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Learning Temporal Intervals in Neural Dynamics
Boris Duran and Yulia Sandamirskaya

Abstract—Storing and reproducing temporal intervals is an
important component of perception, action generation, and
learning. How temporal intervals can be represented in neuronal
networks is thus an important research question both in study
of biological organisms and artificial neuromorphic systems.
Here, we introduce a neural-dynamic computing architecture for
learning temporal durations of actions. The architecture uses a
Dynamic Neural Fields (DNFs) representation of the elapsed time
and a memory trace dynamics to store the experienced action
duration. Interconnected dynamical nodes signal beginning of
an action, its successful accomplishment, or failure, and activate
formation of the memory trace that corresponds to the action’s
duration. The accumulated memory trace influences the compe-
tition between the dynamical nodes in such a way that the failure
node gains a competitive advantage earlier if the stored duration
is shorter. The model uses neurally-based DNF dynamics and
is a process model of how temporal durations may be stored
in neural systems, both biological and artificial ones. The focus
of this paper is on the mechanism to store and use duration in
artificial neuronal systems. The model is validated in closed-loop
experiments with a simulated robot.

Index Terms—Neural dynamics, dynamic neural fields, mem-
ory for duration, learning timing, neurorobotics, neuromorphic
engineering.

I. INTRODUCTION

Temporal duration of actions and events plays a fundamen-

tal role in the organisation of complex behaviours for both

biological and artificial agents. The representation of how

long each motor action, or a perceptual act, usually takes is

fundamentally required to coordinate different sensorimotor

loops into a smooth behavioural sequence.

This representation is crucial for understanding how biolog-

ical neuronal system enable action selection, decision making,

and learning – processes in which temporal intervals play an

essential role. For instance, in the one of the most elementary

learning processes in animals – classical conditioning (i.e.,

learning an association between an arbitrary stimulus and a

rewarding or punishing stimulus), the time interval between

the stimuli is a critical part of the learned association [1]. The

neuronal system of the animal seems to store the temporal

interval during learning and uses this representation during

behavior generation to anticipate the upcoming stimulus.

Representing typical durations of actions is also important

for building artificial agents (e.g., cognitive robots), controlled

by artificial neural networks (ANNs). Cognitive agents are

required to perform complex behaviors in changing and un-

predictable real-world environments, where temporal structure

of events can not be preprogrammed, but has to be perceived

Boris Duran is with the Informatics Research Center, University of Skövde,
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and learned by the agent itself. When artificial neural networks

are implemented on conventional computers, the central digital

clock of the CPU can be used to measure time. However,

such CPU-based conventional computing systems are power-

hungry and are not well-suited for real-time, energy efficient

implementations of ANNs.

Neuromorphic hardware aims to solve limitations of the

conventional von Neumann computing architecture [2] and is

becoming widespread [3], [4]. The neuromorphic hardware

realises asynchronous neuronal computation and abandons the

centralized processor clock [5]. In this hardware, the individual

units – artificial neurons – compute by communicating with

each other asynchronously using spikes or event-representing

signals. Storing the behaviorally relevant time intervals be-

comes a non-trivial issue in such a decentralised system. Thus,

the problem of representing time intervals using the neuronal

substrate itself, instead of a digital clock, is becoming more

urgent for technical systems.

In spite of the importance of representing temporal intervals

for behavior generation and learning, the question of how

neuronal networks – both biological and artificial – may

represent temporal duration, has not been resolved.

Thus, in the studies of duration representation in biolog-

ical neural networks, a single mechanism for representing

temporal intervals could not be postulated. It is still debated

whether there is a dedicated time-keeping mechanism (a

centralised “clock”) or whether time keeping is an inherent

property of neuronal computations, involved in other tasks,

such as decision making, memory formation, or movement

preparation, and is encoded locally [6]. Both distributed and

localised mechanisms were hypothesised to underly temporal

processing [7] and include delay lines [8], oscillators [9], the

network dynamics [10], and short-term synaptic plasticity [11].

Different mechanisms were suggested for time intervals on

different time-scales: from millisecond range to coordinate

muscle activity during movement generation [12] to seconds

and minutes to succeed in more cognitive tasks, like catching

a pray or staying on the task as long as necessary to achieve

a goal [13], [14]. Several brain regions have been reported

to be involved in temporal processing: the cerebellum for

the milliseconds range of temporal intervals, basal ganglia

for longer durations, as well as the parietal cortex in more

cognitive tasks [15], [16], [17].

