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Summary
Spiking neural networks (SNNs) can achieve lower latency
and higher efficiency compared to traditional neural net-
works if they are implemented in dedicated neuromorphic
hardware. In both biological and artificial spiking neuronal
systems, synaptic modifications are the main mechanism
for learning. Plastic synapses are thus the core component
of neuromorphic hardware with on-chip learning capabil-
ity. Recently, several research groups have designed hard-
ware architectures for modeling plasticity in SNNs for vari-
ous applications. Following these research efforts, this pa-
per proposes multiplier-less digital neuromorphic circuits
for two plasticity learning rules: the spike-driven-synaptic-
plasticity (SDSP) and synaptic-strength-based spike-timing-
dependent plasticity (SSSTDP). The proposed architectures
have increased the precision of the plastic synaptic weights
and are suitable for spiking neural network architectures
with more precise calculations. The proposed models are
validated inMATLAB simulations and physical implementa-
tions on a Field-Programmable Gate Array (FPGA).
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1 | INTRODUCTION

One of themotivations in the field of neuromorphic engineering is developing configurable hardware to facilitate funda-
mental neuroscience research on complex brain-based neural networks1–3. Commonplace vonNeumann computers
have limitations in simulating spiking neuronal dynamics4 because of their sequential processors and the memory
“bottleneck”. Neuromorphic engineering aims to build scalable and energy efficient computers for running neuronal
models and to enable a large number of parallel computations with efficient real-time performance4–6. Depending on
the used technology, the state of the art neuro-computing platforms can be divided into analog, digital, mixed signal, and
memristor-based systems1,7,8. Several research groups around the world are developing custom hardware systems for
simulating large-scale neural models1,9,10.

So far, these systems have limitations in applications that require accurate calculations. For instance, simulating
networks with reinforcement learning capabilities11 or convolutional spiking neural networks for pattern recognition
rely on precise values of weights12,13. Today, research on designing neuromorphic systems for those applications
that require precise calculations and high precision of neuronal parameters has a high priority in the field3,14–22.
Networks with reduced precision of weights show severely reduced performance inmany applications. For instance,
only 68% accuracy on the ImageNet dataset after optimization for an 8-bit precision network was reported in23.
Moreover, networks with course discretization of weights aremore prone to adversarial attacks24. Complimentary to
work on higher-precision efficient hardware implementation, as presented here, efforts on improving performance of
low-precision networks have shown considerable progress recently25–27. Currently, thesemethods require off-chip
processing during training and do not target online on-device learning in neuromorphic hardware.

Synapses and neurons are the basic structural elements of neuro-computing systems. The functionality of a silicon
neuron in hardwaremodels is equivalent to the soma of biological neurons. Silicon neurons receive spikes from other
neurons via one ormore synapses, integrate the input signals, and generate output spike events28. Synapses –either
plastic or static– are the second crucial block in brain-inspired neural networks. In biology, plastic synapses rely on
complex chemical reactions to adapt their strength based on pre-synaptic and post-synaptic activities. These short-term
or long-term modifications bridge the short timescales of neural signals and timescales of the learning tasks29–31.
Several attempts have beenmade to develop synaptic plasticity in Very Large Scale Integration (VLSI) technologies31,32 ,
e.g., analog plastic synapses33,34, mixed-signal learning rules35, memristor-based adaptation algorithms36,37, and
digital models18,38–40. While analog (mixed-signal) VLSI and memristor-based devices often require less area and
show lower power consumption, they are not easily reconfigurable for studying different algorithms. Reconfigurability
and flexibility of FPGAs, to the contrary, make them a better suitable substrate for studying different neurally based
models14,18,41,42 . In digital neuralmodels, efficientmethods for implementing bio-inspired circuits have beendeveloped.
Several researchers suggested piece-wise linear approximations, memory look-up tables, and shift-addmultiplication
techniques for reducing implementation complexities of neuromorphic designs14–20,43.
Following these research lines, in this study we present digital multiplier-less neuromorphic realizations of two types of
the long-term plastic synapses. In one of them, the synaptic efficacy alters based on the post-synaptic depolarization
and the calcium concentration in the post-synaptic neuron on the arrival of a pre-synaptic spike (SSSTDPmodel). In
the othermodel, the timing difference between the pre-synaptic and post-synaptic spikes determines the direction of
synaptic adaptation, while the amount of adaptation depends on the initial synaptic strength (SDSPmodel)11,30.

