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Dynamic neural fields (DNFs) are dynamical systems models that approximate the activity

of large, homogeneous, and recurrently connected neural networks based on a mean

field approach. Within dynamic field theory, the DNFs have been used as building blocks

in architectures to model sensorimotor embedding of cognitive processes. Typically, the

parameters of a DNF in an architecture are manually tuned in order to achieve a specific

dynamic behavior (e.g., decision making, selection, or working memory) for a given input

pattern. This manual parameters search requires expert knowledge and time to find and

verify a suited set of parameters. The DNF parametrizationmay be particular challenging if

the input distribution is not known in advance, e.g., when processing sensory information.

In this paper, we propose the autonomous adaptation of the DNF resting level and gain

by a learning mechanism of intrinsic plasticity (IP). To enable this adaptation, an input

and output measure for the DNF are introduced, together with a hyper parameter to

define the desired output distribution. The online adaptation by IP gives the possibility to

pre-define the DNF output statistics without knowledge of the input distribution and thus,

also to compensate for changes in it. The capabilities and limitations of this approach are

evaluated in a number of experiments.

Keywords: dynamic neural fields, intrinsic plasticity, adaptation, dynamics

1. INTRODUCTION

A Dynamic Neural Field is a description of activity of a large homogeneous neuronal population
(Wilson and Cowan, 1973; Amari, 1977; Coombes et al., 2014; Schöner and Spencer, 2015). The
DNF equation is obtained as a mean-field approximation of the dynamics of a network of spiking
neurons and describes the dynamics of a continuous activation function, spanned over a feature
dimension, such as color, location, velocity, or other perceptual or motor parameters, to which the
neurons in the underlying population respond.

The core elements of the DNF dynamics are a winner-takes-all type of connectivity, expressed
by a symmetrical interaction kernel with a short-range excitation and a long-range inhibition, and
a sigmoidal non-linearity. The sigmoidal non-linearity determines the output of the DNF. The
DNF’s output is a function over the feature dimension that vanishes for activation values below
zero and saturates at one for positive activation values. The recurrent connectivity pattern and
sigmoid output function of the DNF lead to non-linear properties of this model. These properties
enabled its successful application in modeling cognitive functions in humans: e.g., formation of
a representation, working memory, decision making, rule learning, or executive control (Schöner
and Spencer, 2015), as well as for control of cognitive robots (Bicho et al., 2011; Sandamirskaya
et al., 2013).
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One of the obstacles to a wider adoption of the DNF model
in technical systems and in neurobehavioral modeling is the
parameter tuning required to obtain the desired behavior. In
general, the behavior of a DNF for a given input depends
on the parameters of the neural field, e.g., the strength and
width of the interaction kernel, the resting level, or the slope
of the sigmoidal non-linearity. However, when considering the
DNF output behavior over time for sequences of inputs, the
particular input distribution has a major impact on the DNF
output statistics. Therefore, the input distribution has to be taken
into account when setting parameters of a DNF in order to
achieve a desired behavior over time.When the input distribution
is not known in advance and its online normalization is not
straight-forward, the tuning of the DNF parameters may be time
consuming, in paritular when the input distribution varies (e.g.,
drifts) over time.

Let us consider an example, which we will use throughout this
paper: a robotic hand with a tactile sensor on its fingertip is used
to estimate the shape of objects by rotating them and bringing
the fingertip in contact with the object in different locations. In
this example, we use the tactile sensor on the robotic fingertip
as a source of input to a DNF (see Strub et al., 2014a,b for the
details of the robotic setup and the DNF architecture). When
this sensor is brought into contact with an object, the shape of
the contact area is characteristic for the properties of the object’s
surface at the location of the contact. Thus, a low circularity of
the contact area on a tactile sensor (down to zero circularity
for a sharp line) corresponds to an edge on the object’s surface,
whereas high circularity (up to 1 for a perfect circle) corresponds
to a flat surface under the sensor. The task we will consider is
to create a “map” of flat surfaces of an object (in an object-
centered coordinate frame), as the robotic hand rotates the object,
repeatedly bringing the tactile sensor on its fingertips in contact
with the object at different locations. To build such “map,” we
need to detect the most circular contacts within a sequence of
contacts and store their position on the object’s map. Here, the
angular coordinate anchored in the object’s center is the feature
dimension we are interested in (on which we build a “map” of
the detected flat surfaces, using the DNF). The circularity of the
contact point determines the activation level of the DNF, induced
by the sensory input. The desired output of the DNF in this case
is an activity peak for a given fraction of the inputs (e.g., within
20% of themost circular inputs), and no output activity for inputs
with lower circularity values.

The parametrization of such a detector depends crucially on
the distribution of the circularity feature in the input stream
from the sensor, as illustrated in Figure 1. In the figure, the
sensed property—circularity in our example,—which determines
activation level of the DNF, is plotted on the horizontal axis and
its probability of occurrence on the vertical axis, thus showing
the distribution of input amplitudes that can be measured. The
green-colored part of the distribution corresponds to a fixed
fraction of the input distribution, say 20% that includes the
highest input circularities. The three examples, shown in Figure 1
illustrate that the classification threshold for the activation of a
DNF—which is determined by the negative resting level and the
threshold parameter of the sigmoid of the DNF—depends on

FIGURE 1 | Illustration of three different distributions of a “circularity feature”

obtained from sensory input. On the vertical axis, the circularity is denoted,

which determines the activation level of a DNF; the horizontal axis shows the

probability to measure the respective circularity value. The green filling

represents a fixed fraction (20%) of the total probability density.

the particular feature distribution. If the input distribution is not
known in advance, or varies over time, an online adaptation of
the detection threshold (i.e., resting level) and steepness of the
classification function (i.e., steepness of the sigmoid) is necessary.

