecture, as
will be exemplified in our model.

The learning process is functionally robust if the coupling is updated only when
the two input DNFs are in a correct, behaviourally meaningful, state. In the looking
architecture, presented here, we combine the elements of intentionality with learn-
ing dynamics to demonstrate how the sensorimotor mapping, involved in looking
behaviour, may be autonomously learned.

2.4 DFT in Modelling Saccade Generation

In our work, we rely on several properties of DFT, which already have been probed
in modelling certain aspects of saccades, in particular the target selection and time
course of decision making in saccade preparation. The following models are par-
ticularly relevant to our work, since they use the same mathematical model for the
layer, which performs selection of saccadic targets and thus our model “inherits”
the properties, established for this layer.

The first model, which used a dynamic neural field as a layer for target selection
in a saccades generation system was introduced by Kopecz and colleagues [18]. The
planned eye movement was represented in a neural field with visual and task-related
(pre-) input converging on this field. The model could account for a transition from
averaging between two presented targets to precise saccades to one of the two targets
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depending on the distance between the targets and the strength of the memory for the
two locations from preceding saccades. The architecture features an active fixation
system, similar to the one we use in our model.

The effects of lateral interactions in superior colliculus (SC) on the saccade re-
action time were studied by Trappenberg and colleagues [38] in their work, which
provides a link between behavioural studies of saccade generation and the underly-
ing neural substrate. This model considers integration of different input sources for
the selection of a single target in SC with a dynamic neural field and may account for
experimentally observed delays in saccade initiation. Behavior of the model closely
resembles activity of neurons and the model can account for many observations
related to saccade initiation.

Willimzig et al [40] has also studied the time-course of saccadic decision making
within dynamic field theory. To initiate a saccade, the system has to overcome fix-
ation, which may be more or less difficult depending on the fixated object and the
overall scene. The transition from fast averaging saccades to more time-lagged se-
lective saccades is again demonstrated here using DNF layer for target selection. A
similar DNF framework for movement representation was used in modelling prepa-
ration of arm movements [7].

These previous models have demonstrated the power of DFT in preparation and
planning of saccades. Here, we extend these models to an architecture, which may
actually realise the planned saccades, check for their accuracy, and adapt saccades’
amplitude if needed.

3 The Model

3.1 The Overall Architecture for Looking

Figure 1 depicts the overall architecture for looking. It is a fairly complex network,
since it accomplishes several functions apart from generating gaze shifts towards vi-
sually perceived targets. The architecture may be described in terms of the following
interconnected modules. The perception module integrates over time and stabilises
the visual input from a simulated robotic camera, as well as the proprioceptive input
from the motor system of the simulated robotic agent. The precise saccades to the
visually perceived targets are generated in the saccade generator system. The am-
plitude of the saccades for every retinal position and current gaze angle is learned
in a set of gain maps within the learning module. There is one set of gain maps
for each of the two motors of the robot. Next, the fixation system tracks the object
between successive saccades and triggers memory processes in the memory system,
which, on the one hand, steers exploration of the scene, decreasing the competitive
advantage of those object in the scene, which are already put to memory, and, on the
other hand, creates an allocentric representation of the objects in the scene, which
can be used to generate saccades from memory, double step saccades (using the
planning saccades system), or arm movements towards the target. Next, we will
walk through the most important parts of this architecture, explaining how different
functions of the network are brought about.
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Fig. 1 The overall architecture

3.2 Perception

The perceptual system consists of a three-dimensional visual perception DNF,
which spans the dimensions of color and the retinotopic space (modelled to be a
cartesian space here, but a polar version with foveal expansion is possible as well).
The RGB output of the robotic camera is split into three color channels – hue, satu-
ration, and value. The saturation channel is used to perform the basic figure-ground
segregation and create a course saliency map, which highlights regions in the visual
space, for which the hue value is extracted and input to the visual perception DNF.
The hue (color) dimension is additionally stabilised by a coupled one-dimensional
color DNF. The visual perception DNF requires this supporting input to form a sta-
bilised activity peak over a selected object in the scene. This support from the color
field is suppressed for objects, which are already stored in memory. Thus, such ob-
jects have a disadvantage in the competition to be selected for the next looking act2.