The proposed synapsemodels facilitate hardware implementation of spiking neural network applicationswithmore
precise calculations. The dynamics of the adaptation rules include exponential terms. Since exact exponential functions
are non-synthesizable in FPGA, direct implementation of the original plastic synapse causes high implementation
overheads. Furthermore, themultiplier is an expensive digital block in terms of area, latency, and power consumption.
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Therefore replacing exponential andmultiplier termswithmore hardware friendly blocks can significantly reduce digital
design complexity. This study proposes several novel digital architectures for the SDSP and SSSTDP rules and presents
an estimation of required hardware resources and their speed. Taking advantage of the pre-evaluated optimization
methods, the proposedmultiplier-less models can be used in studying spiking neural networkmodels which need higher
resolutions of activation andweight values.
The paper starts with a description of the two plasticity dynamic equations in Section 2. After that, Section 3 introduces
the proposed implementationmethods for SDSP and SSSTDP. Implementation results and validation in a small neuronal
network are presented in Section 4. Finally, Section 5 concludes the paper.

2 | DYNAMICS OF THE LEARNING RULES

In the neuromorphic field, Spike-Timing-Dependent-Plasticity (STDP) is a widely used learning rule. This plasticity
rule provides an online learningmechanism according to a Hebbian-like biologically inspired learning scheme5. In the
computational neuroscience, several models of STDP have been proposed1,44. Some of thesemodels do not rely just
on the spike-timing difference. Sometimes other factors such as the timing of the pre-synaptic spike, the state of the
post-synaptic neuron’s membrane potential, synaptic strength, and post-synaptic cell type are taken into account30,45.
Next, two learning rules that use such factors are presented. In one of them, adaptation depends on the pre-synaptic
spike arrival and the amount of post-synaptic neuron activity. In the other rule, the synaptic weight value together with
the spike-timing difference affects the synaptic modification.

2.1 | The Spike-Driven Synaptic Plasticity Rule

This section considers a plastic synapsemodel in which synaptic weight starts adapting at the arrival of pre-synaptic
spikes. The change in synaptic efficacy is a function of post-synaptic depolarization and the recent post-synaptic spiking
activity45. The Spike-Driven Synaptic Plasticity (SDSP) learning rule is a biologically realistic rule and thus compatible
with implementation constraints on neuromorphic devices. This rule is also competitive among the state-of-the-art
spike-based machine learning methods1,10,43. According to this rule, every time the post-synaptic neuron emits a
spike, an internal variable Ca2+, which represents calcium concentration and is proportional to the neuron’s recent
spiking activity, is incremented by a value Jc and then decays with a time constant τCa , according to the dynamics of
Equation (1):

dCa2+(t )

d t
= −

1

τCa
Ca2+(t ) + Jc

∑
k

δ(t − tk ), (1)

where tk is the emission time of the k t h spike. The simplified governing equations of the synaptic efficacymodification
for a given synapse at the arrival of each pre-synaptic spike are as follows:

X =


X + ∆XP : ϑm < VmP ost (tpr e ), ϑ lP < Ca2+(tpr e ) < ϑhP ;
X − ∆XD : ϑm > VmP ost (tpr e ), ϑ lD < Ca2+(tpr e ) < ϑhD ,