In this paper, we propose a method to autonomously adapt
parameters of a DNF—in particular, the gain of the sigmoid
non-linearity and the resting level (bias)—using a homeostatic
process. In order to achieve this adaptation, global input and
output measures for the DNF have to be defined. Here we use
as an output measure the maximum level of the output of the
field (where output is the activation after it is passed through
the sigmoid function). The corresponding input measure is the
activation value of the input at the location of the maximum
output. The underlying notion is that the maximum level of the
DNF output reflects the decision that the field has made about
its input. That decision was based on the input at the selected
location. Based on these measures, the gain and resting level
for the DNF are adapted in order to match the distribution
of this output measure obtained over time to a predefined
target distribution. This adaptation drives the DNF dynamics
toward the detection instability, which separates the inactive,
subthreshold states of the DNF from the active states with a
local activation peak. As a result, the DNF is kept in a dynamical
regime in which it remains sensitive to input, preventing both
saturation and the complete absence of activity. Furthermore, the
adaptation ensures that the distribution of the output measure
of the DNF remains invariant when the input distribution
changes over time, for example, in terms of its mean or
variance.

In the following sections, the DNF and IP equations are
introduced, the derivation of DNFs with IP is outlined, and the
performance of the modified DNF is evaluated on an example in
which input from a tactile sensor is processed.

2. METHODS

2.1. Dynamic Neural Fields
DNFs are dynamical systems which model activation dynamics
in large homogeneously connected recurrent neuronal networks.
The DNF equation describes an activation function that may
represent a perceptual feature, location in space, or a motor
control variable (Schöner and Spencer, 2015). This behavioral
variable is encoded along a feature dimension x of the DNF,
and the activation u(x, t) at position x encodes the confidence
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that the feature has value x at time t. The current state of the
neuronal system is encoded by the position on the dimension
x of high activation values. Such space coding allows to encode
multiple possible values of a feature as well as “fuzziness” of the
experienced or stored values. Other artificial neural networks
encode feature values through the level of activity of particular
neuronal units (rate coding) or through the pattern of activation
across a distributed set of units. What is special about the
space code used in DNF is that the metric distance between
represented values is explicitly encoded in the distance between
locations along the feature dimensions. Neural coupling that
depends on the distance between field locations thus depends
similarly on the distance between the represented feature
values.

The equation for the DNFs used in the proposed model is
described by Equation (1), which defines the rate of change in
activation u(x, t) of the field:

τ u̇(x, t) = −u(x, t)+ h+ S(x, t)

+

∫

ω(|x− x′|)g
(

u(x′, t)
)

dx′. (1)

In Equation (1), u(x, t) is the activation of the DNF at time step
t and position x. The position x describes a feature dimension
and may be multi-dimensional: Ex ∈ R

n. In practice, the
dimensionality of fields ranges from zero (neural nodes) to
three or four. In this paper only one dimensional fields are
considered.

The term −u(x, t) stabilizes an attractor for the activation
function at values that are defined by the last three terms in
the equation. The time constant, τ , determines how fast the
activation pattern, u(x, t), relaxes to the attractor. The negative
resting level, h, ensures that the DNF produces no output in
the absence of external input, S(x, t). The convolution term
models recurrent neural interactions between activation levels

at different locations within the DNF, and is shaped by the
interaction kernel:

ω(|x− x′|) = cexc exp

[

−
(x− x′)2

2σ 2
exc

]

− cinh exp

[

−
(x− x′)2

2σ 2
inh

]

(2)

with a short-range excitation (strength cexc, width σexc) and a
long-range inhibition (strength cinh, width σinh > σexc). A
sigmoidal non-linearity, g

(

u(x, t)
)

= (1 + exp[−βu(x, t)])−1

defines the output of the DNF through which the DNF impacts
on other neural dynamics within a neural architecture, and also
on its own neural dynamics through the recurrent interactions.

The −u(x, t) in Equation (1) guarantees the existence of at
least one attractor. Dependent on the parametrization of the
recurrent interaction kernel ω and the sum of the input signal
S and the resting level h, the DNF may undergo saddle-node
bifurcations. Figure 2 shows schematically the bifurcations that a
DNF undergoes when the sum h+ S(x) changes. The left column
of the figure shows a zero-dimensional case (when u is a scalar
value and the state is a point), and the right column shows a
one-dimensional case [when u(x) is a function and the state
corresponds to a line].

The phase plots on the left in Figure 2 qualitatively show
Equation (1) for a zero-dimensional state x (i.e., a point) at
different input values:

In the top plot (“Low-stable”), the black dot denotes a single
stable fixed point (attractor) (a) for the case when h + S is below
activation threshold of the DNF. Loosely speaking, the resting
level h together with the input S of the DNF shift the function
of the phase plot up and down, while ω determines the non-
linearity of the function which general shape is determined by the
sigmoid g. A stronger input intensity S may cause a bifurcation,
creating two new fixed points: a stable (c) and an unstable one (b)
(“Bi-stable” regime, middle plot). If the input further increases,

FIGURE 2 | The three regimes of stability. (Left column): Phase plots for different regimes of the DNF equation for a zero-dimensional feature space x (u is a scalar

value). Black dots indicate stable fixed points, empty circles—unstable fixed points. (Right column): The output g(u) of a DNF is illustrated (in red) for an

one-dimensional feature space x. The blue-dashed line represents the input S(x). The arrows depict qualitative changes in the regimes of stability determined by the

input strength S(x).
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a second bifurcation occurs, where the unstable fixed point (b)
collides with the stable fixed point (a) in the phase plot. Now
the system state at the former fixed point (a) has lost its stability
and the system will converge to the remaining stable fixed point
(c) (“High-stable,” lower plot). This second bifurcation, where
the bi-stable state looses stability and switches to the high-stable
state is termed detection instability. If the input S now decreases
again, it will induce a bifurcation, leading back to the bi-stable
regime, however the system will remain at the stable fixed point
(c) (hysteresis). Only if the input decreases enough to induce the
second bifurcation, where the stable fixed point (c) collides with
the unstable fixed point (b), the system will return to the stable
fixed point (a) (“Low-stable”) .