The center of visual field is another three-dimensional DNF, which receives in-
put from the central portion of the camera image. This field may only build activity
peaks from the camera input when the fixation node is active and provides an addi-
tional boost to this DNF (i.e., raises its resting level), signalling that a saccadic gaze
shift has been finished. An activity peak in the center of visual field DNF activates

2 This ‘habituation’ happens along color dimension, but habituation along retinal space is
also possible [36], both processes have to be balanced to account for human looking data.
Here, we keep this system simple since accounting for experimental data is not the focus
of the work reported here.
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two processes in the architecture: memory formation and smooth pursuit dynamics,
briefly described in the next section.

The gaze perception DNF receives input from the motor system of the robotic
agent and represents the current proprioceptive state of the motor system.

3.3 Motor Control

The motor system of the agent consists of two motorised joints – the pan and tilt
joints of the camera-head unit. The pan joint corresponds to rotation of the camera
head around the vertical axis between the two cameras of our robot (only one of
the cameras was used in this work; the camera’s optical axis is not crossing the
axis of the pan joint). The tilt joint corresponds to the incline of the camera – a
rotation around the horizontal axis (which is also not aligned with the image plane
of the cameras). Note that the arrangement of the motor rotation axes and the camera
image provides for a non-linear mapping between the reference frame of the camera
image (‘retinal’ reference frame) and the reference frame of the motor system.

The two motors – the pan and tilt motors – are servo motors, which may receive
both position and rotation speed commands. We have used speed control in this work
to make the motor system somewhat confirm with the biological motor systems
(still, buying into significant simplifications compared to muscle control). The two
motors coarsely correspond to the horizontal and vertical control of the eye. The
rotation of the eye-ball was not modelled here.

During saccades, the saccade generator system sends velocity commands directly
to the two motors of the camera head. During smooth pursuit movement, a dynam-
ical system, which has an attractor at the visually perceived target, provides the
velocity input for the two motors and performs visual servoying around the target
object. The visual servoying towards the target is not possible during saccadic gaze
shifts, since they are performed too fast for the visual processing to influence their
course.

Next, we will describe the system, which may generate correct velocity com-
mands based on the visual perception of the target in the retinal frame of reference.

3.4 Saccade Generator

Since the saccades (in humans and primates) are very fast movements3, the neural
system needs to generate the complete velocity profile, which will bring the eye’s
fovea onto the target. In our architecture, this velocity profile is generated by a neu-
ral oscillator, as described next. In particular, the neural oscillator is part of a central
control unit, which generates the saccades gaze shifts and controls the temporal
dynamics of the overall architecture. This unit consists of six dynamical nodes, de-
picted in Figure 2.

3 Which ecologically makes sense, to minimise the time when the eye moves and both vision
and calibration with the outside world are disturbed.
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Fig. 2 A neural circuit, which generates the gaze-shift velocity profile. Grey shaded circles
denote the six central nodes, which control gaze shift generation. Black arrows show exci-
tatory connections between the nodes, lines with filled circles – the inhibitory connections.
Blue arrows are outputs of the system to other parts of the architecture, red arrows are inputs
to the nodes structure.

The burst and reset nodes constitute the neural oscillator. If a constant input is
provided to the burst node, this pair of nodes gets activated and deactivated in al-
ternation: the burst node activates the reset node, which in its turn deactivates the
burst node and consequently looses its own activation, and the cycle repeats. In our
setting, however, this system, generates a single “oscillation” in the following way.
The reset node is lifted to be self-sustained by the input from the visual target field
and only looses its activation when the whole gaze-shift action is finished (i.e. when
the visual target field is inhibited by the end-of-fixation node). The active reset node
keeps the burst node inhibited until a new target is selected for the gaze shift.

Activation of the burst node drives the motor system of the agent by sending ve-
locity commands to both the pan and tilt motors. The amplitude of the burst specifies
the peak velocity of the gaze shift and, implicitly, its amplitude. The busts’s ampli-
tude is set by the adaptive gain maps – one for the horizontal movement, generated
by the pan motor, and one for the vertical movement, generated by the tilt motor.
The adaptive dynamics of the gain maps will be presented in Section 3.5.