An important insight into biological mechanisms that rep-

resent temporal intervals has been gained from studies that

show that temporal learning is specific to the trained interval:

the learned interval can be reproduced with a high preci-

sion, but not other intervals [18]. Such specificity suggests

a spatial substrate for encoding of timing: different neuronal

populations seem to be sensitive to different time intervals

and thus the identity of an active neuron, or its position in the
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network, determines the encoded time interval. Such duration

tuning of neuronal populations has been modelled theoretically

[19], established in behavioral experiments [20], and has been

supported by neurophysiological observations [21], [22].

In this work, we introduce an architecture that explicitly

models such a spatial substrate for encoding elapsed time

(duration) using dynamic neural fields. A dynamic neural

field is a mathematical formalisation of the dynamics of

large homogeneous neuronal populations with strong recurrent

interactions [23]. The recurrent, or lateral, connections provide

these neural models with capability of working memory, which

is essential for storing such transient quantities as the time

when some event started or ended, and which is lacking

in feedforward neural networks. Indeed, in a feedforward

neural network, the computation amounts to relaying the input

patterns to output patterns through a learned mapping, where

a mare passage of time does not alter the representation that

is stored in the network’s weights according to the externally

paced learning algorithm [24].

The recurrent neuronal networks, to the contrary, have a

notion of an internal state which may change over time as

activation reverberates in the system. Thus, different reservoir

computing networks were used previously to store temporal

sequences that include states of different duration [25], [26].

However, the duration of actions, along with other parameters,

is implicitly encoded in the recurrent neural network’s state.

The implicit nature of this representation makes it hard for,

e.g., the perceptual system of the agent to access the stored

value in order to estimate whether the current duration is

longer or shorter than a previously experienced one.

In our model, we go beyond such an implicit timing repre-

sentation and develop a neural-dynamic architecture, in which

the content of the neuronal representation – i.e., the amount

of time elapsed between two events – is explicit. Dynamic

neural fields offer a computational substrate for such explicit

representations of behavioral variables, along with a mecha-

nism to detect, store, and compare them. In particular, DNFs

are activation functions defined over behavioral dimensions,

which can be perceptual (e.g., color, location, orientation),

motor (e.g., velocity, pose), or cognitive (e.g., serial order,

label, or, in this work, time). From a biological neuronal

prospective, DNFs model the activity of recurrently connected

neuronal populations, where each population is responsive to

the behavioral parameter of interest. The DNFs architectures

have been successfully applied to model cognitive behaviors

and their development in humans (e.g., spatial and visual

working memory, executive control, habit formation, or word

learning) [27] and to control artificial embodied cognitive

agents (robots) [28], [29].

In this work, we embed the mechanism for representing

temporal intervals in the recently developed DNF architecture

for behavioral organisation [30], [31]. In this architecture,

neuronal states that correspond to actions are realised by a

tuple of DNFs which form an elementary behavior (EB). Ele-

mentary behaviors are organised in a sequence using a serial

order mechanism, which encodes a sequence of elementary

behaviors that corresponds to a particular goal [32], [33].

This system for behavioural organisation offers a compu-

tational neurally inspired substrate that allows to study how

timing of actions may be represented in neuronal systems, in

particular how durations of actions can be acquired, stored,

and reused in subsequent behaviours. Our model utilises a

neurally-based learning mechanism of memory trace formation

for storing and reusing experienced durations of actions [34].

The presented neuronal architecture allows to implement a

neuronal model for representing duration in a closed behav-

ioral loop. In particular, the neural architecture learns durations

of actions based on the input, obtained from a (simulated)

robotic agent, acting in a sensorimotor task. Our model is

consistent with neurobiological findings that postulate a “pop-

ulation clock” as a biological mechanism to store durations of

actions and perceptual events [22].

II. METHODS

A. The Dynamic Neural Fields (DNFs)

This work uses the mathematical and conceptual framework

of Dynamic Neural Fields (DNFs) [27], [28], [35], [36], [37].