In the one-dimensional system in the right column of
Figure 2, the output activation g(x) over the feature space x is
plotted in red while the input S(x) is plotted as a dashed blue line.
In the “Low-stable” case, when the sum h + S(x) does not reach
activation threshold anywhere in the dimension x, the output of
the DNF is zero (top plot A1). If the input intensity increases,
the system enters a “Bi-stable” regime (middle plot A2), with a
weak positive output. When input strength further increases, the
detection instability leads to a visible change of the DNF output,
which has now a localized “peak” that might even surpass the
input strength (lower plot, C1). If the input intensity is decreased
now, the systemwill enter the bi-stable regime again (middle plot,
C2), however, without a qualitative change in the system output.
The system output drops back to the resting level activity in (A1)
only if input is further decreased, which is termed the “reverse
detection instability.” For high values of lateral excitation, a
negative (inhibitory) input is required for the system to return to
an inactive state. This parametrization is termed “self-stabilizing,”
i.e., maintaining the output in the absence of input S(x, t) = 0.

Thus, the recurrent interactions by the kernel ω stabilize
the system in its state (either “low” or “high”) when the input
fluctuates around the bistable setting by shaping the non-linearity
in the phase-characteristics of the system.

2.2. Intrinsic Plasticity
Neurons in biological organisms have a large spectrum of
plasticity mechanisms, implementing a broad range of functions.
One functional class of neuronal plasticity mechanisms is
termed “homeostatic plasticity,” which optimizes the information
processing within a neuron by keeping the firing rate of the
neuron in a reasonable regime (Turrigiano, 2008, 2012; Pozo and
Goda, 2010).

Non-synaptic, i.e., intrinsic forms of homeostatic plasticity
are termed “intrinsic homeostatic plasticity” (IP), which adapt
the intrinsic excitability of a neuron (Frick and Johnston, 2005;
Schulz, 2006). Additionally to the adaptation in the neuron
soma, this plasticity of excitability has also been discovered in
compartmentalized dendritic structures of neurons (Frick and
Johnston, 2005; Losonczy et al., 2008; Makara et al., 2009).
The plasticity of excitability of dendritic structures greatly
increases the complexity and non-linearity of neural information
processing and storage (Branco and Häusser, 2010; Remy et al.,
2010; Spruston et al., 2016).

In the context of artificial neural networks IP is modeled
as a mechanism which modifies the excitability of a neuron in

order to achieve a specified output distribution for a given input
distribution (Stemmler and Koch, 1999; Triesch, 2005). This is
done by manipulating the parameters of a transfer function,
which transforms the internal neural state to an output. A
commonly used transfer function is the logistic function, defined
in Equation (3):

ga,b(x) =
(

1+ exp(−ax+ b)
)−1

. (3)

The a, b are termed gain and bias of the function g(x) and x is
the input which is transferred to the output space. By choosing
an appropriate gain and bias, the input may be scaled and shifted
in order to cause a response in the desired part of the sigmoid
function g(x). The objective of IP is to adjust the gain and bias
such that for a given set of inputs X the corresponding set of
outputs g(X) approximates a predefined target distribution.
Hence, IP is an autonomous adaptation of the sigmoid transfer
function.

The particular IP learning rule for adapting the parameters of
the transfer function is achieved by minimizing the Kullback-
Leibler-divergence (KLD) (Kullback and Leibler, 1951), such
that the output distribution of a neuron is close to the target
distribution. A common target distribution is the exponential
distribution, as it reflects aspects of homeostasis, i.e., maximizing
the transmitted information (entropy) while minimizing the
positive mean output activity (metabolic costs) defined by the
mean of the distribution. For logistic functions (Equation 3)
and the exponential as a target distribution the learning rules
have been derived in Triesch (2005). The procedure will only be
sketched in the following. For neurons using the tanh as transfer
function, see Schrauwen et al. (2008).

LKL(fg || fexp) = Ex

[

LKL

(

fg
(

ga,b(x)
)

||
1

µ
exp

(−ga,b(x)

µ

)

)

]

=

∫

fg
(

ga,b(x)
)

log





fg(ga,b(x)

1
µ
exp

(−ga,b(x)
µ

)



 dx, (4)

fg
(

ga,b(x)
)

=
fx(x)

∂(ga,b(x))
∂x

. (5)

In Equation (4) a Loss function L is defined as the KLD LKL
with the probability distribution function fg of the outputs of the
logistic transfer function ga,b(x), with respect to the exponential
target distribution fexp. The output distribution of the logistic
function ga,b(x) is parameterized by a, b, while the parameter
of the exponential distribution is the mean µ. The output
distribution fg(ga,b(x)) is defined as the input distribution fx(x)
remapped by the sigmoid g(x) (Equation 5). Minimizing the
KLD is done by taking the derivative with respect to (a, b)
and performing gradient descent with a learning rate of η (the
step size). This leads to the learning rules for adaptation of the
parameters gain a and bias b with the learning rate η (Triesch,
2005):

1b = η

(

1−
(

2+
1

µ

)

ga,b(x)+
1

µ
ga,b(x)

2

)

, (6)

1a =
η

a
+ x1b. (7)
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Besides this online adaptation rule, a batch version of IP was
derived in Neumann and Steil (2011). The application of IP has
repeatedly been reported to improve performances in reservoir
computing—a particular form of computing with transients
in dynamical systems—(Steil, 2007a,b; Wardermann and Steil,
2007; Schrauwen et al., 2008) as well as increasing the robustness
with respect to the parameter initialization (Neumann and Steil,
2011). It has been noticed that in a network of neurons adapted
by IP the target distribution is also approximated on the network
level (Steil, 2007a). There have been a number of variations of
IP learning with respect to the target distribution, for further
information see (Verstraeten et al., 2007; Schrauwen et al., 2008;
Boedecker et al., 2009a,b). Furthermore, combinations of IP
with other forms of plasticity have been investigated, e.g., with
Hebbian learning, which leads to identification of independent
components in the input (Triesch, 2007).

Finally, it should be noted that IP leads to instability of
recurrent neural networks (RNN). In Marković and Gros (2010,
2012) the authors show that introduction of IP in RNN leads to
the destruction of the attractor stability, resulting in spontaneous
and continuously ongoing activity for networks without and with
very small input amplitudes. The result of RNN destabilization
by IP has also been confirmed in spiking neural networks (Lazar
et al., 2007). These destabilizing effects on the dynamics are
relevant for applying IP in dynamic neural fields as will be
discussed in this paper.