(2)

whereX represents an internal variable; the terms∆XP and∆XD determine the amplitude of potentiation and depres-
sion;VmP ost (tpr e ) represents the post-synaptic neuron’s membrane potential at the arrival time of the pre-synaptic
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spike; and ϑm is a threshold value that determines whether the weight should be increased or decreased. The terms ϑ lP ,
ϑhP , ϑ lD , and ϑhD are threshold values that determine in which conditions theweights are allowed to increase, decrease, or
should not be updated. Alongwith the instantaneous adaptations, the internal variable of the synapse,X , is continuously
driven toward one of two stable states, depending onwhether the current value is above or below a given threshold ϑX :

dX

d t
=


α , ϑX 6 X < XMax ,
−β , XMin < X < ϑX ,

(3)

where α and β are the rates of the constant increase and decrease respectively, at which the synapse is driven to its
high and low bounds (XMax and XMin ). Consequently, the synaptic weights are bounded, and on long time-scales,
they converge to either a high or a low state. All related parameters for the SDSP synapse are extracted from45 and
presented in Table 1. Figure 1 shows how this learning rule works for LTD inmore detail. As shown in the figure, at the
pre-synaptic spike’s arrival, whenever the calcium concentration andmembrane voltage of the post-synaptic neuron
meet the weight update requirements, LTD happens. The internal variable X is not the synapse output. The actual
output of the synapse is a shifted sigmoidal function output of the internal variableX . This function is used to produce
the Excitatory Post-Synaptic Potential (EPSP) on the arrival of the pre-synaptic spike:

Vpost (X ) =VMax f (X , ϑX ), (4)

where f(X,ϑX ) can be a sigmoidal or hard-threshold function andVMax is themaximum synaptic efficacy1.

2.2 | Synaptic Strength-Based STDPRule

In the STDP algorithm, if a pre-synaptic spike arrives several milliseconds before the post-synaptic spike, the positive
timing difference leads to the synaptic long-term potentiation (LTP). On the other hand, if the post-synaptic neuron fires
before the pre-synaptic neuron, the timing difference is negative, and the synaptic long-term depression (LTD) occurs.
This section considers synaptic strength-based STDP learning algorithm (SSSTDP), in which the timing difference∆t
determines the direction of the modification (and whether a modification happens at all), while the synaptic state
determines themagnitude of the change: strong LTP is induced in synapses with low initial strength while strong LTD
happens in synapseswith high initial strength30 . The following equations describe the synapticmodificationmodel11,46:

τw∆W =


(WMax −W )A

+e (∆t/τ+), ∆t > 0,
(WMin −W )A

−e (∆t/τ−), ∆t < 0,
(5)

whereW ,WMax , andWMin determine the synapse’s amplitude and the dynamic range of synaptic strength variation. ∆t
is the difference between the arrival time of the pre-synaptic and post-synaptic spikes. The time constants τ+, τ−, and
τw determine rates of exponential decay of LTP, LTD, andweight adaptation, respectively. In biology, the time-scale of
these effects is within a timewindow of 20ms. The amplitude for depression (A−) is defined as a ratio of the amplitude
for potentiation (A− = 1/3A+). All parameters are extracted from11 and presented in Table 1. Dependency between
synaptic weight and synaptic modification is shown in Figure 2. In the smaller synaptic weights, LTP is stronger than LTD.
When the synaptic weights increase enough, LTD becomes stronger than LTP. The output of the synapse is computed
according to Equation (4).
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F IGURE 1 SDSP synapse behaviour during LTD based on the selected parameters. If calcium concentration and
post-synaptic membrane voltagemeet the requirements at themoment of the pre-synaptic spike arrival, LTD or LTP
(LTD in this example) happens.