A DNF approximates activation of a neuronal population with

a continuous activation function, u(x, t), defined over a be-

havioral dimension x (e.g., space, color, orientation, velocity,

or elapsed time). The dynamics equation, Eq. (1), determines

how activation u(x, t) of the DNF evolves over time driven

by the external inputs S(x, t), a negative resting level h, and

recurrent interactions, shaped by a Mexican hat interaction

kernel ω(x− x′) and a sigmoid non-linearity f(u(x, t)):

τu̇(x, t) = −u(x, t) + h+
∫

f
(

u(x′, t)
)

ω(x− x′)dx′ +

+S(x, t), (1)

ω(x− x′) = cexce
−

(x−x′)2

2σ2
exc − cinhe

−
(x−x′)2

2σ2
inh , (2)

f
(

u(x, t)
)

= 1

1+e−βu(x,t) . (3)

This dynamics has an attractor solution with a shape of a

localised activity peak (bump) over the feature dimension, x.

The location of this peak is determined by the external input

to the DNF. The shape of the localised activity region, i.e.

the width and height of the peak, is determined by the lateral

interaction kernel, Eq. (2). The lateral interaction kernel in

a DNF is usually symmetrical and homogeneous (the same

for all field locations). A typical kernel is modelled as a

sum of Gaussians with a short-range excitation (with width

σexc and strength cexc) and a long-range inhibition (width

σinh > σexc and strength cinh < cexc). The sigmoidal non-

linearity, Eq. (3), shapes the output of the DNF in such a way

that only sufficiently activated field locations contribute to the

neural interactions in the DNF and between different DNFs;

β determines the slope of the sigmoid.

Since we will use a number of DNFs with the same

dynamics when describing the duration-learning model, we

introduce a notation F
(

u(x, t)
)

, Eq. (4), which stands for

the first three terms of Eq. (1): the stabilizing term −u(x, t),
the resting level h, and the lateral interactions term (the

convolution term).
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F
(

u(x, t)
)

= −u(x, t) + h+

+

∫

f
(

u(x′, t)
)

ω(x− x′)dx′. (4)

These three terms are the same for all DNFs, used in

our model (with different parameters marked by sub- and

superscripts, e.g. hu or wv). In case of zero-dimensional

DNFs (dynamic neural “nodes”), the lateral interaction term

amounts to self-excitation of the node, cf(u(t)), with a scaling

parameter c.
The learning mechanism that will be used in this work is

the memory trace dynamics, Eq. (5) [34], which has been

developed to account for accumulation of motor memory

in classical experiments on preservative reaching task (the

“A not B” task) [38], [39] and has been used in the DNF

framework to represent objects in a neurally inspired object

recognition system [40], as well as for modelling category

formation [41] and movement preparation [42]. The memory

trace forms a low-pass filtered (in time and in space) “copy” of

the suprathreshold activity of a DNF. Over several experiences

of the active DNF states, these “copies” are accumulated

(summed up). The memory trace layer couples back to the

DNF as an additive input. In biological neural networks, the

memory trace can be interpreted either as a model for strength-

ening of synaptic connections between a neural population of

the DNF and a memory neural population, or as a change of

internal neurons’ parameters that increase their excitability.

The memory trace is a linear dynamics without lateral

interactions, defined over the same space as the respective

DNF and has an attractor at the output of the DNF, f
(

u(x, t)
)

:

τprṖ (x, t) = λbuild (−P (x, t) + f(u(x, t))) f(u(x, t))−

−λdecay (1− f(u(x, t)))P (x, t). (5)

According to Eq. (5), the memory trace, P (x, t) (also

called preshape in the DNF framework), builds-up with a

time-constant τpr/λbuild and decays with a time-constant

τpr/λdecay on the sites x, where the DNF u(x, t) is active

(f(u(x, t)) > 0) or inactive (f(u(x, t)) = 0), respectively.

The memory trace dynamics has some important properties

for modelling formation of any kind of long-term memory1

in DNF architectures. First, because of the spatial low-pass

filters (smoothing kernels) in projections between the DNF, the

memory trace, and the DNF again, each experienced instance

of the behavioral variable is stored as distribution of activation

in the memory trace layer. This distribution is centred over

the represented value and has a spread, set by the parameters

of the neuronal projections. Over multiple experiences of the

same value (e.g., multiple trials), the activation distributions

are summed-up in the memory trace layer according to Eq. (5).