The burst node is activated by the initiate gaze shift node, which is effectively
the intention node of the gaze shift behaviour. The end-of-burst node detects when
one burst is finished and activates the fixation node, which, eventually, drives the
fixation and the smooth pursuit systems of the architecture. When the fixation sys-
tem brings the object in the center of the visual field and the memory for this object
is updated, the end-of-fixation node is activated and resets the gaze shift elementary
behaviour by inhibiting the visual target field, which provided the initial input to this
system.

Figure 3 shows the time-course of activation of the five nodes from Figure 2 for
two subsequent gaze shifts, demonstrating how the autonomous organisation of the
architecture works – like a clock, turned on by the target field when a new target to
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Fig. 3 A sequence of two gaze shifts, each consisting of a saccadic part, driven by the Burst
node (red line shows sigmoided activation of the Burst node), and a fixation part, in which the
target object is tracked, memory is formed, and adaptation is performed if needed (magenta
line shows activation of the Fixation node), the gaze shift is finished when the End-of-fixation
node is activated (dashed black line) and the Reset node (green line) is inhibited, releasing
the Burst node from inhibition, which may now generate the next saccade.

look at is detected and turned off by the fixation dynamics, when the target is centred
in the camera’s view and its location and features (color) are stored in memory.

3.5 Saccade Amplitude and Gain Maps

The peak velocity of the saccadic gaze shift is defined by the values, stored in the
gain maps, which are initially learned and are constantly adapted in a learning pro-
cess after each gaze shift. Each gain map is defined over the same space as the visual
target DNF – the retinotopic (here, camera image) space. There is one gain map for
each starting gaze angle, i.e. for every possible state of the eye (here, of the camera
motors). This means that the gain map is a four-dimensional structure, with two vi-
sual (retinal) dimensions and two motor dimensions. Further, there is one such map
associated with each of the motors of the system (the pan and tilt motors).

The maps control the precise vector of the saccadic gaze shift as follows. The
output of the visual target field is multiplied with a slice of the four-dimensional
gain map, selected by the currently perceived (before the gaze shift) gaze position
(the pan and tilt values stored in the gaze memory DNF). When a peak is built in the
visual target field, this multiplication effectively selects a region on the gain map,
which is specified by the location of the activity peak in the visual target field. Thus,
the gain maps function as synaptic weights between the visual target field and the
circuitry, which generates motor commands. Moreover, these synaptic weights are
modulated by the input, which specifies the gaze angle before the saccade. Formally,
the gain maps constitute a tuneable (or steerable) map between the retinal and the
motor frames of reference [9]. The result of the multiplication of the output of the
visual target field with the gain map is integrated and is connected to the output of



186 Y. Sandamirskaya and T. Storck

the saccade generator system (Figure 2), amplifying the amplitude of the burst of
the neural oscillator. Figure 4 illustrates this process.

Perceptual DNF (2D projection) Visual Target DNF

Selected gain map 
(horizontal)

Selected gain map 
(vertical)

time

time

speed hor.

speed vert.

Saccade generation circuit

Fig. 4 Circuitry to generate saccades with a precise amplitude

The gain maps are initially homogeneous – all values in them are set to ones.
When a visually perceived target appears in this state, a saccade is generated with
such an amplitude in both motors that does not bring the target object into the central
portion of the camera image (retina). Thus, the fixation system does not get engaged,
but the error estimation module is activated and estimates whether the saccade was
too long or too short (too far / to close module in Figure 1) in each of the four direc-
tion in the image: left, right, up, and down (corresponding to four direction of the
eye movements’ ‘synergies’). The learning mechanism of Equation (5) updates the
gain map at the position, which corresponds to the active region of the visual target
field and the gaze angle before the saccade. The direction of adaptation (increase
of decrease of the values in the selected region of the gain map) is defined by the
output of the error estimation module.

