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(a) A typical trial without obstacles.
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(b) A trial with obstacles.

Fig. 4: Snapshot of the path followed by a simulated mobile robot performing a serial order task.
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Fig. 5: Activity of the intention, CoS, and CoD nodes (top), the timing DNF (middle), and the memory trace field (bottom)

for the EB5 on two different trials. (a) Trial 1: the robot successfully accomplished the action (the CoS node is activated,

green line in the top plot), the action’s duration is stored in the memory trace of the Timing DNF (bottom plot). (b) Trial 4:

an obstacle caused a delay in reaching the target, leading to activation of the CoD node (red line in the top plot) the memory

trace is weakened for the previously learned duration of EB5, small activation for a alter time is visible in the bottom plot.
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Fig. 6: Activity of the intention, CoS, and CoD nodes (top), the timing DNF (middle), and the memory trace field (bottom) for

the EB2 on two different trials. (a) Trial 1: the robot successfully accomplished the action (the CoS node is activated, green

line in the top plot), the action’s duration is stored in the memory trace of the Timing DNF (bottom plot). (b) Trial 4: abortion

of the action of EB5 makes the route to the target #2 shorter; a shorter duration is stored in the memory trace layer of the

timing DNF (bottom plot).

plot), the memory trace on trial 4 becomes bi-modular, since

a (much) shorter duration was experienced and stored. After

only one such experience, the strength of this memory trace

won’t allow it to be read out by the read-out DNF (uC(x, t)),
although because of the noise in the system this might happen.

When in trial 5 the usual, longer, duration is experienced again,

the strength of the “unusual” memory trace is further reduced

(bottom line in the middle plot in Fig. 7).

An example of the evolution of the memory trace for EB5

is shown in Fig. 8. It is possible to see that already after

two trials, a well defined peak around x ≈ 245 is created. A

delayed stable input from the non-moving peak in the timing

DNF leaves a memory trace in trial 4 after x ≈ 245, but this

experience alone is not strong enough to reshape the stable

peak. A new “normal” trial adds activity around the stable

peak in the memory trace. The memory trace is continuously

updated and one can observe its slow decay from trial to trial

(in times when no positive update happens, i.e. other EBs are

active).
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Fig. 8: Activity of memory trace layer for EB5 throughout all

trials. Trial 4 shows a decrease in the activity of its maximum

due to the memory formation from the delayed reaching of

target 5.

Video of a simulated experiment can be seen at

https://www.youtube.com/watch?v=DZ6WiirA4eY, Matlab
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Fig. 7: Accumulation of the memory trace of the Timing DNF over all five trials for three EBs (EB5, EB2, and EB4). See

text for details.

code of the experiment can be shared on request.

V. DISCUSSION

This paper presented a neural-dynamic model for learning

durations of actions. The model details the neural-dynamic

mechanisms, which are, in our opinion, required to learn

durations of actions and to use these learned duration rep-

resentations to influence behavior of an embodied agent.

These mechanisms include: (1) The concept of an elemen-

tary behavioral unit, which comprises an intention, condition

of satisfaction (CoS) and condition of dissatisfaction (CoD;

failure) neuronal populations (“nodes” in our model). In order

to measure and store duration of a state, or an action, its

beginning and the end need to be detected by the neuronal

system. In a complex neuronal architecture, where different

neuronal populations are activated and deactivated at every

moment in time, detecting the temporal “boarders” of an

action is a non-trivial task and such structured representation

of the behavioral states is required. (2) A time-representing

substrate (a timing DNF in our model), in which time can be

measured (by a running activity peak in our model) and the

measured durations can be stored (in the memory trace layer)

and retrieved (through the read-out DNF). (3) Finally, when

the stored duration is read-out, it shall influence the action

production. In our model, the simplest impact on the action

production is modelled: the system detects when the stored

usual duration of an action is exceeded and aborts the action

in such case. This influence could take a more sophisticated

form, for instance, coordinating different effectors that should

accomplish an action at the same time.

The architecture described in this article builds on our

previous work on serial order [53], [30], [46] and hierarchical

sequences [33] with DNFs. The tools and methodology of

DNFs have been used for learning durations here. We have

demonstrated the functionality of the model in a simulated

experimental setup, in which a mobile robot navigates to a

number of pre-defined locations in a two-dimensional space,

avoiding an obstacle on one of the trials. This setup demon-

strates how durations of a sequence of actions can be stored,

updated, and used to detect an unusual situation, in which an

action takes longer. This simulated setup can be easily trans-

ferred to a physical robot and the model can be implemented

in neurally inspired hardware [34] and it can be scaled-up for

more complex behavioral scenarios.

