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Abstract— Increasingly widespread available haptic sensors
mounted on articulated hands offer new sensory channels that
can complement shape extraction from vision to enable a more
robust handling of objects in cases when vision is restricted or
even unavailable. However, to estimate object shape from haptic
interaction data is a difficult challenge due to the complexity
of the contact interaction between the moveabe object and
sensor surfaces, leading to a coupled estimation problem of
shape and object pose. While for vision efficient solutions
to the underlying SLAM problem are known, the available
information is much sparser in the tactile case, posing great
difficulties for a straighforward adoption of standard SLAM
algorithms. In the present paper, we thus explore whether a
biologically inspired model based on dynamic neural fields
can offer a route towards a practical algorithm for tactile
SLAM. Our study is focused on a restricted scenario where
a two-fingered robot hand manipulates an n-gon with a fixed
rotational axis. We demonstrate that our model can accumulate
shape information from reasonably short interaction sequences
and autonomously build a representation despite significant
ambiguity of the tactile data due to the rotational periodicity
of the object. We conclude that the presented framework may
be a suitable basis to solve the the tactile SLAM problem also
in more general settings which will be the focus of subsequent
work.

I. INTRODUCTION

Grasping and object manipulation are the core capabilities
of robots in assistance and production scenarios. Especially
in the assistance scenario, the ability to learn to manipulate
unknown objects is desirable, since the system cannot rely on
a database of shape parameters of all objects which the robot
may encounter. In such setting, the knowledge about the
object’s shape has to be obtained using the onboard sensors
of the robot. Typically, computer vision is used to estimate
the object boundaries for grasping and object manipulation.
Depending on the visual appearance of the object, its shape
estimation with vision may be poor or unavailable. Since
haptic sensors are available nowadays on most robotic hands,
haptics could be used as a complementary mechanism to
access object shape. Haptic sensors are directly coupled to
the effector and thus provide information, which is directly
relevant for manual manipulations of objects without the
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need to transform the visual features in the correct reference
frame.

Despite its potential for shape estimation, the tactile
feedback is mostly considered to determine, whether the
manipulator has contact to the object and to control the force
of the grasp [24], [25]. To the contrary, humans and other
primates use haptic in a much richer way, e.g. to determine
pose, shape, texture, temperature or weight of the object,
even in the absence of visual feedback [14], [32]. This raises
the question, whether haptic information may be used more
extensively to access objects’ shape.

In this paper, we explore haptic learning in a simple
setting, which allows to access some principled problems
with this approach and suggest a model, which allows to
cope with these limitations. Understanding the mechanisms,
underlying haptic learning, would lead to a modality specific
information which could be fused and complemented with
those of other modalities, e.g. vision.

One constraint, which we set in our work is that the
system has to incrementally build an object representation
in its interaction with this object. We would like to contrast
such incremental, online learning to batch learning, where
all the past experiences are stored in a raw form and are
used to build the model later. In an online learning scenario,
the system starts with a simple uncalibrated manipulation
behaviour, permitting controlled periodic contacts with the
object and improves this behaviour over time by building an
object representation. The latter improves behaviour by en-
abling the agent to predict action outcomes and thus to make
goal directed modifications. In this case, the data acquisition,
training, and exploitation phases are highly interweaved.

Moreover, we are interested in a learning mechanism,
which is not dependent on a specific behavior, e.g. a pre-
defined series of specific gasps of a rigidly mounted object.
Indeed, most state of the art approaches to haptic learning
use one of two simplifications in the haptic learning process:
the first class of systems uses rigidly mounted objects for
learning their shape and geometry, e.g. [19], [17], [7], the
second class of systems uses haptics to localize objects, the
shape of which is assumed to be known [23], [5], [15].
If the geometry is initially unknown and the pose of the
object changes during the learning phase, the haptic learning
problem becomes equivalent to the well-known simultaneous
localization and mapping (SLAM) problem in navigation.

In this case, the pose of the object has to be estimated
and continuously tracked during online manipulations based
on the perceived features at contact points. Small errors in
this pose estimate accumulate over time, which calls for an
error correction mechanism to prevent drift in the estimate. In



the field of robotic mobile navigation, multiple approaches
are known to solve the SLAM problem, for a review see
[8], [2]. There have also been several biologically motivated
approaches to the problem, e.g. [18], [20], [6].