τl Ġh,v(x,y,k, l, t) = εh,v(t) f (uEoS(t))
(

f (um(k, l, t))× f (utar(x,y, t))
)
. (5)

Here, Gh,v(x,y,k, l, t) are two sets of gain maps (for the ‘horizontal’ and ‘vertical’
components of movement). Each of the k× l gain maps in the two sets is defined over
the dimensions of the visual target DNF, utar(x,y, t). Each set spans k× l different
initial motor states (the pan and tilt joint angles in our setup). The gains change
in the map(s), which are selected by the output of the motor DNF, f (um(k, l, t)),
at the locations, which are set by the activity peak in the target DNF. f (uEoS(t))
is the output of the end-of-saccade node, which is required to be positive (saccade
finished) for learning to become active. εh,v(t) is the error in each of the movement
components, τl is the learning rate.

Thus, after each unsuccessful saccade the gain maps are corrected slightly in
a localised region. After sufficient experience with looking at visual targets in
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different locations in the image and from different starting gaze angles, the com-
plete gain maps are learned and the system is able to perform precise saccades from
any configuration. The maps are updated locally over a few gaze-shifts if an unex-
pected change in the sensorimotor plant happens.

3.6 Memory Formation and Exploration

After a precise saccade, the target object falls into the central part of the visual field,
as detected by the center of visual field DNF. The object is being tracked now by the
smooth pursuit dynamics, which sets an attractor at the visually perceived target and
visually servoys the camera at the objects. When the object is centred in the visual
field, its memory is formed in the three-dimensional color-gaze memory field, which
is critical for creation of an allocentric memory for the object and for generation of
memory saccades. The part of the architecture, which forms memory during fixation
and biases the perceptual system during exploration is shown in Figure 5.
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gaze 
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DNF
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Fig. 5 Part of the architecture responsible for memory formation and exploration
(habituation)

Here, the activated center of visual field DNF activates the smooth pursuit dynam-
ics, which fixates the object in the center of visual field, even if the object moves.
As long as movement is generated by the smooth pursuit dynamics – i.e. the object
is not yet centred in the visual field and its location in gaze coordinates is not stable,
– the memory formation process is suppressed by a lacking boosting input from the
memorise node. When the object is centred in the visual field of view, the memory
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formation process is activated in the three-dimensional color-gaze memory DNF,
which forms an allocentric memory of the objects in the visual scene, represented
in gaze-coordinates. If there is no object perceived in the center of visual field (the
no target node is activated), the corresponding location in the color-gaze memory
DNF is inhibited. If there was an object memory stored at this location, its memory
representation ceases.

On the other hand, the center of visual field DNF boosts the color faster memory
field, which builds a memory representation of the color of the currently observed
object. This representation inhibits the visual perception DNF along color dimen-
sion for the subsequent saccades. Thus, when the next saccade target is selected,
the colors that are already in memory have less chances to induce a peak in the
perception DNF. The color slower memory builds up preshape activity hills on a
more slower time scale. These preshape hills eventually delete the peaks from the
faster color memory field, releasing the respective color to participate in the target
selection during exploration.

3.7 Prediction and Memory-Driven Saccades

On the right side of Figure 1, the planning saccade system is depicted. In this sys-
tem, the saccades’ targets are represented in the body-centred gaze coordinates. This
gaze-target DNF receives input either from the gaze-memory DNF, if saccade is to
be performed to a memorised object, or from an integrator, which predicts the gaze
coordinate of a visually perceived target without performing a saccade. The latter
path allows the system to perform double-step saccades, when two targets are pre-
sented to the system and the agent has to saccade to them in a sequence only when
both targets are no longer visible. In this case, the system “simulates” two saccades
from the fixation point and stores the predicted gaze angle after each such virtual
saccade. These stored gaze-representations of the targets’ locations can then be used
to generate eye movement towards both targets, even though the retinal representa-
tion of the second target would shift after the first saccade.

4 Results of Simulated Experiments

The architecture, sketched in Figure 1, was implemented using an open-source C++
framework cedar, www.cedar.ini.rub.de [20], which allows to build neural-
dynamic architectures using a graphical user interface and simulate them efficiently
on a conventional computer. The simulation basically consists in solving the cou-
pled differential equations (the core equations, which form the building units of
the architecture, were presented in Section 2 of this chapter) using Euler method.
The cedar framework also offers an interface to robotic hardware, including cam-
eras. The interface may be used both with real and simulated robots. In this work,
we have used a simulated CoRa robot [16], in particular its camera, mounted on a
motorised pan-tilt unit. Although cedar offers plotting routines to visualise the ar-
chitecture during its function for monitoring purposes, we have collected the data
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from simulation and have analysed and plotted it offline, using standard MATLAB
routines. The data consists of matrices of activation of the dynamic neural fields and
nodes of the architecture. Here, we exemplify some of the architecture’s functions
based on this collected data from simulated experiments.