If the individual experiences of the stored value overlap (the

variance in the perceived value is low), the distributions

(activity bumps) become stronger (larger value over the mean),

while keeping the minimal width determined by the neuronal

1Long-term meaning here more permanent type of memory than the
working memory, but otherwise not specifying the time range of the storage.

interactions. If the variance of the experienced value is large,

however, the memory trace becomes wider and less strong.

This property plays a crucial role in modelling processes

of memory formation and storage with DNFs. Moreover,

the spatial precision hypothesis that postulates sharpening of

neuronal projections over developmental times [43], [44] can

be used to model developmental maturation of the ability to

form and use precise long-term memories.

B. Behavior organisation with DNFs: Elementary Behaviors

A single DNF, as described in the previous section, can

represent one value of a behavioral variable as a localised-

peak attractor state. In order to represent events extended in

time, such as an action that has a beginning and an end, a

concept of elementary behaviors (EBs) has been introduced in

the DNF framework [31], [30], [33], [34].

The core of an EB are two coupled DNFs: an intention

DNF and a condition-of-satisfaction (CoS) DNF (Fig. 1a). The

intention DNF holds a representation of the goal’s parameters

of the EB and sets attractors for the sensorimotor dynamics

that result in a particular overt behavior. Activation of the

intention DNF signifies the beginning of an action. The CoS

DNF detects when the action is accomplished.

The intention DNF provides a localised input to the CoS

DNF, which makes the latter more sensitive to a sensory input

that signals a successful accomplishment of the action (this

localised input is visible as a subthreshold activity bump in the

CoS DNF in Fig. 1a). If the anticipated goal state is achieved,

the sensory input to the CoS DNF overlaps with the intention’s

input and a suprathreshold localised activity peak emerges in

the CoS DNF.

The activated CoS DNF inhibits the respective intention,

giving way to the next EB in a behavioral sequence. Sequential

switching between the EBs is organised through the CoS and

intention “nodes”, or zero-dimensional DNFs (upper part of

Fig. 1a). The CoS node integrates the positive activation of

the CoS DNF, signalling when an activity peak is formed

in this DNF (disregarding the peak’s location). An active

intention node, in its turn, sets a localised peak in the intention

DNF when an EB is activated, through synaptic connections

characteristic for this EB [45].

III. ARCHITECTURE FOR LEARNING TIMING

A. Overview of an extended EB

In our previous work, we extended the basic notion of an

elementary behavior (EB) with elements that enable learning

sequences [46], [30], [33]. These elements include a condition

of dissatisfaction (CoD) node, which signals that an EB had to

be aborted since its goal could not be reached. In our previous

work on reinforcement learning with DNFs, we have used CoD

with a fixed timer for every EB [47]. If the execution time of

the EB was longer than a fixed maximal time, the CoD was

activated and the EB was aborted.

In this work, we introduce a neuro-dynamic mechanism

to learn typical durations of actions. The extended EB that

enables timed actions is shown in Fig. 1b.
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Fig. 1: (a) Elementary behavior (EB) as suggested in [30] consists of intention and condition of satisfaction (CoS) dynamical

nodes, connected to respective intention and CoS dynamic neural fields (DNFs). Filled arrows denote excitatory connections,

empty circles – inhibitory connections. The CoS DNF is preshaped by input from the intention DNF and can be activated by

an external input that matches this preshape (“action finished” input). (b) An extended EB, used in this work: the timing node

τ is added that has a ramping dynamics, driven by the intention node. The τ node drives both the condition of dissatisfaction

(CoD) and the CoS nodes, increasingly facilitating activation of the former.

Here, the condition-of-dissatisfaction (CoD) node has the

same dynamics as the CoS node and, as the CoS node, inhibits

the intention node of the EB when activated (connections

ending with a circle in the figure). The CoS and CoD nodes

compete with each other through reciprocal inhibition.

Furthermore, a new timing node, τ , is introduced. This node

has a ramping dynamics, driven by the intention node. The τ
node impacts the competition between the CoS and CoD node

in such a way that over time, the CoD node gains competitive

advantage. If the CoS node is not activated by the sensory

input, the CoD node wins the competition and signals a failure

of the EB to reach the intended outcome in the expected time.