3 | PROPOSED ARCHITECTURES

3.1 | ProposedModel For SDSP

This section presents the digital architecture for implementing a single SDSP synapse. State-of-the-art synapsemod-
els for large scale neural networks39 present synaptic weights using up to four bits. In comparison, the proposed
architecture is suitable for applications that requiremore accurate calculations and need a higher-precision learning
memory11,12 . As the proposed SDSP uses 32-bit registers in fixed-point format –one bit can be chosen for representing
fixed part and 31 bits for representing fractional part– the order of accuracy in synaptic weight adaptation can be given
in terms of 2−31. To describe the proposed SDSPmodel functionality, a minimum-size neural network is considered.
Figure 3(A) shows the high-level schematic of the minimal-size neural network. This network includes a proposed
plastic synapse and two LIF neurons as pre- and post-synaptic neurons. In the shown architecture, an SDSP synapse
(SDSP block) connects a pre-synaptic neuron (Npr e ) to a post-synaptic neuron (Npost ). Besides reacting to the arrival
of pre-synaptic spikes, SDSP block needs the post-synaptic neuron’s membrane potential and an estimation of the
post-synaptic neuron’s calcium concentration (Ca[n]). Therefore, SDSP block receives the pre-synaptic input spikes,
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F IGURE 2 Modification in synaptic weights in SSSTDP learning rule. The weight modification depends on the
current (initial) synaptic weight (Wi ni t ). Strong LTP happens for lower synaptic weights while strong LTD happens for
higher synaptic weights.

TABLE 1 The parameters list of the synapsemodels [11,45]

SDSP SSSTDP

Parameter Value Parameter Value
V th andV r eset 50 and 70 (mV) A+ 1.2
XMax andXMin 1 , 0 A− -0.4
∆XP and∆XD 0.1XMax τ+ 10 (ms)
τCa 60 (ms) τ− 10 (ms)
α and β 3.5 × 10−3XMax τw 10 (ms)
ϑm V r eset + 0.8(Vt h −V r eset ) (mV) WMax 1.0
ϑX 0.5XMax WMin 0.0
ϑ lP 0.3
ϑhP 1.3
ϑ lD 0.3
ϑhD 0.4
∆t 0.1 (ms)
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post-synaptic membrane voltage, and post-synaptic calcium concentration as inputs. Its output is the post-synaptic
potential. As SDSPmodel operation depends on the post-synaptic calcium concentration, the post-synaptic neuron
should include a core for estimating its activity. The proposed simplified equation for modelling the recursive behavior
of the calcium variableCa2+, Equation (6), is based on the calcium dynamics of Equation (1):

Ca2+[n + 1] = Ca2+[n] × Jce
− ∆t
τC a . (6)

Figure 3(B) illustrates the embedded CalciumVariable Estimator (CAVE) block in the post-synaptic neuron. According
to Equation (6), whenever the post-synaptic neuron fires,Ca2+ is increased by Jc , and then decays with a time constant
τCa . Since for a constant time step∆t , the value of e− ∆t

τC a is a constant value, Equation (6) can be implemented simply
using shift-and-add operations.
As shown in Figure 3(A), the post-synaptic neuron includes a CAVE block, while the SDSP synapse block consists of
two sub-blocks: the Internal Variable Adaptor (IVA) and the exitatory post-synaptic potential generator (EPSP). In the
proposed synapse block, the internal variable X is modified in the IVA block based on the Equations (2) and (3). The
extended IVA block is depicted in Figure 3(C). Whenever the pre-synaptic neuron fires, the post-synaptic neuron’s
membrane potential (VmP ost (tpr e )) is compared with ϑm . IfVmP ost (tpr e ) is larger than ϑm , then for LTP to happen, the
value of Ca[n] should meet bothmargins ϑ lP and ϑhP . IfVmP ost (tpr e ) is smaller than ϑm , then for LTD to happen, the value
of Ca[n] shouldmeetmargins ϑ lD and ϑhD . In both cases, if Ca[n] does not meet themargins, there is no potentiation or
depression. Regardless of any potentiation and depression, there is an instant drift for the internal variable X[n]. If X[n]
is bigger than ϑX , there is a positive drift (α ). For X[n] smaller than ϑX , there is a negative drift (−β ).
The local variable X[n] produces the post-synaptic neuron’s potential using the EPSP block. Figure 3(D) shows the
digital implementation of a simple linear approximation of the thresholded sigmoidal function as the EPSP block. The
EPSP block receives X[n] as input and generates the post-synaptic neuron’s input voltage. Note that there arememory
registers at the output of the blocks (B) and (C), storing the outputs and feeding them back for the next iteration.