The adaptation of the intrinsic plasticity via stochastic
gradient descent can be optimized by utilizing the concept of
a natural gradient, introduced in Amari (1998). It has been
shown, that the metric structure of the parametric space of neural
networks has a Riemannian character (Amari, 1998). Thus the
relationship between the distance of two sets of parameters and
the distance in the output space of the transfer function is non-
linear. Adapting the conventional gradient with respect to the
Riemannian metric corrects for this non-linearity, such that the
distance of two parameter sets linearly transfers to the output
space. This change of the gradient is termed natural gradient and
leads to a substantial performance increase in the convergence
rate for IP (Neumann and Steil, 2012; Neumann et al., 2013).
Therefore the natural gradient is used in this paper due to these
technical benefits, although the adaptation of DNFs with IP
proposed in this paper in principal also works with the standard
IP adaptation.

A natural gradient-based parameter adaptation for IP termed
NIP has been derived in Neumann and Steil (2012), here only the
resulting learning rules are given:

1Eθ = −η

(

F(Eθ)+ ǫI

)−1
∇ELKL

(

fg || fexp) (8)

= −η ∇FLKL
(

fg || fexp
)

,

F(Eθ) = Ex

[

∇ELKL
(

fg || fexp
)

· ∇T
E LKL

(

fg || fexp
)

]

. (9)

The standard gradient of the loss function in an Euclidean metric
∇E is transformed into a gradient in the Riemannian metric ∇F

by inverting the Matrix F(Eθ), which is the Fisher information,
i.e., the Riemannian metric tensor. In order to prevent numerical

instabilities of the tensor inversion, a Tikhonov regularization is
applied by adding the identitymatrix Iwith a small regularization
factor ǫ to the tensor F(Eθ) before inversion. Just as before,
the loss function LKL is the KLD for neuron output gθ (x) and
parameters a, b. As the needed expectation value of the gradient
with respect to the input in Equation (9) is not available in an
online framework, the tensor F(Eθ) is estimated online by:

F̂t+1(Eθ) = (1− λ)F̂t(Eθ)+ λ∇ELKL
(

fg || fexp
)

· ∇T
E LKL

(

fg || fexp
)

.
(10)

with λ realizing a low pass filter with exponential decay which
is set to 0.01. For computational efficacy the inversion of the
tensor F in every time step (Equation 8) can be circumvented
by directly estimating the inverse tensor F−1 as described in
Park et al. (2000). Using NIP gives a good approximation of the
gradient direction in parameter space, which is also confirmed by
the experiments in the evaluation section.

3. INTRINSIC PLASTICITY FOR DYNAMIC
NEURAL FIELDS

Intrinsic plasticity (IP) is a local adaptative mechanism that
models the autonomous adaptation of the sensitivity (gain) and
threshold (bias) of a single neuron in order to match the statistics
of the neuron’s output to a predefined target distribution. We
apply this idea to DNFs with respect to a global gain and a global
bias parameter that control the entire population of neurons in a
DNF. DNFs are a mean field approximations of homogeneous
recurrent networks to capture the qualitative, global patterns.
Our proposed application of IP on a population level directly
tunes the DNF output distribution and therefore achieves the
same effect (on the network level) as IP in single neuron would.
Thus, conceptually IP in DNFs captures the qualitative, global
pattern change in a network as would result form IP in every
single neuron.

DNFs are consistent with population coding, in which
the value of a feature is encoded by the activity of those
neurons within a population that are broadly tuned to that
value. If particular feature values never occur in the input, the
corresponding neurons never become active. Adapting the gain
and bias of each neuron individually would lead to each neuron
approximating the desired target distribution. The output of
the population would converge to an uniform distribution of
feature values, reducing the effectiveness of population coding.
The adaptation of a global gain and bias for all neurons in a
population of a DNF proposed here ensures that the encoding
of the input in the DNF activity remains stable. In the Discussion
we briefly review evidence from computational neuroscience that
supports this notion of global adaptation.

To implement IP in a DNF, the field equation needs to be
slightly reformulated. The standard formula of a DNF is given
in Equation (1) where the logistic transfer function g(·) is now
used in the parametric version:

ga,b(x) =
(

1+ exp
(

−ax+ b
) )−1

. (11)
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The gain, a, controls the steepness of the sigmoid and the bias
parameter, b, controls the position of the zero-crossing of the
sigmoid. The bias defines a gain dependent resting level, b = ah,
which replaces the former static resting level, h, in Equation (1).
The gain, a, scales all weights, i.e., is a scaling factor of the input,
S(x, t) together with the recurrent, lateral interaction kernel,
ω(x, x′), in Equation (1). As all the weights are jointly scaled,
the relative contributions of input signal and lateral interaction
remain fixed.

Furthermore, three design choices have to be made for
deriving the IP learning rules:

1. Define a scalar measure, z, of the input of the field.
2. Define a scalar measure, y, of the output of the field.
3. Chose the desired target output distribution.

Concerning the first two points, the output measure, y(t), of the
field is defined as the maximum output of the neural field

y(t) = max
x

(

ga,b
(

u(x, t)
)

)

. (12)

The input measure, z(t), of the field is given by the field activation
at the position of the maximum output

z(t) = u
(

argmax
x

[

ga,b
(

u(x, t)
) ]

, t
)

. (13)

Hence, the input for IP is a composition of the actual field input
and lateral field interactions, reflecting recurrent components of
the neural dynamics. The main advantage of this measure is that
it does not alter the output range. If the field output activity is in
the range of (0, 1), for instance, the max(·) is in that range too.
This removes the need for an additional processing step of input
normalization and parameter tuning.

Two alternative definitions would be the integrated (i.e.,
summed) or the mean of the field output activity. In
contrast to the maximum, these are sensitive to the particular
parametrization of the recurrent lateral interaction kernel (i.e.,
the peak size) with respect to the DNF size. Hence, both of these
alternative measures require a tuning of the target distribution

parameters with respect to the particular DNF parametrization
and are therefore neglected. Moreover, choosing the integrated
output activity of a DNF as field output would make the output
distribution more sensitive to the simultaneous occurrence of
multiple peaks.