We used neurally-based dynamic neural fields as the build-

ing blocks of our model and can state that the implemented

mechanisms for measuring, storing, and reading-out the tem-

poral intervals can be realised by biological neuronal popula-

tions. However, in this work we did not aim to account for any

neuronal or behavioral findings, although we believe that our

architecture is supported by a number of such findings (briefly

reviewed next) and we aim to study biological relevance of our

model in the future.

A multitude of studies, e.g. listed in [54], [6], [11], [55],

[10], [56] establish that timing of motor responses undergoes

learning and adaptation. This is true for temporal intervals in

the range of hundreds of milliseconds to a few seconds [57],

[12] and means that the variability of a timed action reduces

with practice: the requested durations can be reproduced and

discriminated with increasing accuracy. The mechanism for

storing durations in our architecture – the memory trace

dynamics of the DNF framework – is a memory mechanism

of a graded nature, in which graded values can be stored

together with their uncertainties (expressed in the width of the

stored activity distributions). The memory traces are summed

up over experiences and have their intrinsic dynamics (i.e.,

decay). Importantly, the new memory traces interact with

memory traces of previous experiences in a non-linear way

in the timing DNF: for a short distance (on the dimension

of duration) between the memory traces, they are merged

while being pulled closer to each other, for a larger distance

between the new and the old memory trace, a new memory

trace is stored. The accumulated memory traces make activity

stronger as more consistent evidence for a given time interval

is accumulated. This leads to a more reliable reproduction

of durations with training. With inconsistent experience, the

memory traces are weak and do not influence the behavior

considerably, but may lead to categorisation of the newly

perceived temporal intervals. Thus, our model in principle

accounts for learning and adaptation of timing. In contrast to

more descriptive models of memory formation, e.g. Bayesian

inference, our model offers a neuronal mechanism for this

process.

Our model can be considered an instantiation of a well-

accepted principle of encoding time – the state-dependent

network (SDN) model [26] – with a particular choice of the

population dynamics that alters the neuronal state with passage

of time (the assymetric kernel of the timing DNF). The SDN
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model proposes that temporal information is encoded in a neu-

ral population with short-term plasticity, in which passage of

time changes the system’s state, implicitly encoding time along

with representations of other stimulus attributes [58], [59],

[60], [26]. Another model that proposes that timing may be

encoded in dynamically changing patterns of neuronal activity

was developed in the context of the cerebellum modelling [61].

In this population encoding model, it was proposed that a

stimulus triggers a changing pattern of neural activity as a

result of negative feedback in the network [62], [63], [56].

Such timing mechanism has been referred to as a population

clock, in which changing populations of active neurons encode

time [58], [60]. The shifting activity peak in our timing DNF is

a possible interpretation of the population clock representation

of the elapsed time, in which the underlying substrate is

modelled in a convenient topological fashion, but could be

realised by neuronal populations without spatial alignment

along the timing dimension.

Another notion, which has considerable experimental sup-

port, is that time may be encoded in the linear changes of the

firing rate of neuronal population [64]. Such ramping activity

has been observed in the neurons in different areas during

timing tasks [65], [66], [67], [68], [69], [70], [71]. Ramping

dynamics of the timing node in our model reflects this line of

neuronal findings.

In hippocampus, neuronal substrate that represents timing in

a distributed way has been determined, in which an evolving

temporal signal takes the form of a succession of briefly

firing neurons, termed “time cells” [72]. These time cells are

activated sequentially, irrespective of the content of the task

or action and represent the course of time during an action

sequence. The behavioral evidence for a distributed neuronal

substrate for representing duration was established in studies

which postulate that learning effects are duration-selective, i.e.,

training increases duration sensitivity and reduces performance

variability exclusively for the trained interval. This selectivity

seems to suggest the existence of neurons tuned to specific

temporal intervals and indicate duration-sensitive tuning as a

possible mechanism underlying the active encoding of time in

the millisecond/second range. We take inspiration from these

findings and postulate a timing-specific substrate (the timing

DNF) in our model.