Tactile SLAM has several differences compared to its nav-
igation analogon, however. First, the task here is to localize
an object with respect to the robot instead of localizing the
robot with respect to the environment. Second, in tactile
SLAM, the sensor information is only present during periods
of object contact in contrast to the typical continuously
available information of distance sensors (e.g. sonar, infra-
red, or laser). This leads to only very sparsely distributed
information in space, comparable to solving SLAM in nav-
igation by only using the bumpers of a robot. The resulting
sensor data typically does not have spatially distinct features
as surface curvature, edges, and texture are often ambiguous
in space. Hence, the capabilities of computing, tracking,
detecting and matching unique or salient features, which
serve as landmarks, are very restricted. This renders most
traditional solutions to the SLAM problem unsuitable for
a purely haptics based setup, although modifications for
particle filters have recently been proposed in order to cope
with spatial sparsity of contact informations [15]. In [9]
the tactile SLAM problem is approached by rasterizing
the environment into a binary grid-map encoding ‘empty’
or ‘taken’ and then including this map into the particle
filter. Tactile measurements are then incorporated by using
assumptions with respect to the environment. However, this
approach lacks the necessary precision for predicting tactile
input patterns and is additionally computationally intractable
for a reasonable map resolution.

The model, which we propose here is inspired by biolog-
ical processing of haptic pathways, in that the preprocessing
of information leads to biologically plausible features and the
performed computational methods respect neural processing
mechanisms. This allows us to potentially use and refine
the same model in accounting for human behavioural data
on haptic learning, which we will have access to within
our project. One principle which we take from biology is
separation of shape representation from the representation
of the object pose, i.e. an explicit object representation.
In humans there is evidence for this from developmental
psychology studies, e.g. [31], [33]. Neurobiological work
also indicates that object representations are invariant to the
pose, which holds for vision [12] as well as for haptics
[21]. This motivates learning of the explicit object shape
representation in our model. Insights into the processing of
haptic information show similar mechanisms to those known
from the visual pathway [4], [10], [32]. Additionally, vision
and haptic pathways for constructing an object representation
are highly interleaved, multi sensory processing and integra-
tion takes place at a variety of stages [13], [11], [22], [21],
[34]. This legitimates the application of algorithms form the
field of biologically inspired computer vision research [16]
to tactile sensor data.

In the experimental setting, we use two fingers of a robotic
hand to rotate different objects and build the representation

of the objects’ shape online, in an incremental fashion.
The available features from haptic data are locally matched
in the rotational dimension in order to retain a consistent
representation of the object shape; errors in this repre-
sentation are detected and corrected. This simple example
demonstrates the principled ability of the model to build
an object representation in an online haptic learning process
and thus enables first steps towards solving the fully-fledged
haptic SLAM problem.

II. OVERVIEW OF THE ARCHITECTURE

This section gives an overview of the developed architec-
ture for using haptics to build object shape representations.
A scheme of the architecture is shown in Fig. 1. The neural-
dynamic model, which implements the central parts of this
architecture is further explained in Section III, and the setup
used for evaluation of the model is described in Section IV.

In the upper part of Fig. 1, the behavioral loop is depicted,
consisting of a reactive behavior controlling a robot ma-
nipulator, which provides tactile and proprioceptive sensory
feedback. The remainder of the figure shows the steps
necessary to learn a model of the object shape based on
the acquired haptic data.

We assume that the kinematics of the hand are known, thus
a forward model (IV in Fig. 1) is able to give an estimate of
the manipulated object pose (V). The features are extracted
from the tactile sensors and transformed to external 3D space
using the kinematics (I) and then into the object coordinate
system (VI), based on the current estimate of the object pose
(V). The tactile information is then temporally integrated into
a pose invariant model of the object shape (III).

The central part of this architecture is the module for
detecting and correcting errors in the pose estimate according
to the current tactile inputs and the object model (II in
Fig. 1 ). Errors in the pose estimate accumulate due to noise,
slippage, and unintended object manipulations, specifically
during grasping and the release of a grasp. This requires to
split the error into suitable proportions of shape model and
pose model adaptation - which is the core problem to be
addressed by SLAM.