The target output distribution of y is set to the exponential
distribution with mean µ, implying a sparseness constraint on
the field output with respect to the output over time:

T(y(t)) =
1

µ
e
−

y(t)
µ . (14)

The exponential distribution is particularly suited when the DNF
output is desired to be near zero for the majority of inputs
(i.e., most of the time) and output activity is only required
for a minority of the inputs. Furthermore the exponential is
the maximum entropy probability distribution for a specified
mean which is optimal with respect to the information transfer.
Thus, an exponentially distributed DNF output corresponds to
an optimization of the information encoding in the DNF which
remains stable during changes in the input statistics, e.g., mean
or variance.

With these design choices, the optimization problem is
equivalent to the one in Triesch (2005) (described in Section 2.2)
and the learning rules for adapting the gain a and bias b are given
by:

1a

1t
=

η

a
+

1b

1t
z(t), (15)

1b

1t
= η

(

1−

(

2+
1

µ

)

y(t)+
1

µ
y(t)2

)

. (16)

The learning rate η is set to 0.001 and µ to 0.2.
Concerning the impact of IP on the stability of the DNF

dynamics, it should be noted that IP drives the dynamics toward
the detection instability, i.e., to the “edge of stability.” This
becomes apparent, when inspecting the behavior of the learning
equations Equations (15, 16), depicted in Figure 3. It is visible

FIGURE 3 | Sketch of the gain adaptation in Equation (15) (right) and the bias adaptation in Equation (16) (left) for µ = 0.2, input z(t) in the range of [0, 1], a learning

rate η = 1, and a current gain of 1.
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that for high DNF output, the bias (i.e., resting level) is decreased
while for low DNF output the bias is increased, independent
of the input. While the gain adaptation depends on the bias
adaptation and the current input, the principal “direction” of
adaptation is the same as for the bias: high output with high input
leads to a decrease of the gain, low output with high input leads
to the gain increase. Hence, the parameters are adapted such that
IP leads to the destruction of attractor in which the system state
currently is. In the long run, this enforces an oscillation between
the two attractors [the stable fixed points (a) and (c)] in Figure 2,
i.e., drives the system repeatedly through the detection instability.
Therefore, IP prevents the DNF from operating in a self-
stabilizing regime where the recurrent interaction is sufficient for
maintaining the system output, independent of the input. A DNF
with IP will operate in a regime where the system state regularly
runs through the detection instability—driven by the input.

The parameter adaption of IP can be significantly improved
with respect to the convergence speed and robustness by
computing the natural gradient (Section 2.2). Therefore, the
gradient direction and amplitude of 1a and 1b is corrected by
a metric tensor imposing a Riemannian structure in parameter
space, i.e., the natural gradient is computed as described in
Neumann et al. (2013). The tensor decay parameter λ in
Equation (10) is set to τ

1,000 where τ is the time constant of the
DNF equation in Equation (1). The regularization parameter ǫ in
Equation (8) of the tensor inversion is set to 0.0001.

4. EVALUATION

For evaluating the DNF with IP, an input time series
is constructed from haptic recordings of robotic object
manipulations done in Strub et al. (2014a). Two features were
used from these data, the orientation of a contact ([0, 360 deg])
and its spatial shape on the two dimensional tactile sensor
arrays. The spatial shape of the contact is rated between (0, 1),
dependent on how “circular” its shape is: 1 corresponds to a
perfect circular contact shape and 0 corresponds to a sharp line
on the tactile sensor. As the object manipulations are done with
two fingers, theremay be none, one, or two simultaneous contacts
at every point in time (originating from both fingers but with
opposing contact orientations). A one dimensional population
code is generated from these two features, as depicted in Figure 4.
A population of neurons encodes the contact shape over the
contact orientation, where the output rate of each neuron (bars
in Figure 4) signals the confidence that there is a circular contact
at the orientation which the neuron encodes (position along the x
axis in Figure 4). The neuron response is blurred with a Gaussian
filter across the contact orientation dimension, depicted by the
blue bars in Figure 4. This population encoding of the tactile
input is accordingly done for every step in time and the resulting
time series of the recorded dataset is looped in order to present it
for arbitrarily long periods.

With this setup the following cases are evaluated (an average
one and three limit cases):

1. Input with average amplitudes [0, 6] for µ = 0.1 and µ = 0.2;
2. Input with low amplitudes [0, 1] (i.e.,÷6);

FIGURE 4 | Sketch of the input encoding used for evaluation of DNFs with IP,

illustrated for two tactile contacts at opposing orientations (x = 95 deg and x

= 275 deg). A population of neurons encode the contact circularity over

contact orientation, with each neuron encoding a specific orientation. The

corresponding neurons representing the orientations of the tactile inputs are

activated and their response strength is related to the contact circularity of the

tactile contacts (the two black bars). The Gaussian blurring of the neuronal

activation to neighboring neurons (encoding similar orientations) is depicted in

the blue bars. This population representation of tactile inputs is done for every

time step, leading to the input time series S(x, t).

3. Input with high amplitudes [0, 36] (i.e.,×6);
4. Input with high offsets [−12,−6] (i.e., −12) for IP with and

without natural gradient.

These limit cases were selected, since they are quite common
in situations when DNFs are driven with sensory inputs
and lead to incorrect behavior: high amplitude input might
saturate the field, whereas low amplitude might render the
field unresponsive. Both effects can occur if input distribution
is scaled or shifted. The goal in all these experiments is
to detect the most circular contacts with the DNF, i.e.,
the DNF output should give a peak if the relative input
“circularity” is sufficient to be classified as a circular contact
and have zero output otherwise. This classification into two
classes depends on the particular distribution of the circularity
feature.

4.1. Varying the Mean
In the first set of experiments, the input time series is fed into a
one-dimensional DNF with IP, for two different means (µ = 0.1
and µ = 0.2) of the target exponential distribution. These values
are in the range of biological neurons in the cortex (see e.g.,
Hromádka et al., 2008; Barth and Poulet, 2012; Margolis et al.,
2012). The aim here is to point out the qualitative influence of
the target distribution mean on the DNF output.