4.1 Gaze Shifts Generation

Saccades, generated by humans or primates, have particular properties, which are
well-studied in a controlled experimental settings. Here, we demonstrate that the ba-
sic properties of real saccades may be replicated in our system. Note that the archi-
tecture was not tuned to model the dynamic properties of human saccades, but still
the trajectories and velocities of saccades resemble the respective behavioural plots.
Figure 6a shows examples of velocity profiles, generated by the neural-dynamic
gaze-shift generator in the simulated robot for gaze shifts of different amplitudes.
Note the constant duration of the gaze shift, as typically observed in eye movement
studies, and the varying peak velocity for saccades of different aptitudes. This prop-
erty is part of the ‘main sequence’, postulated in studies of the primates’ saccade
generating system.
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Fig. 6 Illustration of the basic properties of the saccade generating system

Figure 6b shows the trajectory of an eye movement (projection of the gaze di-
rection on a vertical plane, in which the target is presented) towards a target, which
requires activation of both the vertical and horizontal movement systems. The tra-
jectory is very close to a straight line, as observed experimentally. In our architec-
ture, this property is achieved by a mechanisms, similar to the mechanism proposed
by [35] for generation of two-dimensional saccades: both horizontal and vertical
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movements are produced by the same neural burst generator, which output is scaled
differently for the two components of the movement. This results in almost straight
oblique saccades, when both the target and the gaze direction are projected on a
vertical plane. The shape of saccade trajectories in 3D, when targets are located on
a horizontal plane at different distances, is yet to be established experimentally and
can be simulated in our framework.

4.2 Scene Exploration and Memory Formation

Figure 7 demonstrates how a visual scene (here, consisting of three coloured objects)
is explored by the system.

On the left, four snapshots from the robot simulator show the simulated camera
image and the visual scene in front of the robotic camera head. In the first snapshot,
the robot observes the scene with three objects. The red object induces the largest
blob in the camera image (since it is closer to the robot on the table) and is selected
by the visual perception DNF as the saccade’s target. The robot performs a saccadic
gaze shift followed by a fixation dynamics towards the red object (second snapshot).
Now, only the yellow object is visible in the camera image and is selected by the
robot for the next gaze shift. When the yellow object is centred in the camera, both
blue and red objects are visible (third snapshot). Although the red object is more
salient in the camera image again, the blue object is selected for the next saccade,
because of the inhibitory influence of the memory on the selection dynamics in
the visual perception DNF. Finally, the blue object is fixated by the system (forth
snapshot) and its representation is stored in the gaze-based scene representation.

On the right of Figure 7, the summed activations of the saliency in the camera
image and the visual target DNF are shown. Note that during exploration, many
locations have significant saliency in the camera image (in fact, more than shown
in the figure – these are only the regions, which where active for longer periods
of time). In the visual target DNF, to the contrary, only the locations selected for
the saccade targets leave traces. The third plot shows the gaze-based (body-centred)
representation of the visual scene, built-up during scene exploration: after each suc-
cessful saccade, the gaze angles of the camera head are stored, which correspond to
the object in the scene, i.e. which bring the object in the center of camera field of
view (if the body of the robot does not move relative to the scene). The forth plot
shows the projection of line of sight of the camera on the table surface during the
experiment, as viewed from above. These projections show the scan paths of the
camera head over the scene.

In this demonstration, it may be seen how a visual scene triggers a sequence of
saccades in the system. Each object is fixated by the camera in a succession and
the gaze angle of the robot during fixation is stored as a self-sustained peak in the
memory field. The resulting memory representation may be used to direct saccades
to memorised, but currently not observed objects, as well as used for control of
movements, generated by other effectors of the robot (e.g., reaching), even if the
robot looks away from the object (e.g., to look at the arm or the next object in a
longer sequence of actions).
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Snapshot 1: before looking

Snapshot 2: after gaze shift 1 
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Fig. 7 Left: Simulated robot exploring the scene. Right: the summed visual input to the
architecture, the summed activity of the visual target DNF, gaze-based memory of the scene
at the end of exploration, and the gaze-trajectory, projected on the table-top (sampled at 100
frames per second).