3.2 | Proposedmodels for SSSTDP

As described in Section II, the original SSSTDP learning algorithm contains multiplications and exponential functions.
Since multipliers and dividers are expensive digital building blocks, implementation of the original model leads to a
high area overhead. Proposed hardwaremodels in this section aim to removemultipliers and exponential parts of the
synapse’s dynamical equations and approximate themwith simple shift and add operations.

3.2.1 | The Look Up TableModel

Table 1 determines the SSSTDP parameters, using which we pre-compute the∆W based on different values of∆t and
W and load it into a look-up-table (LUT). Utilizing a look up table approximation is more efficient compared to common
hardships of real-time computations of exact∆W based on original equations.

3.2.2 | The Piecewise LinearModels

Learning parameters in several applications of spiking neural networkswith high-accuracy calculations take small values.
For instance, in a spiking deep convolutional neural network12, synaptic weight values are positive and maximally
take 1 as synapse strength. In thementioned network, values of the synaptic weights’ modifications are on the order
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F IGURE 3 (A) High-level schematic of theminimal-size neural network. Npr e is the pre-synaptic neuron andNpost
is the post-synaptic neuron. Pre- and post-synaptic neurons are connected through one SDSP synapse. (B) The
proposed architecture for calcium variable estimator (CAVE block) embedded in the post-synaptic neuron. (C) The
proposed block for calculating theX variable (IVA block). (D) The proposed simple linear approximation of a
thresholded sigmoidal function (EPSP block).

of 0.001. These small adaptation values lead to an increase in the learning memory required by SNNs. This leads to
the conclusion that to support small synaptic variations and high learning memory on hardware, a high resolution
of bits is needed. To modify critical parts in the digital design and reduce implementation overhead of the SSSTDP
algorithm along with acceptable precision, three piecewise linear (PWL) models are designed. The proposedmodels aim
to substitute the exponential parts of the synapse equations by implementable PWL functions. The proposedmodels do
not need implementingmultipliers or exponential terms and provide the required resolution for applications that need
high-precision plastic weights. In this work, the 2PWL, 4PWl, and 6PWLmodels divide the domain of function into 2, 4,
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F IGURE 4 Flow diagram of the proposed PWL approximatedmodels: (A) High level schematic of the proposed
synapsemodels in aminimum size neural network. (B) SSST DP2PWL . (C) SSST DP4PWL . (D) SSST DP6PWL .

and 6 segments, respectively. The proposed SSST DPPWL equations are given as follows:

dW

dt
=


(WMax −W )F (∆t ), ∆t > 0 ,

0, ∆t = 0 ,

(WMin −W )F (∆t ), ∆t < 0 ,

(7)

where F (∆t ) is a linear function. Here, F (∆t ) has three different shapes, that can be formulated as FnPWL (∆t ) =

mi × |∆t | + bi , for i = {0, 1, ...n − 1}, wheremi and bi are the slope and intercept of F, respectively. All the pre-calculated
slopes and F-intercepts for SSST DPnPWL are given in Table 2. Obviously, the accuracy of the approximations increases
as a result of applying additional breakpoints, forwhich greater computational overheadwould be expected. To describe

TABLE 2 Coefficients of the proposed PWLmodels.
SSST DP2PWL SSST DP6PWL

m0, b0 -4.72×10−4, 0.0192 m0, b0 -8.22×10−5, 0.0037
m1, b1 -0.0014 , 0.0578 m1, b1 -3.86×10−4, 0.0113

SSST DP4PWL m2, b2 -0.0012 , 0.0196
m0, b0 -1.65×10−4, 0.007 m3, b3 -0.0037 , 0.0589
m1, b1 -1.0×10−3, 0.0195 m4, b4 -0.0011 , 0.0336
m2, b2 -0.003 , 0.0586 m5, b5 -2.533×10−4, 0.0112
m3, b3 -4.9×10−4, 0.021
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the functionality of the proposed digital systems, the data flow diagrams of the proposed SSST DPPWL models are
illustrated in Figure 4. Furthermore this figure shows the proposed synapsemodel inside a simple neural network. The
approximated PWL Equations (7) contain twomultipliers. Formultiplication, the shift-add basedmultiply operations
are employed. This structure facilitates applying a pipeline technique to the neural network implementation, which uses
more registers, but increases the speed of clock frequency.