This problem, when to adapt the object representation
and when to correct the pose estimate, can only be solved
to the degree of object ambiguity. The objects we used
in our experiments, as well as many everyday objects, are
symmetric and repetitive in their appearance, which makes
localization of the object necessarily ambiguous, i.e. the
same features may be detected for multiple object poses. The
correction of the object pose estimate based on the tactile
inputs corresponds to a tactile tracking of the object and is
visualized by the “Tracking” path from III to V in Fig. 1.

A neural-dynamic implementation of the computations in
the central modules of the architecture (“Object Model” and
“Matching”, II and III in in Fig. 1) will be presented in the
next Section.

III. THE MODEL
In this Section we describe the neural-dynamic model,

which implements the object mapping and tracking, whereas



Fig. 1. Overview of the general architecture: black lines with a dot at
the end indicate a parametrization relationship. Arrows pointing to boxes
indicate inputs for processing in the box, and arrows passing through boxes
indicate a parametrized transformation of the information through the box.

Section IV describes the robotic experiments in which the
model was evaluated.

A. Dynamic Neural Fields (DNFs)

In our architecture, DNFs are used to represent the current
tactile features, to match these to an accumulated long-term
memory of the object shape, and to compute errors in the
pose estimation, thus stabilizing the object-centered shape
representation.

Dynamic Neural Fields (DNFs) are activation functions,
which first were introduced to describe activity of neuronal
populations [1], [35] and have been used in cognitive science
to model dynamics and development of cognitive processes,
such as, e.g., memory formation, decision making, or cate-
gorization [30]. DNFs were first applied in a robotic context
in the attractor dynamics approach to navigation, where they
were used to stabilize target representation during occlusions
[3]. Today, DNFs are one of the main tools in the dynamical
systems approach to cognitive robotics and enable integra-
tion of low-level sensory inputs and motor dynamics into
cognitive architectures, e.g., scene representation, sequence
generation, and grounded language [28].

DNFs, used in our architecture, follow Eq. (1), which
defines the rate of change of the activation function:

τ u̇(x, t) = −u(x, t) + h+ S(x, t) +∫
f
(
u(x′, t)

)
ω(|x− x′|)dx′. (1)

In Eq. (1), u(x, t) is the activation of the DNF over
dimension x, which describes a behavioral variable, such

as a perceptual feature, location in space, or motor control
variable (it was the orientation of the detected feature in
our implementation here). The term −u(x, t) stabilizes an
attractor for the activation function at values, defined by the
last three terms in the equation. The negative resting level h
ensures that the DNF produces no output in a deactivated
state and S(x, t) is an external input, driving the DNF.
The convolution term models lateral interactions between
sites of an active DNF, shaped by the interaction kernel,
ω(|x − x′|) = cexc exp

[
− (x−x′)2

2σ2
exc

]
− cinh exp

[
− (x−x′)2

2σ2
inh

]
,

with a short-range excitation (strength cexc, width σexc)
and a long-range inhibition (strength cinh, width σinh). A
sigmoidal non-linearity, f

(
u(x, t)

)
= 1

1+exp[−βu(x,t)] defines
the output of the DNF, i.e. activation, with which the DNF
impacts on other dynamics in the overall architecture, as well
as on its own dynamics through the lateral interactions.

The lateral interactions of DNFs stabilize a localized peak-
attractor for the activation function, i.e. even for a noisy
and varying input, the DNF “stabilizes a decision” for the
most active location, leading to discretization of continuous
sensory and motor spaces, which facilitates their cognitive
processing.

A two-dimensional DNF is used in our model to estimate
the deviation of the corrected estimation from the uncor-
rected one and thus estimates the error in perception of the
feature. This comparison mechanisms has been previously
used in a neurally-inspired model for coordinate frame
transformations [29].

To build a long-term memory of the object’s shape, we
use memory trace dynamics, Eq. (2), [27]:

τlṖ (x, t) = λbuild
(
− P (x, t) + f(u(x, t))

)
f(u(x, t))−

λdecayP (x, t)
(
1− f(u(x, t))

)
. (2)

Here, P (x, t) is the strength of the memory trace at site
x of the DNF with activity u(x, t) and output f

(
u(x, t)

)
,

λbuild and λdecay are the rates of build-up and decay of the
memory trace. The build-up of the memory trace is active
on sites with a high positive output f

(
u(x, t)

)
, the decay is

active on the sites with a low output.