Our model cannot be directly compared with the mech-

anistic biological models at this point, since we use more

abstract continuous dynamic neural fields to describe activity

of neuronal populations. Computational neuroscience models

emphasize importance of timing in neuronal dynamics both on

the microscopic scale (the scale on which neuronal plasticity

mechanisms, such as spike timing dependent plasticity, oper-

ate) and on the behavioral scale [73], [74], [75]. These models

show that both using precise timing of neuronal spikes and

using rates of neuronal firing, neuronal states can be associated

with a delayed reward [76]. Dopamine has been found to play a

crucial role both in learning these associations and in learning

the timing between the rewarded stimulus and the reward

[77]. The latter model is particularly close to our architecture,

since it uses rate-based dynamics that is conceptually close

to the dynamics of the DNFs and neuronal nodes, used in

our work. The model details several neuronal structures and

learning processes, involved in learning associations between

the conditioned and unconditioned stimuli that also include

learning the duration of the time interval between the stimuli.

However, a neuronally implausible “shortcut” is used precisely

at this point – the time in the simulation of the model when

the first stimulus arrives is stored in a variable (t0), which

influences neuronal equations to produce the timing effect

(along with a ramping variable and a bank of oscillators,

synchronised through the introduced variable t0).

The neuronal-dynamic architecture proposed in this paper

focuses on the process of learning timing of neuronal states,

which is involved, among other processes, in such reward-

related learning. While we don’t specify the details of the

neuronal mechanisms and brain areas involved, we propose

a functional model that uses neurally-plausible dynamics and

can be considered a particular instantiation of the SDN model,

in which the state of a neuronal population changes with the

mare passage of time (shifting the position of activity peak

in the timing DNF). Our neural-dynamic architecture shows

how such model can be embedded in a closed behavioral

loop, driven by sensory events and influencing the dynamics of

action initiation. The model can also be realised in neuromor-

phic hardware, using well-established link between the DNFs

and the winner-take-all architecture that is one of the building

blocks for cognitive systems in neuromorphic hardware [78],

[34].

Our model presents just one of possibly many mechanisms

to learn, store, and use temporal intervals during action and

perception. The characteristic aspect of this model is that it

accounts for the process of learning durations in an embodied

and situated setting, when the system has to detect relevant

events and coordinate its dynamics in time based on its own

sensory information, perceived in real time. This coordina-

tion includes, for instance, temporal organisation on different

scales: on the scale of individual behaviors, which have to

be initiated and which completion needs to be detected, on

the scale of a single behavior for which its timing must be

tracked (measured), stored, and used to control behaviors on

subsequent instances, as well as for storage of durations of

several actions in a row. Timing is only one of possibly many

aspects of actions and perceptual states in our architecture, all

modelled using DNFs.

VI. CONCLUSIONS

We presented a neurally-plausible mechanism to learn and

store the temporal duration of actions that effectively integrates

different experienced durations of the same action, averaging

over intervals that are close to each other (making the re-

spective representation broader and thus “less certain”) and

creating a bi-modal representation if the experienced instances

are far apart. This learning mechanism presents a dynamical

systems alternative to Bayesian filter and other statistical

models of long-term memory formation or creation of rep-

resentations and will be exploited further in other examples

of online sensorimotor learning. Our approach to learning

durations can be applied in neuromorphic robotic systems that
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require a neuronal timing mechanisms, in order to avoid using

a digital clock to measure time.
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[50] Y. Sandamirskaya and G. Schöner, “An Embodied Account of Serial
Order: How Instabilities Drive Sequence Generation,” Neural Netw.,
vol. 23, no. 10, pp. 1164–1179, dec 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.neunet.2010.07.012

[51] B. Duran, Y. Sandamirskaya, and G. Schöner, “A Dynamic Field
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VII. APPENDIX

A. A formal description of the model

Mathematically, the neural-dynamic architecture, depicted

in Fig. 2, can be described by the following set of differen-

tial equations: for the dynamics neural nodes, Eqs. 10, and

dynamic neural fields, Eqs. 11:

τ iv̇i(t) = F (vi(t))− ci,sf(vs(t))− ci,df(vd(t)) + Ii(t)
(10a)

τsv̇s(t) = F (vs(t)) + cs,τf(vτ (t)) + cs,if(vi(t))−

− cs,df(vd(t)) + ICoS (10b)

τdv̇d(t) = F (vd(t)) + cd,τf(vτ (t)) + cd,if(vi(t))−

− cd,sf(vs(t)) (10c)

ττ (t)v̇τ (t) = f(vi(t))(−vτ (t) + f(vi(t))) (10d)

The intention node’s activation, vi(t), Eq. 10a, follows the

neural field attractor dynamics (F ) with two inhibitory terms:

one from the CoS node (vs(t)) and one from the CoD node

(vd(t)). Ii(t) is an external (motivational) input that comes

from other EBs and context (“precondition”) nodes of the

overall architecture for behavioral organisation [79].