The recurrent interaction kernel is parametrized with: cexc =
14, σexc = 2, cinh = −7, σinh = 6 and the DNF is sampled at 100
points (i.e., a size of [1,100]). The setup is run with presenting
the input time series based on recorded data in realtime (3 fps)
and the DNF with IP has a τ of 100 ms and is updated with
an Euler step width of 10 ms. The DNF with IP is run until the
parameter adaptation by IP does not change qualitatively, i.e., it
has converged.

A selection of the input sequence and the corresponding
output sequence of the DNF in this setup is shown in Figure 5.
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FIGURE 5 | Selection of the input time sequence S(x, t) and the corresponding DNF output g(u(x, t)) for converged gain and bias adaptation. Time is on the horizontal

axis and the one dimensional population code is on the vertical axis. (Top) The input time series S(x) to the DNF. Here, the gray level encodes the input amplitude S(x)

at the corresponding contact orientation x (vertical axis) for a point in time. (Middle) (µ = 0.1): the DNF output for the converged IP parameters (a = 0.65 and

b = −3.5). The input-output correlation (Equation 17) for the shown sequence is 0.69. (Bottom) The DNF output for the converged IP parameters (a = 0.59 and

b = −3.0) for µ = 0.2. The input-output correlation is 0.67. In the middle and bottom plots, the gray level encodes the DNF output activity g(u), i.e., surface detection

at the corresponding contact orientation x (vertical axis).

In the top row the DNF input amplitude (i.e., intensity) S(x)
is shown for contact orientations along the vertical axis of
the plot for a given point in time (horizontal axis). The dark
regions encode high input amplitudes at the corresponding
contact orientation (vertical axis), see the gray-level bars on the
right of the figure. The corresponding output of the DNF for
the converged IP parameters is shown in the bottom row of
Figure 5.

It is noticeable, that the processing by the DNF results
in a “sharpened” version of the input, where the structure is
preserved. The IP hyper-parameter µ determines how “sensitive”
the DNF is with respect to the input: for µ = 0.1 peaks are
only generated for the highest input intensities, for a mean of
µ = 0.2 the DNF generates more peaks in time which also tend to
last longer. The difference in the converged parameters between
the two cases is a decrease of the gain a of 0.06 (−10%) and an
increase of the bias b by 0.5 (+15%).

4.2. Varying the Input Distribution
In the following set of experiments the impact of a sudden
change in the input distribution is analyzed. This could result e.g.,
from tactile exploration of a new object with different geometry
(i.e., circularity distribution) or changes in the tactile exploration
speed or strategy. For this the input sequence is presented for
four cycles (i.e., 20 min in the experimental setup) in order to
let the IP parameter adaptation converge. After the 20th min,
the input is manipulated in its variance (scaled) or its mean
(shifted). Then the parameter adaptation by IP is analyzed for the

succeeding 30min. The results of this evaluation are shown in the
Figures 6–8.

These figures show histograms of the unmodified input z(t)
(Figures 6A, 7A, 8A) as defined in Equation (13) and the
output of the DNF y(t) for the original input (Figures 6B,
7B, 8B) defined in Equation (12). In (Figures 6C, 7C, 8C)
the DNF output distribution is shown after learning has
adapted the system to the manipulated input statistics and
the experiment is stopped (i.e., after 50 min). All histograms
are computed within a 5min time window. Furthermore, in
(Figures 6D, 7D, 8D) the output distribution (vertical axis)
is plotted over time (horizontal axis) with a 5 min sliding
time window to estimate the distribution. The size of the
time window was chosen such that it contains one full input
period (approximately 5:15 min with 3.33 fps) representative
for the input distribution. The color intensity encodes the
occurrence of the output value during this time window,
where white corresponds to no occurrence and black to
100+ occurrences (similar to the plots Figures 6A–C, 7A–C,
8A–C). For an enhanced visualization of the output distribution
over time in (Figures 6D, 7D, 8D), it is additionally plotted
on a logarithmic color scale in (Figures 6E, 7E, 8E). The
corresponding development of the gain over time is plotted
in (Figures 6F, 7F, 8F), and the bias in (Figures 6G, 7G, 8G).
The correlation of the maximum DNF output y(t) with the
corresponding input z(t) of the DNF is shown in (Figures 6H,
7H, 8H), computed for a sliding time window located at
time step t:
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FIGURE 6 | DNF with IP for low amplitude input after the 20th min. (A) DNF input histogram, z(t), (B) DNF output histogram, y(t) after IP parameter convergence at the

20th min. (C) DNF output histogram, y(t) at the 50th min after the input down-scaling. (D) DNF output histogram over time, (E) logarithmic version of (D), (F–H) gain,

bias and the input-output correlation over time, respectively. See text for further description.

FIGURE 7 | DNF with IP for high amplitude input after the 20th min. (A) DNF input histogram z(t), (B) DNF output histogram, y(t), after IP parameter convergence at

the 20th min. (C) DNF output histogram at the 50th min after the input up-scaling. (D) DNF output histogram over time, (E) logarithmic version of (D), (F–H) gain, bias

and the input-output correlation over time, respectively. See text for further description.

corr(t) =

t
∑

i=t−l

(

z(i)− z̄
)(

y(i)− ȳ
)

√

t
∑

i=t−l

(

z(i)− z̄
)2

t
∑

i=t−l

(

y(i)− ȳ
)2

, (17)

z̄ =
1

l

t
∑

i=t−l

z(i). (18)

The mean of the output ȳ is computed analogous to z̄ (18).
The length of the time window l is set to 5 min, just
as for the computation of the sliding output distribution
plots mentioned above. In the following, the results of the

evaluation for different manipulations of the input statistics are
presented.

4.2.1. Low Amplitude
In the first of this set of experiments, the input is down-scaled in
its amplitude from a range of [0, 6] to [0, 1]. The results are shown
in Figure 6.