B. Computing Features from Tactile Inputs

The proposed model is inspired by neural processing of
haptic pathways and therefore operates on tactile features
which are similar to features known to play a role in visual
pathways. The following features were computed: zero-,
1st, and 2nd order moments, which correspond to position,
orientation and curvature of the tactile contact, respectively.

All these features were computed with respect to a 3D
external coordinate system, combining the tactile sensor
information with joint angles, based on the known kinemat-
ics. In the current setup, object motion is restricted to one
degree of freedom: rotation along it’s z-axis. Therefore only
rotational estimates and corrections need to be performed,
which is why the positional information of the object is
not incorporated. The perceived tactile features are rotated



according to the current estimate of the object pose. This
transforms the tactile input into the object coordinate system.
These features are used as input to the DNF model, as
described next.

C. Computing the pose-invariant shape representation

The distribution of the tactile features (in particular, the
normals’ orientations, see Section IV) within a short time
window is given as input to two pathways of the model.
The first pathway is fast and holds the current information
of perceived tactile features, while the second pathway is
operating at a slower speed and accumulates a long-term
memory of past inputs. The latter serves as the object shape
representation and is used for matching with the current
estimate of the first pathway, in order to correct for errors
in the pose estimate. The neural-dynamic model, which
implements both pathways is shown in Fig. 2.

a) Surface Detection: The fist step in both pathways
is to classify, whether the current input comes from a flat
surface by generating an activation peak at the location of
the DNF, which corresponds to the orientation of the detected
surface. This surface detection is naturally accomplished
by the DNF which receives the contact orientation feature
as input, because surfaces give more tactile measurements
with the same orientation, while edges lead to a continuous
change in orientations. The dynamics of the neural fields
can easily be tuned to only give rise to a stable peak when a
sufficient number of measurements with the same orientation
is reached. The time constants of the Surface DNFs (Fig. 2)
should ideally be coupled to the movement velocity of the
fingers to achieve this behaviour for all rotation speeds.

b) Memory and Matching: In the second pathway,
the activation peak, which represents a detected surface, is
transferred into Memory (Fig. 2), through the memory trace
dynamics specified in Eq. (2). The Memory is exponentially
fading and is tuned to have very slow fading time constant
in order to hold sufficient information of past orientations of
the detected surfaces.

In the first pathway, the orientation of a detected surface is
transferred to a Match DNF (Fig. 2). The lateral interactions
in this DNF shift the representation of the currently perceived
surface towards the position of a neighbouring peak in the
Memory. This happens if the activation peak of the currently
detected surface has a similar position (i.e. orientation) in the
Match DNF as a previously detected surface, stored in the
Memory.

c) Error Estimation and Correction: The matched acti-
vation peak represents the corrected orientation and is com-
pared to the original activation peak in a two-dimensional
DNF (labeled “Comparison” in Fig. 2) in order to determine
if the matching process altered the peak position. A diagonal
readout of the two-dimensional DNF, i.e. projection to a
one-dimensional Error DNF (Fig. 2), provides information
of the peak shift due to the matching. This mechanism
is inspired by a neural implementation of reference frame
transformations, described in [29].

The deviation of the peak position from the center of
the Error DNF is subsequently used to correct the current
estimate of the object’s pose. The corrected estimate of the
pose is then used to transform the next perceived feature into
the corrected object-centered reference frame.

Together, the two pathways lead to a fast matching of
current with memorised features and a correction in the pose
estimate.

Fig. 2. Overview of the Model - An orientation selective filter bank
is input for a mapping and a tracking pathway, consisting of multiple
DNFs. Mapping in the gray underlayed DNF and MT corresponds to the
object model and operates with a slower time constant. Tracking utilizes
the memory and outputs a correction term for the estimated object rotation.

IV. EXPERIMENTS

In our experimental setup a Shunk Dexterous Hand 2
(SDH-2) is used and configured such that only two of the
three fingers are used, each having two degrees of freedom
(i.e. controlled joints). The two phalanges of the fingers are
each equipped with a tactile sensor. The tactile sensors, used
in our experiments, consist of an array of 6 × 13 tactile
elements (texels) on the distal phalanges, although the width
decreases to 4 texels at the fingertips. Figure 3 shows the
robotic setup, used for evaluation of the model, as well as
the manipulation behaviour used in our experiments.