4.3 Gain Maps Learning

The precise gaze shifts, demonstrated in the previous experiment, are the result of a
learning processes, in which the gain maps, which specify the saccades’ amplitudes,
are adapted. Figure 8 shows the convergence of the learning process for a single
location in one of the gain maps, in which the initial error of more than 3 cm is
reduced over a few saccades (five here) to values below 0.5 cm.
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Fig. 8 Convergence of gain map for a single location

The two four-dimensional gain maps, learned for the horizontal and vertical
movements are shown in Figure 9. The maps reflect the geometry of the robot
and implicitly encode the amplitudes of the pan and tilt shifts for different shifts
in the retinal frame of reference. Note that the mapping between the image and
motor coordinates is non-linear here and changes significantly with initial gaze
angle of the camera head. Especially with changing initial tilt-configuration, the
amplitude of the motor signal changes for the same shift in the retinotopic coor-
dinates. The pan-configurations play a lesser role in our robotic architecture, since
changes in initial pan do not change the mapping between shifts in retinal and motor
coordinate frames much.
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Fig. 9 Gain maps learned by the system. Nine slices are shown for three selected pan and tilt
values of the initial pose (gaze angle) of the camera head.
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4.4 Modelling Adaptation Experiments

Adaptation of the amplitude of the saccadic gaze shift, as demonstrated in [24] is
exemplified in Figure 10. Here, the robot first learned the complete gain maps and
was able to perform precise saccadic gaze shifts from any starting configuration. In
a scenario, which simulated the adaptation experiment, the target object was shifted
horizontally during the saccadic gaze shift, so that the saccade landed (in the case,
shown here) behind the target, i.e. the saccade was too long. The perceived error was
used to updated the gain map, similarly as during the initial learning process, so that
the new, adapted, gain map generated a saccade of the amplitude, which brought the
shifted target in the fovea.

The adaptation is only effective for a localised region both in terms of reti-
nal location of the target and the gaze angle prior to the saccade. In combi-
nation, the adaptation generalises to a region in the allocentric (here meaning
gaze-angle independent) reference frame. This result is conform with recent
experimental studies [44].

(a) Map for horizontal gaze shift (b) Map for vertical gaze shift

Fig. 10 Gain maps adapted at one location. The adapted region is marked with the arrow.

The time-course of the simulated adaptation experiment is shown in Figure 11.
This figure shows the increase of saccadic error at the offset of the adaptation ex-
periment (seventh saccade shown in the figure) and a gradual decrease of the error
back to the optimal level in the course of several saccades.

5 Discussion

This paper has introduced a computational framework and a neural-dynamic archi-
tecture for generation of adaptive looking behaviour in an embodied agent. The be-
haviour and the computational network share several characteristics with the human
looking system.
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Fig. 11 Time course of adaptation: error magnitude for the adapted location over the course
of adaptation experiment

5.1 Strengths and Limitations of the Architecture

The power of the framework we used in our modelling is in its dynamics. Thus,
the introduced architecture is a process model and allows to model not only the
structure, but also the dynamics of neural processes within this structure. Moreover,
this dynamics is autonomous and embodied, which means that it may be connected
to real sensors and motors and produce behaviour in real time.

The dynamic fields theory provides for stability of the building units of the archi-
tecture and enables coordination between different subsystems.The stability prop-
erty of the dynamic neural fields has been established theoretically [1, 14, 42] and
leads to robust, controllable, behaviour. The behaviourally relevant states of the neu-
ral system are represented in this framework as attractors, which persist long enough
to have impact on the downstream structures. Transitions between attractors are in-
stabilities and their course is autonomously controlled by an interconnected set of
dynamical nodes, which organise behaviour of the architecture in time.