The DNF is initialized with a bias (i.e., resting level) of −5
and a gain of 1 and has a recurrent interaction kernel which is
kept constant for all experiments in this paper. The parameter
adaption by IP results in the DNF output distribution shown in
Figure 6B for the original input. At the 20th min the input is
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FIGURE 8 | DNF with IP and shifted input after the 20th min with- and without the natural gradient. On the left three top rows show the results for IP with natural

gradient descent. The right three rows show the results when using the gradient descent in euclidean parameter space. Shown are the input z(t) (A) and output y(t)

(B,C) histograms of the DNF. The output histograms over time (D,E) show the output distributions over time, computed by a sliding time window of 5 min. See text for

further description. The lowest three rows show parameter adaptation in a DNF with IP and shifted input after the 20th min with- and without the natural gradient. The

parameter adaptation is shown for the gain (F) and bias (G), and the input-output correlation (H) is plotted. The experiment with NG is stopped after the 50th min, the

experiment without NG is run until minute 100. See text for further description.

down-scaled by the factor of 6, which is too low to initiate DNF
output activity. However, the gain and bias are adapted such that
the DNF output distribution is restored within 10 min in the
experiments. In particular, mainly the gain is adapted, the bias
remains in its regime, which is expected as the input variance
is manipulated. In Figures 6D,E this drop and the recovery in
the output activity is visible in the histogram “gap” around the
25th min. The absence of DNF output is partly obscured, as the
histogram is computed within a 5 min time window and the IP
parameter adaption is completed within a similar time frame as
visible in (Figures 6F,G).

While the output distribution is mostly restored by IP for a
down-scaled input signal, the massive drop in the input-output

correlation in Figure 6H indicates an additional aspect of the
adaption with IP. The input signal S(x, t) is scaled by the gain
a together with the recurrent interaction kernel ω(x − x′). As
the gain is increased in order to compensate the decrease in the
input signal intensity, the recurrent interaction is also increased.
Thus, in this case there is a shift in the relative contributions of
input and recurrent “feedback” to the current activity state u(x, t)
of the DNF. The increased relative contribution of the recurrent
component increases the stabilization of the DNF output and
thus, reduces the input output correlation. This effect is also
visible when comparing the final output distribution for the
down-scaled signal in (Figure 6C) with the output distribution
in (Figure 6B) for the original input signal. In Figure 6C there is
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an increase in the “high” output states near one and a decrease in
the “medium” output activity.

4.2.2. High Amplitude
The second experiment with respect to varying the input statistics
is analogous to the previous, except that the input is now scaled-
up. After the initial parameter convergence to the original input
signal, the input is scaled to [0, 36] at the 20th min. The re-
adaptation of the IP parameters is then analyzed in Figure 7.

After the up-scaling of the input, the DNF output is driven
into saturation for the majority of all inputs. This is reflected in
Figures 7D,F, where a change in the output distribution is visible.
Like in the previous experiment, the effect is partly obscured by
the temporal integration within a 5 min time window in order
to compute the histogram. As a consequence to the input up-
scaling, the gain is lowered (Figure 7F) for an appropriate re-
scaling of the input signal. Similar as in the previous case of a
lowered input amplitude, the bias remains stable. The final output
distribution in (Figure 7C) and at the 50thmin in (Figures 7D,E)
shows that the parameter adaptation by IP is capable to retain the
desired target output distribution.

However, just as in the previous experiment, the
compensation of a re-scaled input signal with the gain
parameter shifts the relative contributions of input and recurrent
interactions, in this case toward a higher contribution of the
input signal. As the gain parameter is decreased, the recurrent
interactions are weakened in their contribution to the DNF
activation. Thus output peaks are less stabilized with respect to
input fluctuations. This is visible especially in the input-output
correlation in Figure 7H. Here the correlation reaches one,
implying a strongly input driven system output. This decrease of
recurrent interactions is also visible when comparing the output
distributions before (Figure 7B) and after (Figure 7C) the input
up-scaling. While for the original input the IP parameters lead to
a suppression of intermediate outputs, these are more prevalent
after the input down-scaling.

4.2.3. High Offset
In the last experiment, the input signal S(x, t) is shifted in its
mean by 12, thus from the range [0, 6] to [−12,−6]. In contrast
to the previous two experiments, in which the input signal was
scaled, this experiment requires an adequate adaptation of the
bias only in order to compensate the input shift. This experiment
is further utilized to illustrate the impact of the natural gradient
in the gradient descent. For this, the experiment is carried out
twice: first the IP adaptation with the natural gradient (NG) will
be described as before and then the case of adapting IP without
the NG is compared.

In the left column in Figure 8 the case of the adaption with
NG is illustrated, analogous to the previous experiments. After
the 20th min the input is shifted, which leads to decreased output
activity in the output histograms (Figures 8D1,E1). As visible
in Figure 8G, the bias is adapted such that it compensates the
shifted input signal. Although, the gain is initially modified, it
converges back to the previous value, which will be discussed
in a subsequent paragraph. When comparing the DNF output
distributions in (Figures 8B1,C1), no difference is noticeable.

This also holds for the output histograms (Figures 8D1,E1),
which look the same at the 50th min as before the input shift at
the 20th min.

In contrast to the previous experiments, the gain is ultimately
not adapted, such that the relative contributions from the input
signal and recurrent interactions remain the same. The input
manipulation can be fully compensated by the additive bias.
Therefore, the input-output correlation in (Figure 8H) also
converges back to the previous value.

The decrease of the gain for inputs with high bias (i.e., shifts)
is a “input variance overestimation” problem of the IP algorithm
(Neumann et al., 2013). The input variance, i.e., the deviation of
the input signal from zero, can be reduced by lowering the gain,
thereby reducing the error of the output distribution with respect
to the target exponential distribution. However, this is only a
short term solution as for an increasing bias the optimal gain
returns to the former value. The standard gradient descent of IP
learning therefore drastically lowers the gain in order to increase
it again when the bias has been adapted such that the input
mean is compensated, visible in the orange graph in Figure 8F.
In this case the computation of the natural gradient, i.e., the
transformation of the gradient from the Euclidean space into the
Riemannian space prevents the reduction of the gain to nearly
zero and only leads to a slight input variance overestimation,
visible in the de- and increase of the gain around the 25th min,
shown in the blue graph in (Figure 8F). At this point in time the
bias reaches a regime in which the input leads DNF output and
the gain starts to converge back to the previous value. Thus, in
this experiment the impact of the change of the gradient metric
on the gradient direction is directly visible, as the adaptation
of the gain in a “wrong” direction is reduced, compared to
the adaptation without NG in (Figure 8F). Although, the two
learning algorithms have the same learning rate of η = 0.001,
the learning with NG is much faster. This is in particular visible
when comparing the parameter adaptations in Figures 8F,G, but
also when looking at the output histograms in Figures 8D2,E2.
Note, that in the output distribution plotted in Figure 8C2 the
parameter adaptation by IP has not converged yet. Altogether,
the use of the NG leads to a significantly faster convergence with
less fluctuations in the parameter adaptation.