Rotation experiments were performed with three different
aluminium objects (n-gons): a round cylinder, an 8-sided and
a 6-sided cylinder which had the same medium diameter
(4.0cm) and object height (7.0cm). The objects had a hole
in the bottom, by which they were attached to a steel axis
to prevent translations of the object. This leaves one degree



of freedom to study errors accumulated during the object
manipulation: a rotation along the fixed axis.

Fig. 3. Left: sketch of the rotation behaviour; Right: picture of our
experimental setup

A. The Manipulation Behavior

The forward kinematics of the fingers was solved analyt-
ically and the desired rotation behaviour was learned on a
set of kinesthetic teaching examples with objects of different
sizes. The computation of the desired mapping was done via
Principle Component Analysis (PCA) on the recorded data
in joint angle space. Only the first two PCs were used as
parameters for the rotation behavior: the first PC corresponds
to the rotation angle of the fingers and the second PC
corresponds to the grasp diameter.

In particular, the rotation parameter was constantly in-
creased until one of the tactile sensor activation blobs reached
the spatial limits of the sensor surface. When the border of
the sensor surface is reached, the grasp is released via the
grasp diameter parameter and the rotation parameter is reset
to a point-symmetric position (see Fig. 3, left). Finally, the
grasp is closed and the rotation movement begins all over
again. While the rotation is performed, the grasp diameter
is continuously controlled for, such that the tactile sensors
report a desired pressure level and do not loose contact with
the object. This behaviour may be generated autonomously
using the neural dynamics approach, as described in [26].

B. Processing the Haptic Data

During manipulation, the joint angles, centroids and co-
variances of the tactile pressure patterns in the tactile coor-
dinates were stored, including the estimated object rotation,
and the two grasp parameters (rotation and diameter). The 3D
position of the contact points and the corresponding normal
vector of the tactile sensor surface were computed using the
forward kinematics.

The orientation of the contact normals revealed itself as
the most informative feature in our experiments and was used
for shape reconstruction in the current implementation of our
model. The normal of the object surface did not necessarily
coincide with the normal of the sensor surface, due to the
rigid fingers.

Curvature was modelled by the eigenvectors and eigen-
values of the covariance of the tactile pressure “blobs”,

along with the angle of the first eigenvector. The information
about the curvature of the contact area was very noisy
and suffered from tangential stress (i.e. shear forces) along
the sensor-surface which lead to strong distortions of the
percieved pressure patterns. Thus, information extracted from
the covariance of the pressure blobs did not lead to any
improvements in the results, but may by used in the model
with a different hardware, in which curvature measurement
is less effected by the tangential stress.

The difference between positions in 3D of two consecutive
tactile features measurements in time allows to predict the
rotation, and if there is an pose estimate, also the translation
of the object. Since this work focuses on the compensation
of noise and perturbations in the rotation only, the contact
normal-vectors and the estimated object rotation were used
by our model.

C. Sources of Errors
Due to only having two joints per finger, there are not only

forces orthogonal to the object surface, but also tangential
components. These lead to a uncontrolled movement when
the object is released, which cannot be detected nor prevented
in the proposed setup. Together with the unintended slight
shift and rotation of the object when the grasp is closed again,
these are the main sources of noise in the pose estimate. In
general, these should be systematic and indeed there is a
strong tendency of systematically underestimating the object
rotation. In contrast, slippage was nearly negligible, due to a
very “grippy” texture on the object surface. In Section V, we
demonstrate how the model compensates for these errors.

D. Generated Datasets
With each of the objects, five datasets were recorded, each

consisting of an (estimated) rotation of four times 360 de-
grees. Hence, 15 datasets were collected, in which the tactile
patterns and joint angles were sampled with approximately
2-3 Hz and the according features were computed and stored.

An exemplary subset of two rotations is visualized in
Fig. 4 from the first dataset of the six-sided object, where
finger one corresponds to the upper finger of the sketch in
Fig. 3. Shown are the positions and surface normals of the
tactile contacts during two rotations of the object for each
finger, respectively.

It is clearly visible, that there is a drift in the object rotation
estimate as the data points do not align for consecutive
full rotations of the object. The disparity in the noise level
of computed contact curvatures of the fingers (not shown)
indicated that noise is affected by the direction of tangential
forces, induced by the movement direction of the fingers.