In the architecture, many different functional subsystems are integrated, some of
them were developed in recent years in the DFT framework, others are introduced
here for the first time (e.g. the adaptive weights coupled to a neural oscillator, the
motor-based scene memory, the error-detection network, the coordination between
smooth pursuit dynamics and saccade generation). Several functions of the look-
ing system are implemented in our model, such as memory formation, formation
of allocentric scene representation, habituation, scene exploration, adaptation, and
learning. Although not all properties of looking behaviour in humans and primates
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have been accounted for in our current system, the framework has a potential to be
extended and refined while keeping the behavioural stability of the overall network.

Another important characteristics of our architecture is that it is a function-based
model. This allows to avoid narrowing modelling too much on single brain areas,
as has been advocated early on in studies of the saccadic system [39, 13]. Thus,
the architecture presented here is a behavior-based, functional model, which may be
mapped on the substrate of neural circuits, involved in generation of eye movements.
This mapping onto neuronal substrate, however, even for a single functional module
of our architecture requires considering interactions among different neural circuits.
This avoids a simplifying view, when one cortical or subcortical region is made
responsible for a single function and every function is assigned to a single brain
region. Since our architecture was inspired by the neural and behavioural findings
about biological saccadic systems, we will provide a brief discussion of the neural
plausibility and relevance of our model in Section 5.2.

Several properties of the saccadic system have not been modelled here. Thus, our
current system cannot produce saccades with different durations. A more flexible in
this respect neural oscillator could solve this problem, or substituting the oscillator
with a resettable integrator, as in classical saccade generation models [28]. This
modification will also solve the problem that an interrupted saccade, currently, will
be resumed, but won’t end at the correct pose.

5.2 Discussion of the Architecture in Relation to the Neural
Mechanisms of Saccades Generation

The currently most widely accepted picture of the saccade generating circuitry in-
cludes the following neuronal structures [13]: superior colliculus (SC), saccadic
burst generators in the reticular formation, cerebellum, basal ganglia, and cortical
structures. Here, we review briefly how each of these brain areas is reflected in our
architecture.

5.2.1 Superior Colliculus

The SC is considered to be responsible for representation of the amplitudes and
directions of saccades in retinal coordinates. In our architecture, the visual (retino-
topic) target field accomplishes this role, since activity peaks in this DNF encode
the saccades targets in retinal coordinates. But also the spatial component of the
perceptual DNF probably corresponds to one of the SC layers. This field selects the
saccadic target, but does not keep this representation fixed during the eye move-
ment, but tracks the visual input to some extent. The burst, reset, and fixate nodes,
roughly correspond to the three different types of saccade-related neurons, found in
SC [21, 43]. The nodes perform the spatial-to-temporal transformation, which con-
verts the location of the activated region on the visual target map into a temporal
signal encoding the desired speed of the eyes, similar to other neural models, e.g.
[26]. The nodes of the saccade generating circuit may be seen in close connection to
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the visual target DNF, and a more precise model of SC would have a number of lay-
ers with the topology of the visual target DNF and interconnected among each other
like the nodes in Figure 2. We are not modelling the log-polar topology of the SC
here – our visual target DNF has a cartesian structure, but the log-polar organisation
of this field can also be used [38].

5.2.2 Saccadic Burst Generators

Our saccade-generating circuit is similar to the burst, buildup, and fixate neurons,
proposed in several models for saccade generation [13]. This circuit provides for the
temporal properties and dynamics of saccades, in particular the relation between ve-
locity, amplitude, and duration of the saccade, time of its initiation, and reaction to
perturbations. The mechanisms we used to produce two-dimensional saccades are
closely related to mechanisms proposed in earlier models [8, 10], which include a
shared burst generator driving the two components of the eye movement through dif-
ferent gain factors. This setup results in straight oblique saccades. Experimentally,
it has not yet been decided on the nature and substrate of the saccade generating
motor signal [13], but an alternative to our solution would be a classical model by
[28], in which the motor command is integrated to achieve the target pose during
saccade generation. This solution may be realised in our architecture, but would
require the transformation from the retinal representation of the target to its motor
representation to be learned before this integration leads to saccades of the correct
amplitude.