4 | IMPLEMENTATION RESULTS AND DISCUSSION

This paper presents several digital hardwaremodels for two plastic synapse rules: SDSP and SSSTDP. The proposed
models avoid using anymultiplier due to their cost overheads. Application targets of the proposed synapses are those
with high precise calculations that need a higher resolution of weights to achieve good performance. For example, in11
and12 all synaptic weights have fractional values in the range of [0, 1] and need very small synaptic variations. For
presenting small synaptic variations on the order of 10(−3) or 10(−4), high bit-resolution values are needed. As a proof
of concept, the proposed SDSP, theminimal-size neural network architecture for examining the proposed SDSP, and
the different models of SSSTDP are implemented on Atlys circuit board including Xilinx Spartan-6 LX45 FPGA. All the
architectures were synthesized and simulated in ISE Xilinx tool and data stored in different files and analyzed inMatlab
environment.
Figure 5 illustrates the behavior of SDSP synapse in a minimal-size network containing two neurons and a synapse
during LTP and LTD, respectively. In Figure 5 (left), the synaptic weight is increased based on firing activities of the pre-
and post-synaptic neurons and the post-synaptic neuron’s calcium concentration value. When the synaptic weight value
saturates, nomore increases happen in the synapse. Figure 5 (right) shows that based on the pre- and post-synaptic
neuronal activity, according to Equation (2), the synaptic weight is depressed. The dependence of the synaptic update
values on the spike-timing difference for all multiplier-less SSSTDPmodels is presented in Figure 6. All proposedmodels
are hardware friendly and have enough resolution for high precision applications.
Table 3 presents the device utilization of the proposed SDSP and SSSTDPsmodels compared to evaluations of previous
studies on implementing other synapsemodels. Some of the previous synapsemodels were designed to be used in large
scale neural networks. Some of them usedmore precise models than the ones introduced here. The used FPGA devices
and synthesized tools are different in different works. Therefore, the result of Table 3 should not be used to compare
different synapsemodel but as an overview of similar work.
For examining the proposed SDSP model, a minimum-size neural network is used. Table 4 summarizes the utilized
resources for implementing this network in comparison with other studies on calcium-based synapsemodels on similar
substrate. Hardware implementation results show that the proposed SDSP implementation and the neural network
models have low computing cost compared to other models, while showing a decrease in the maximum operating
frequency.

The proposed SSSTDP hardwaremodels approximate the original synapsemodel of Equation (7). Usually the root
mean square error (RMSE) and normalize root mean square error (NRMSE) factors are used to specify the differences
between the original model and the approximated one. In this paper we used the following error factors:

RMSE =

√√√
1

N

N∑
i=1

(Wor i g i nal −West imat ed )
2, (8)
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Left (LTP). From top to bottom: pre-synaptic membrane
potential, post-synaptic membrane potential, calcium variable,
and internal synaptic variable.

Right (LTD). From top to bottom: pre-synaptic membrane
potential, post-synaptic membrane potential, calcium variable,
and internal synaptic variable.

F IGURE 5 Output of the proposed SDSP synapse in theminimal-size neural networkmodel implemented on the
XILINX Spartan-6.

NRMSE =
RMSE

(Wmax −Wmin )
. (9)

Based on the results from Table 5, the RMSE and NRMSE of the approximations decrease as a result of applying
additional breakpoints, which, on the other hand, require us to usemore resources and lower themaximum operating
frequency.