Before learning the action duration, the timing node has a

slow dynamics with a large time constant, providing advantage

to the CoD node only after a substantial time after activation

of the intention node. After learning, the dynamics of this

node is adjusted (accelerated) depending on the history of the

experienced durations of the same action, acquired and stored

in the timing DNF, as described next.

B. The running peak representation of time

Fig. 2 demonstrates the basic mechanism for storing and

using durations of actions in our neural-dynamic architecture.

At the core of this architecture, additionally to the EB structure

described above, is a timing DNF – a mechanism that we

introduced here for the first time to explicitly represent the

elapsed time in the DNF framework. This DNF is special in

that its interaction kernel is not symmetrical, but is skewed by

an ongoing activity of the intention node, shifting the center

of mass of the activity peak to the right. This kernel induces a

traveling activity peak that moves along the dimension of the

Timing DNF with a fixed speed (Fig. 2a). Similar mechanism

has been used previously in a robotic controller to generate

smooth movement trajectories with DNFs and to anticipate

end-points of movements of an observed human partner [48].

When the action is finished as expected, the CoS DNF

and the CoS node are activated by the respective sensory

input and inhibit the intention node (Fig. 2b). The interaction

kernel of the timing DNF is “unskewed” when the activity of

the intention node ceases, becoming symmetrical again. The

travelling peak stops at this moment. Now, the activity peak

can induce a memory trace growth in the memory trace layer

of the timing DNF. A moving peak, to the contrary, cannot

induce a large change in the memory trace layer because of

its constantly changing location.

The location of the memory trace represents the experienced

duration of the action and influences the dynamics of the τ
node making it to ramp-up faster if the memory trace has

stronger activation in its left part (which corresponds to shorter

durations). The activity of the τ node, in its turn, effects

the competitive dynamics between the CoS and CoD nodes

(Fig. 2c), giving the CoD a competitive advantage earlier for

lower values of durations, represented in the memory trace

layer.

Eqs. (6) show the mathematical expressions for the dynam-

ics of learning the duration:

τAu̇A(x, t) = F (uA(x, t)) + IA(x, t) (6a)

τB u̇B(x, t) = λbuild

(

−uB(x, t) + f(uA(x, t))
)

f(uA(x, t))−

− λdecay

(

1− f(uA(x, t))
)

uB(x, t) (6b)

τC u̇C(x, t) = F (uC(x, t))+

+ cC,B

∫

ωC,B(x− x′)uB(x′, t)dx′ (6c)

Here, uA, uB, and uC are the timing DNF (Eq. 6a), its

memory trace (Eq. 6b), and the read-out DNF for the memory
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(a) An active intention node initiates the action and, at the same
time, starts the travelling peak in the Timing DNF.
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(b) When the action is accomplished, the condition of satisfaction
(CoS) node is activated by the CoS DNF and stops the traveling
peak, which now leaves a memory trace at the location, determined
by the time interval between activation of the intention and the
CoS nodes, thus storing a representation of the action’s duration.
Location of this memory trace changes the dynamics of the timing
node (τ ), changing the competitive dynamics between the CoS and
CoD nodes on subsequent trials. The active CoS node inhibits the
intention node, giving way to the next EB.
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(c) If the CoS node is not activated and the travelling peak reaches
the location of the previously stored memory trace in the timing
DNF, the timing node boosts the CoD node to an extent that it wins
the competition with the CoS node and inhibits the intention node
to proceed to the next behavior, reporting an error in the current
EB.

Fig. 2: The neural-dynamic architecture for storing and using

duration of actions.

trace (Eq. 6c), respectively. The uA and uC follow the generic

DNF dynamics, summarised in the term F (), as defined by

Eq. 4 of Section II-A. uB follows the generic memory trace

dynamics, Eq. 5, with activity of the timing DNF as input.

The timing DNF receives a localised around zero transient

input IA(x, t) from intention node of an active EB, which

creates an activity bump in this DNF. The kernel of the timing

DNF is an asymmetrical Gaussian kernel (Eq. 7), with the

center dynamically shifted by µ+(t) each time the intention

node of the EB is activated:

ωA,A(x, x′) = c+exp

[

−
(x− x′

− µ+(t))
2

2σ2
+

]

(7)

µ+(t) = cbiasf(v
i(t))(1 − f(vs(t))) (8)

The kernel’s mean, µ+(t), is dynamically set to zero once

the CoS node becomes active, according to Eq. 8, where vi(t)
and vs(t) are activations of the intention and the CoS nodes,

respectively. Because of the “skewed” interaction kernel, an

activity peak in the timing field, induced by a transient input

from the intention DNF, travels with a constant speed along the

dimension of the timing DNF. When the CoS node is activated

and inhibits the intention node, the kernel us “unskewed”, and

the peak stops its motion.