Using these noisy measurements directly to build an
object’s shape representation would lead to large errors in
this representation accumulated over time, which motivates
application of our neurally-inspired model to correct the
measurements in an online learning process.

V. RESULTS
To evaluate the benefit of the neural-dynamic model

presented in this paper, three different estimators of object



Fig. 4. Raw, uncorrected data for a six-sided object. The position and
orientation of the contact normals in the object coordinate system (used as
input to the model). Left column shows the data for finger one, the right
column for finger two. Note how errors in position estimates lead to a drift
of features over time of manipulation (two full rotations of the object are
shown here).

shape, i.e. the number of detected surfaces during manipu-
lation, were used, each operating on the tactile input to the
model:

First, the accumulated histogram of all past contact normal
orientations is computed. This is the most simple approach
to classify the number of surfaces based on orientations,
which does not use the memory trace and the error correction
mechanism of our model.

Second, the memory trace of the proposed model is used
for evaluation, however without any correction in the pose
estimates. In this case, the Memory performs a suppression
of weak (i.e. small) surfaces and additionally implements a
fading memory.

Third, the memory trace of the model with error correc-
tion. Here the full model of Fig. 2 is used and continuously
matches the current orientation of a detected surface with
the Memory and outputs a correction term for the pose
estimation.

Each estimator was analyzed in order to determine the
number of detected surfaces. First, the activation of the
estimator was smoothed with a Gaussian filter in order to
remove local optima due to small amounts of noise. Second,
the number of peaks above a threshold (0.4) are counted
using Matlab Signal Processing Toolbox. The results are
not sensitive to the exact threshold value, as peaks, which
correspond to surfaces typically have values from 06. to 0.8.

Figure 5 shows the mean and standard deviation of the
number of estimated surfaces using the three estimators. The
number of surfaces detected is shown for each measurement
step (object manipulation action) and is computed by aver-
aging the five datasets for each object.

In general, the simple accumulated histogram (first esti-
mator) and the uncorrected model (second estimator) are
incapable of building a consistent representation of the object
shape, as the errors in the pose estimate are integrated and
lead to a constant drift and the number of detected surfaces
strongly fluctuates over time (see Fig. 5, blue and green
lines). Note, how only memory trace with error correction

(full model) converges to a correct estimate of the number of
surfaces of the objects (red line on the three plots in Fig. 5).

As the Memory is empty in the beginning and only incre-
mentally builds up, the number of surfaces is overestimated
during the first 360 degrees of the rotation. This is because
every new surface is “corrected” into the direction of the
previously seen surface and has no counterpart on the other
side jet. However, during further exploration of the object
the model shifts and merges the orientations of surfaces in
the Memory and finally converges to a stable representation,
as can be seen in Fig. 5, red lines.

Fig. 5. The mean and standard deviation of the number of estimated
object surfaces, evolving over time (i.e. object rotations). For each of the
three objects (subplots) five datasets were used for computing the graphs
with three different methods, respectively. Blue: based on an accumulated
histogram. Green: based on the proposed model with deactivated error
feedback. Red: based on the proposed model with error correction. All
approaches operate on a orientation sensitive filer bank and are smoothed
with a Gaussian filter before the number of peaks are counted.

For the round object, the contact normals only lead to
a low activation in the surface detection DNF which in
turn leads to a memory formation which is subthreshold.
Therefore, no surfaces are found by the proposed model in
any of the datasets with the round object, which is a clear
advantage over the histogram approach, which detects several
false surfaces.

In Fig. 6, the time-courses of the histogram, the uncor-
rected memory, and the corrected memory are shown as
the rotation behavior is performed for the six-sided object
(dataset 1). In the histogram approach, each row (i.e. every
rotation step) is normalized for an increased visibility. The
memory is intrinsically normalized, as given by Eq. 2. Note
the clear increase in alingment of the detected surfaces during
the rotation when the model performes corrections in the
pose estimate (“Corrected MT” in Fig. 6).