Although Tables 3, 4, and 5 all present results of the proposedmodels in 32-bit resolution, it is straight-forward to
change the bit resolution in our synapsemodels based on the requirements of the target application. To show the effects
of changing the bit resolution on the results, one of the proposedmodels (SSST DPLUT ) is also implementedwith 8- and
16-bit resolutions. Figure 7 shows the synthesized result and the estimated error for the proposed LUT-basedmodel
over three different bit precision values: 8, 16 and 32. By increasing the resolution, the accuracy is increasing, while the
design becomes slower. These results show that for a more precise model, more resources are utilized. As shown in
Figure 7, the accuracy can be achieved using 32 bits resolution is slightly higher than accuracy with 16 bits. Having a
possibility to choose different bit resolutions is important to explore a wide range of applications – those that require
accurate calculations and those that may profit from a different trade-off between precision and resources used.

For instance, in our recent work on implementing a spiking neural networkwith reinforcement learning (RL) for
learning a context-dependent task47,48 , the 3-layer SNN contained twoWinner Take All (WTA) networks. Implementing
a softWTA requires a subtle balance between lateral excitation and inhibition in a network, in order to achieve dynamical
properties such as sustained activation or multi-bump solutions49. These networks require shaping sum-of-Gaussians
patterns of lateral connections. Although WTA behavior can be achieved with a low resolution of weights, tuning
the dynamics of the network in real-world applications is facilitated if precise weights values can be used. More
importantly, a high resolution of plastic weights was required for the SNN tomodel the learning process in the biological
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F IGURE 6 Comparison of original synapsemodel with Output of the proposedmodels implemented on the XILINX
Spartan-6 (XC6SLX45) FPGA development board. (A) SSST DPLUT . (B) SSST DP2PWL . (C) SSST DP4PWL . (D)
SSST DP6PWL .

RL experiment50. Learning the task in these experiments requires hundreds of trials and the increments on individual
weights are small. High resolution of weight increments allowed us to reproduce biological learning curves using the
hardware SNNmodel47,48.

In order to demonstrate the proposedmodels in a practically more relevant setting, we use SSST DPLUT model in
a larger neural network. As shown in Figure 8(A), we implemented a two layers feed-forward network containing 22
integrate-and-fire neurons. The two layers are connected with 112 exitatory synapses. Each neuron in the output layer
is connected to the other neurons in the same layer using fixed strong inhibitory synapses. Therefore, 56 inhibitory
synapses with strong fixed values construct a winner-take-all in the output layer (inhibitory connections for one neuron
are depicted in Figure 8(A)). Using the plastic hardware synapse model, this network can learn different network
structures on-chip. The proposed synapses can be used for supervised, unsupervised, and reinforcement learning (RL)
algorithms in spiking neural networks. For instance, we have trained an SNN in a supervised waywith a set of training
input and output pairs. Figure 8(B) and (C) show active neurons in input and output layers during each training trial. For
example, neuron N10 in the input layer and neuron N14 in the output layer are active during Trial 1. The network learns
a sinusoidal function between input and output layers during nine trails.

Figure 8(D) shows network behavior and the neurons’ activity raster plots after the training phase. Neurons N0 to
N13 belong to the input layer while neurons N14 to N21 belong to the output layer. Different active neurons in the
input layer make just one of the output layer’s neurons to fire (we useWTA connectivity in the output layer). Figure 9(A)
shows the values of all synaptic weights in this network before and after learning. In the beginning, all synapses are
randomly initiated. After training, some of the synapses between input and output layers are potentiated and others
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remain unchanged. In the network structure, each neuron of the input layer is connected to the output layer using eight
plastic synapses (all-to-all connectivity between layers). As an example, we show change over time of all synapses that
connect neuronN1 to the output layer during training phase in Figure 9(B). Based on the training patterns, one of the
synaptic weights increases.