The memory trace layer, uB(x, t) forms a memory trace of

activity in the timing field, uA(x, t). During the time when the

peak in the timing DNF is travelling, a very low activity in the

memory trace field is created. When that peak stops, however

(when a CoS node is activated), the activity in memory trace

layer is accumulated at the respective location. In this way,

the memory trace stores the value of the temporal interval

that has elapsed between activation of the intention and the

CoS nodes of the EB. Over several trials, the memory trace

merges different experienced duration values [34].

The distribution of the accumulated memory traces in the

memory trace layer drives the read-out field, uC(x, t). This

DNF receives a “one-to-one” input from the memory trace

field, uB(x, t), convolved with a Gaussian projection kernel,

wC,B(x−x′) and generates a peak at location of the strongest

activation, stored in the memory trace field.

The location of this peak changes the timing constant ττ of

the dynamics of the timing node, vτ (t), according to Eqs. 9a

and 9b (where c is a constant and vi(t) is activity of the

intention node, see full model in the Appendix). This location

of the peak is extracted using the attractor dynamics of Eq. 9c:

ττ (t)v̇τ (t) = f(vi(t))
(

− vτ (t) + f(vi(t))
)

, (9a)

ττ (t) = cφ(t), (9b)

τφφ̇(t) = −φ(t)

∫

f(uC(x, t))dx +

∫

xf(uC(x, t))dx.

(9c)

The vτ node develops a ramping (monotonically increasing)

activity if the intention node, vi(t), is activated. Activity vτ

of the timing node influences dynamics of the CoS and CoD

nodes in a symmetrical way, according to Eqs. 10b and 10c

in the Appendix. However, the CoS node’s resting level is

lower and this node requires an external input that signals

accomplishment of the action in order to be activated. Thus,

effectively, stronger vτ input provides a competitive advantage

to the CoD node over the CoS node.
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IV. SIMULATED ROBOTIC EXPERIMENTS

A. Specific architecture for the robotic scenario.

For the simulated robotic experiments, we created a setup

consisting of five target positions on a two-dimensional space

and a mobile robot capable to navigate to these targets while

avoiding obstacles.

Fig. 3 shows an instantiation of the proposed model for this

scenario. Five EBs were created, each containing an intention,

CoS, CoD, and timing (τ ) nodes and a timing DNF, its memory

trace, and read-out DNF (respectively blue, red, and magenta

lines on the plots in each EB in Fig. 3). In the figure, the EBs

are arranged according to the locations of targets that they

represent (see Fig. 4 for the targets’ arrangement).

The location of the respective target is encoded in the

connections from the intention node of the EB to the shared

intention DNF (lower part of Fig. 3). In the experimental setup

reported in this article, the dimension of the intention DNF

is the heading direction of the robot in a fixed coordinate

frame. Location of an activity bump in the intention DNF

defines the direction towards the respective target. This is a

place-holder that we used in our simulations for the target

acquisition dynamics with DNFs, which can be implemented

on a real robot, capable to perceive its targets using feature-

based representations [49], [50].

The CoS field receives a localised subthreshold input from

the intention DNF and is globally boosted when the robot

arrives at a target. Again, in this simulation, we didn’t simulate

the sensory processes that would lead to activation of the CoS

field, but such processes were implemented by us previously

with DNFs on real robots [50], [30], [51].

During the experiments described next, the activation flow

in the architecture typically proceeds as follows:

• At the beginning of a series of learning trials, the memory

trace fields of all EBs are initialised to zero and all time

constants of the timing nodes are initialised to a large

value (500ms).

• In the first trial, the intention node of the first EB is

activated. The active intention node activates a localised

region in the intention DNF, which initiates action of the

robotic agent and at the same time provides a localised

subthreshold input to the CoS DNF; a transient input to

the timing DNF from the activated intention node triggers

a traveling peak.

• When the CoS DNF and, consequently, the CoS node

are activated by the input that signals accomplishment of

the current action, the intention node is inhibited and the

peak in the timing DNF stops; the memory trace starts

building-up in the memory trace layer.