The CoS and CoD neural nodes, in their turn, follow the

dynamics of Eq. 10b and Eq. 10c, respectively. These nodes re-

ceive a positive input from the intention node, vi(t), and from
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the timing node, vτ (t). When input from the intention node

is positive, the growing input of the timing node determines,

when the CoS and CoD nodes reach the activation threshold.

Both nodes mutually inhibit each other, thus only one of them

is eventually activated: either the CoS node, driven by the

sensory input that signals a successful accomplishment of the

action, ICoS = c
∫

f(uS(x, t)dx, or the CoD node, which is

activated otherwise.

Finally, Eq. 10d describes the dynamics of the timing node,

vτ (t) that doesn’t have the self-excitatory part of the neural

fields dynamics, but follows a simplified memory trace dy-

namics instead. In particular, the vτ node develops a ramping

(monotonically increasing) activity if the intention node, vi(t),
is activated. The temporal constant of this dynamics, ττ is

set to be large in the beginning of a learning session and

is influenced by the activity of the timing DNF through its

memory trace (Eqs. 9b and 9c).

By modifying the integration time of the timing node, ττ ,

according to Eqs. (9), the system “learns to wait” for a CoS

signal and activates a CoD node if the CoS node is not

activated in the expected time. In Eq. (9c), the variable φ
reads out the position of the activity peak in the field uC(x, t)
(which, in its turn, reads out the memory trace layer): the

activity value of the variable φ is proportional to the position

of the activity peak in the field uC(x, t) (form left to right) and

thus represent this position by a “rate code”. This variable is

linearly controlling the time constant of the τ node (Eq. (9b)).

The dynamics of the DNFs that constitute the architecture

for timing can be described by the following set of equations:

τI u̇I(x, t) = F (uI(x, t)) + f(vi(t))W I(x) (11a)

τS u̇S(x, t) = F (uS(x, t))+

+ cS,I
∫

wS,I(x− x′)f(uI(x′, t))dx′ + IS(x, t)

(11b)

τAu̇A(x, t) = F (uA(x, t)) + IA (11c)

τB u̇B(x, t) = λbuild

(

−uB(x, t) + f(uA(x, t))
)

f(uA(x, t))−

− λdecay

(

1− f(uA(x, t))
)

uB(x, t) (11d)

τC u̇C(x, t) = F (uC(x, t))+

+ cC,B

∫

ωC,B(x− x′)uB(x′, t)dx′ (11e)

Here, the dynamics of the intention field, uI(x, t) (Eq. 11a)

and the CoS field, uS(x, t) (Eq. 11b) follow the generic

DNF equation and are interconnected in an EB structure, as

described in [33]. The CoS field receives a “one-to-one” input

from the intention field, convolved with a Gaussian kernel,

wS,I(x − x′), and an external, sensory input IS(x, t). The

intention field receives input from the associated intention

node, vi(t), through a synaptic weights function, W I(x), that

encodes the “content” of the action’s intention. The fields uA,

uB , and uC are described in the main text (Section III-B).

B. Scalar property of timing

Although we don’t aim to account for biological findings

about learning durations, we would like to demonstrate that the

model can account for one important characteristics, found in

many experiments on learning timing of actions and perceived

signals. In particular, it is the so called scalar property of

timing: the precision of storing (and reproducing) shorter

intervals seems to be higher than precision of storing (and

reproducing) longer intervals, at least in some range. Fig. 9

shows the dynamics of a running-peak representation of time

in a timing DNF. Note that for some time, the peak’s width

grows. This is the consequence of lateral interaction in the

DNF that make the peak “lag behind” its moving front, which

is driven by the asymmetrical kernel. Thus, as the peak moves

along the DNF dimension, it becomes more diffuse for some

time, which is determined by the parameters of the DNF.

a
c
ti
v
a
ti
o

n
s
im

u
la

ti
o

n
 t

im
e
 

(b
a
c
k
 f

ro
m

 c
u
rr

e
n
t 

ti
m

e
 s

te
p

)

Timing DNF (blue: activation, red: output, green: input)

history of DNF activation

feature space (duration)

feature space (duration)

Fig. 9: Widening of the travelling peak in a DNF in the

beginning of its propagation as a possible mechanism to

account for the scalar property of timing.

C. The code

Matlab code of the model is freely available at

https://github.com/sandayci/LearningTiming.git.
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