5.2.3 Cerebellum

Fine-tuning of the saccadic amplitude, as well as corrections for changes in motor
plant are found to happen in the cerebellum [26, 22]. This structure is also consid-
ered to be responsible for taking the starting position of the eye into account and
compensating for the non-linearities of the motor system. In our architecture, the
gain maps correspond to this function of the cerebellar structures, in particular, they
attenuate saccades and provide for adaptation in the saccadic circuitry. The gain
maps also reflect to models of the cerebellum as the locus of supervised learning,
responsible for long-term calibration and adaptation of saccades’ gains. E.g., a sim-
ilar, but more abstract and relying on different error signals model is discussed in
[4] . Gain adaptation in our framework is similar to adaptation process described in
[11, 5]. Although in several models [19, 26, 23] the control of saccades’ accuracy
is controlled by the cerebellum only, cortical structures are probably also involved
in this process [13]. Which, again, shows that the correspondence of an established
function to the neural substrate might not be unequivocal.

5.2.4 Basal Ganglia

Error signal, generated by the ‘too-far, too-close’ module in our architecture, could
be neurally associated with inferior olive, as in the model of [34]. The error in our



Learning to Look and Looking to Remember 197

model is determined directly based on the visual input after the saccades, whereas
in their model the error is defined based on proprioception, using the memory of the
saccade signal, the non-confirmation of the correct cascade by the fixation system,
and the motor signal of the corrective saccade. In our framework, the error esti-
mation module takes input from the visual memory of the saccadic target and the
perceived visual representation of the target after the saccade and estimates whether
the target after the saccade is on the same or on the different side of the midline com-
pared to the original location of the target on the retina. This very basic operation
delivers meaningful results, which drive learning in the correct direction, even when
the corrective saccade also cannot be performed in the correct direction yet, since
the system is completely uncalibrated. An elaborated visual processing mechanism
to estimate visual error after saccade, which drives adaptation, has been discussed
in relation to experimental work on saccadic adaptation [24].

Since basal ganglia are probably also involved in overall temporal coordination
of saccade generation, our gaze shift generator nodes circuitry, which is responsi-
ble for temporal coordination of the gaze shifts, fixation, adaptation, and memory
formation, could partially reside in this region.

5.2.5 Cortical Structures: Adaptation and Spatiotopic Visual Maps

The location of adapted region in our gain maps depends on a combination of the
retinal position of the target and the position of the eye before the saccade. Conse-
quently, adaptation effectively influences the target location in the allocentric, body
centred frame of reference. This is conform with a recent experimental finding [44],
which establishes that adaptation influences saccade targeting for the same position
in the allocentric space. The spatial spread of the adapted region in our architec-
ture corresponds to the experimental findings as well [15]. Our gaze-based memory
representation of the visual scene resembles recent evidence, which shows that the
motor representation is what is updated in the double-step paradigm and is probably
used to plan multiple saccades [25]. Both these functions – learning of the saccade’s
amplitude and formation of memory for the visually observed scene – at least par-
tially are solved by cortical structures [37].

6 Conclusions and Outlook

The architecture presented here demonstrates how looking behaviour may be learned
autonomously and lead to formation of memory in body-centered coordinates,
which may be used to direct actions at objects around us. The model demonstrates
what it takes to create an illusion of the stable perception from a sequence of fast eye
movements, in particular the critical role in this process of adaptation and learning,
the temporal coordination between different processes and sensorimotor structures,
and interplay between memory formation and exploration. Considering the inte-
grated, dynamical system of functional modules allowed us to reveal how closely
interconnected different functions of the looking system may be. There are different
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directions, in which this architecture may be developed. To add neural plausibility
and account for neural and behavioural data is one of them, whereas extending the
architecture towards a system, capable of learning to generate arm movements to-
wards visually observed targets and thus creating a more complex self-calibrating
embodied agent is another possible direction.
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33. Schöner, G.: Dynamical Systems Approaches to Cognition. In: Sun, R. (ed.) Cambridge
Handbook of Computational Cognitive Modeling, pp. 101–126. Cambridge University
Press, Cambridge (2008)

34. Schweighofer, N., Arbib, M.A., Dominey, P.F.: A model of the cerebellum in adaptive
control of saccadic gain. Biological Cybernetics 75(1), 19–28 (1996)

35. Scudder, C.A.: A new local feedback model of the saccadic burst generator. Journal of
Neurophysiology 59(5), 1455–1475 (1988)
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