Synapsemodification consists of several LTP instances that are basedon thepre- andpost-synaptic spikes’ orderings.
In the proposedmodels, synaptic weights remain constant after learningwhich is a useful feature in SNNs substrates. To
show the obtained resolution, the synapse parameters have been set several times in Figure 9(C). One of the parameters
that effects the learning time is the size of the buffer for input spikes. If pre- and post-synaptic events are stored longer,
then the synaptic weights get potentiatedmore often. According to different learning times, the synaptic weight can
settle on different values.

Keeping the synaptic variation constant over time, besides enabling a high-bit resolution, makes the proposed
synapses suitable for using them in deep spiking neural networks for recognition tasks with on-chip learning capability.
Moreover, in our previous study on implementing a spiking neural network with reinforcement learning capability,
accurate calculations in synaptic modifications andmembrane voltage adaptations were required48. Therefore, the
proposed synapses have the potential for using in such RL-based network implementations.

TABLE 3 Device utilization and performance comparison for the implemented synapsesmodules. Abbreviations
used in this table correspond to the circuit used for each plasticity rule. These abbreviations are: Slice Flip Flops (S.FFs),
Slice LUTs (S.LUTs), Pair-based STDP (PSTDP), Minimal TSTDPHippocampal (MTH), Minimal TSTDPVisual Cotrex
(MTVC), Calcium-Based (CAB), Target Applications (TA), Large Scale Networks (LSN), High Precision Networks (HPN).
ref Learning Rule S.FFs S.LUTs FMax (MHz) TA Device
[39] PSTDP 39 (0.3%) 18 (0.13%) - LSN Spartan-3 XC3S1500
[18] CAB 292 (0.5%) 309 (1.13%) 332 HPN Spartan-6 XC6SLX45T
[51] PSTDP 46 (0.4%) 36 (0.6%) 138 - Spartan-6 XC6SLX9
[51] MTH 54 (0.47%) 41 (0.7%) 192 - Spartan-6 XC6SLX9
[51] MTVC 47 (0.4%) 26 (0.4%) 192 - Spartan-6 XC6SLX9
[38] PSTDP 398 (0.1%) 1430 (0.95%) 200 LSN Virtex-6 XC6VLX240T
[41] PSTDP 16 (0.1%) 8 (0.13%) 816 LSN Spartan-6 XC6SLX9
[41] PSTDP 671 (6%) 859 (7.36%) 362 HPN Spartan-6 XC6SLX9

Proposed SDSP 129 (0.23%) 265 (0.93%) 154 HPN Spartan6
Proposed SSST DP2PWL 209 (0.38%) 394 (1.44%) 141 HPN Spartan6 XC6SLX45
Proposed SSST DP4PWL 483 (0.88%) 910 (3.3%) 129 HPN Spartan6 XC6SLX45
Proposed SSST DP6PWL 552 (1%) 964 (3.5%) 121 HPN Spartan6 XC6SLX45
Proposed SSST DPLUT 164 (0.3%) 474 (1.68%) 271 HPN Spartan6 XC6SLX45
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TABLE 4 Device utilization summary of the SPARTAN-6 for the proposed SDSP synapse inminimal-size neural
network

[18] This work

Slice Registers 808 (1.4%) 249 (0.45%)
Slice LUTs 723 (2.64%) 450 (1.64%)
FMax (MHz) 322 131
Number of bits 32 32

TABLE 5 RMSE andNRMSE calculations for the proposed SSSTDPmodels
2PWL 4PWL 6PWL LUT

RMSE(%) 1.18 0.26 0.159 0.155
NRMSE (%) 16.31 3.587 2.193 2.146

5 | CONCLUSION

This paper presents severalmultiplier-less digital architectures for spike driven synaptic plasticity and synaptic strength-
based STDPmodels in order to implement high precision spiking neural networks. The substitution of multipliers and
exponential functions of original learning rules with simple arithmetic operations (addition/subtraction and shift) leads
to a greater cost and area efficiency. The proposedmodels have been validated by implementing on the Xilinx Spartan-6
FPGA. This paper focuses on considering high precision synapse models implementation. In the next research, the
proposed synapses will be used in spiking neural networkmodels with reinforcement learning capability that requires
high precision calculations.
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