Figure 7 shows the mean and standard deviation of the
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Fig. 6. The histogram, uncorrected memory (i.e. memory trace) and
corrected memory for dataset 1 of the 6-sided object. Note that the y-axis
is circular and should have six equally spaced peaks alinged for all rotation
steps.

detected number of surfaces for the second half of each
dataset of the recorded data. The corrected memory trace
model shows improved performance compared to other ap-
poraches, see red bars in Fig. 7. The forth dataset of the
six-sided object shows a worse performance, due to the late
convergence of the object shape after approximately three
full rotations (around 6pi in Fig. 5). Nevertheless, even in this
case, the correct number of surfaces is detected and sustained
by the full model after three full rotations (Fig. 5).
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Fig. 7. The mean and standard deviation of the number of detected surfaces
for the second half of each recorded dataset, excluding the initial “build up
phase”.

Corresponding to finding the right number of surfaces, the
model also finds an appropriate correction for the orientation
estimate of the object. Fig. 8 shows an improvement in align-
ment of measurements, accumulated over time compared to
the raw data in Fig. 4. The shown data are the last two
full rotations of dataset one of the six-sided object, with
the corrected orientation estimate incorporated. Compared
to the uncorrected raw data (Fig. 4), the features (surfaces),
detected during two full rotations are aligned much more
precisely.

VI. DISCUSSION

Learning an object representation and tracking its pose
is crucial for improving and planing manipulations, as it
enables the prediction of the outcome of movements. In
this paper, we proposed an online, neurally inspired model
capable of learning an object model from purely haptic data.
The object model amounts to a representation of features,

Fig. 8. The corrected feature measurements for a six-sided object.
The correction of the estimated location of features in the object-centred
reference frame by the neural-dynamic model for haptic learning aligns
feature measurements over several (here, two are shown) full rotations of
the object. See Fig. 4 for a comparison.

relevant for object manipulation in an object-centered space.
Evaluation showed that the full model clearly increases the
object shape precision, compared to directly integrating the
raw data.

Here, we discuss several limitations of the current imple-
mentation and the steps we planned to overcome those.

Going towards 3D haptic SLAM, i.e. localizing the ro-
tation and position in 2D space, is a necessary step for
enabling the prediction of tactile sensor inputs from efferent
motor signals. Thus, one of the next steps in our work
is to incorporate information about translational movement
into the model. Currently, the information of the position in
space of tactile contacts was not used and the object position
was neither estimated nor corrected by the model. However,
the position of tactile contacts is available along with the
orientation of the contacts, which was used in this paper,
and may be incorporated in order to independently estimate
the object position.

It is obvious that the sensitivity of the matching process
determines the spatial resolution of the features which can
be detected. Features in the present model are only distin-
guishable by their pose, which is exactly the variable in
need of correction. The matching process in the Match DNF
pulls an activity peak, which represents a surface, towards
the neighbouring peak in the Memory DNF. If the matching
neighbourhood is too broad, distinct features stemming from
different surfaces, may be matched and the pose estimate is
“corrected” in order to align those. On the other hand, if the
matching neighbourhood is too narrow, revisiting the same
feature once again will lead to a new feature in the Memory,
due to perturbations in the true object position.

In order to overcome these limitations, higher order fea-
tures, which may consist of specific combinations of lower
level features, should be considered. More specifically, com-
binations of surfaces and edges as well as the angle of an
edge (distance between the surface-peaks in the histogram)
will be investigated in future research. Additionally, improv-
ing the feature of the contact surface curvature by removing



“ghost contacts” is expected to further improve the results,
due to a richer representation of tactile inputs. We have used
this feature already in test runs, but it revealed itself to be
too noisy with the currently used hardware.

The final goal of our project is to close the loop and let the
accumulated representation of the object’s shape influence
the manipulation behaviour, making grasps which follow a
given pattern, e.g. falling on flat surfaces only. To accomplish
this, the acquired object’s shape representation may be used
to generate predictions of the outcome of the robot’s actions.
These could then be used for closing the loop by online
adaptation of the behavior, e.g. to optimize a grasp dependent
cost function.

The present work is a first, necessary step into the direc-
tion of autonomous haptic learning of objects’ shapes. The
model presented here does not depend on the specific robot
manipulator used, nor on the manipulation behaviour, used
to acquire contacts with the object. We hope that future work
will further increase our understanding of tactile features and
memory processes necessary to tackle the main challenges
in haptic SLAM, in artificial as well as biological systems.
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