5. DISCUSSION

In this paper, the adaptation of dynamic neural fields by intrinsic
plasticity is proposed, analogous to IP in single neuron models.
The core idea behind our approach is, first, to define scalar
measures of the input and output of the whole DNF. Here, the
maximum output and the input at the corresponding location on
the feature dimension are chosen. Second, a target distribution
of the DNF output measure is defined, which determines the
statistics of the output. Since we selected the maximum output
as the output measure, the target distribution in our case
characterizes the distribution of “peak,” i.e., detection, vs. “no
peak,” i.e., non-detection, states. In this paper, the exponential
distribution is chosen, analogous to the conventional IP learning
in single neurons. However, the proposed approach is not
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limited to the exponential distribution, other target distributions
as e.g., the Gaussian may be used. The choice of this target
distribution for IP will shape the overall dynamics of the
DNF. If the DNF output should spend more time in the
activated state the Kumaraswamy’s double bounded distribution
parameterized with a+ b= 1.0 could be an interesting candidate
(Kumaraswamy, 1980).

These design choices enable to derive learning rules for IP,
which adapt the bias (i.e., resting level) and the gain in order
to approximate the target distribution of the DNF’s output. For
an appropriate kernel parametrization, IP ensures a highly input
sensitive operating regime for the DNF dynamics, defined by
the hyper-parameters of the target distribution. Therefore, only
the DNF recurrent interaction kernel parameters remain to be
tuned manually. This autonomous adaptation of the DNF resting
level and gain is in particular relevant for architectures in which
DNFs receive inputs with unknown distributions, but for which
the desired output distribution is known, as in our example
in the introduction, where 20% of the most circular contacts
should be detected as being “flat surfaces,” i.e., should produce
a suprathreshold activity peak. Furthermore, a DNF with IP is
capable to compensate moderate changes in the input amplitude
(i.e., variance) and mean—however, at the cost of a shift in
the relative contributions of input and recurrent interactions to
the DNF output. This shift in relative contributions is a clear
limitation of the proposed approach when large changes in the
variance of the input signal are expected, as revealed in the high-
and low-amplitude experiments.

Adaptation in our model changes a global gain and bias for
the entire neuronal population, modeled by the DNF, in contrast
to independent adaptation of a local gain and bias for every
neuron in the population. Formulation of IP for population codes
in a local, single neuron based fashion is not straight-forward:
In population encoding, the activity of a neural field encodes
the confidence that the input feature has the value, to which
the underlying neurons are tuned, i.e., the neuron has a local
receptive field in the input space of the DNF. It is only for
a neuron that encodes relevant feature values (i.e., the input
regularly falls within the receptive field of the neuron) that
an adaptation of intrinsic excitability makes sense. In order to
realize an individual adaptation of gains and biases of single
neurons, there needs to be an additional mechanism in place
to adapt the receptive field position (i.e., the input weights) of
each neuron, i.e., to tune the neuron to represent a new feature
value. This would correspond to an adaptive feature resolution
on the population level, with fovea-like effects for feature value
regions with high probability. The originally proposed algorithm
of the self organizing maps (SOM) would be an example of such
a receptive field tuning of a DNF (Kohonen, 1982). The problem
here is the strong dependence on stochastic, uncorrelated input
required for training and maintaining the SOM, which renders
the SOM algorithm inapplicable for highly correlated in time
inputs. This motivates the tuning of global parameters for the
entire population.

There is also a motivation from the biological perspective
for the global adaptation based on IP. In addition to the
plasticity of excitability in individual neurons and their dendritic

structures, accumulating evidence exists of neuronal mechanisms
that perform a multiplicative normalization of entire populations
of neurons (Carandini andHeeger, 2012). The existence of global,
network-wide activity regulation in addition to single neuron
and synaptic adaptations is also proposed in Slomowitz et al.
(2015) based on recordings of cultured hippocampal networks.
In particular, a coupled gain and bias adaptation among neuronal
populations has been proposed as an explanation for results from
large-scale recordings in the primary visual cortex (V1) (Lin
et al., 2015). These biological findings additionally motivate the
proposed implementation of IP in DNFs in this paper, based on a
coupled gain and bias for an entire population of neurons.

This paper also shows the limits of the adaptation by IP, in
particular when the amplitude of the input signal (i.e., variance)
is subject to strong changes. If the input amplitude declines
too much, the increasing gain will eventually reach a regime,
where the recurrent feedback self-stabilizes the DNF output—
independent of the input. In this case the adaptation will lower
the gain and bias again, leading to an on-off oscillation of the
DNF output. This corresponds to the results by Marković and
Gros (2010, 2012), where the authors demonstrate that IP leads
to the destruction of the attractor stability, leading to oscillatory,
and bursting behavior of recurrent neural networks with no- or
very small inputs.

Despite these limitations for strong changes in the input
distribution, this paper shows that the adaptation of DNFs
with IP is feasible and can be used in applications, in which a
DNF architecture is driven by sensory inputs whose statistics
is not known in advance or may change over time. Examples
of such applications could be, e.g., color vision at varying
illumination, or auditory perception with different levels of
background noise. The benefit of this adaptation is that it
simplifies tuning and allows application of DNFs to inputs
whose distribution is only roughly known (e.g., in terms of
the min and max values) while the desired distribution of
DNF output can be specified in advance. In such cases, the
definition of a recurrent interaction kernel and a desired output
distribution with its hyper-parameter(s) drive self-adaptation of
the DNF.
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