• The CoS node is deactivated when support from the in-

hibited intention node ceases. The process repeats for the

next EB, driven by the higher-level sequence generation

dynamics [33], not shown here.

• In the beginning of each learning trial, all nodes and fields

are initialised to their resting levels with the exception of

the memory trace layer and the value of the time constant

of the timing node.

• Over several trials, the activation distributions in the

memory trace layers of the EBs represent the distribution

of durations of the performed actions. The read-out field

selects the maximum of this distribution for each EB and

adjusts the integration time of the timing node according

to the position of this maximum on the dimension of the

timing DNF.

B. Simulated experiments

The simulated robot was equipped with five range sensors in

its frontal part (Fig. 4). The range sensors were used for ob-

stacle avoidance dynamics, providing repelling contributions

to the dynamical system controlling the heading direction of

the robot if an obstacle was present in the vicinity of the robot

(an obstacle was presented on the 4th trial to prolong one of

the actions to probe activation of the CoD node).

Target acquisition was realised by setting attractors for the

dynamical system controlling the heading direction of the

robot (not shown here, but described in detail in [52]) based

on the activity peaks in the intention DNF. How this approach

to robot navigation is realised is described in work on the

attractor dynamics approach to biologically inspired robot

navigation [52].

Each of our experiments consisted of five trials, run with

the proposed system with a given sequence of targets. Each

trial lasted 500 time steps, which was enough for the robot

to reach three selected targets. In every trial, the robot was

instructed to go first to target #5, then to target #2 and finally

to target #4 (Fig. 4a), by setting the connections between the

intention nodes of the respective EB and the intention DNF.

In trial 4 (Fig. 4b), an obstacle was added to the scene,

which dynamically influenced the trajectory of the robot

based on the readings of the range sensors, forcing the robot

to perform an obstacle avoidance maneuvre. This maneuvre

prolonged the first action (going to target #5) on this trial,

making this action to take more time than on the other trials.

C. Results of the simulated experiments

Fig. 5 shows activity of the architecture for EB5 (moving

to the fifth target in Fig. 4, which was the first action in the

instructed sequence) for two different trials: a “normal” trial 1,

when no obstacle was presented on the robot’s path (Fig. 4a)

and trial 4, when an obstacle was presented (Fig. 4b).

Fig. 5a shows activity in the neuronal architecture on a trial

without the obstacle. In the upper plot, activity of the intention,

CoS, and CoD nodes is shown. At the point in time, marked

with “start of the action”, the intention node (blue curve) is

activated and its activation is sustained by the self-excitatory

connection when the transient task input is removed. The CoS

and CoD nodes’ activation is ramping slowly driven by the

timing node (the green and red curves, respectively), in the

subthreshold region. At the moment in time, marked with “end

of action”, the CoS node is activated by the CoS field, which,

in its turn, is driven by the input signalling that the robot has

reached the target. This node now inhibits both the intention

node and the CoD node; the action is finished.
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Fig. 3: Overview of the simulated architecture with five EBs.

On the middle plot of Fig. 5a, activation of the Timing

DNF is depicted. The vertical axis on this plot shows the

behavioral dimension of this DNF, which is, effectively, the

temporal duration (the scale is arbitrary since the duration is

stored and read out by the same dynamics). The horizontal axis

is simulation time (in time steps). The yellow region depicts

the localised activity peak that moves with a constant speed

along the dimension of duration. This movement stops when

the CoS node is activated (“end of action” mark on the plot).

In this moment, the memory trace activation starts to build-

up (lower plot of Fig. 5a, yellow region). Only weak memory

trace was left up to this point by the moving peak.

Fig. 5b shows the same dynamical nodes and fields of

the EB5 during trial 4, in which an obstacle is present in

the environment. The robot performs an obstacle avoidance

maneuver, which makes the EB5 to take longer than on

the three previous trials. On the upper plot, the ramping

subthrehold activity of the CoS and CoD nodes is faster now,

after the robot has learned the usual duration of the EB5. The

CoD node thus reaches the activation threshold shortly after

the usual action time elapses. This node inhibits the intention

and the CoS nodes and aborts the action of the EB5. The

timing DNF shows that the moving peak now continues its

motion until the CoD node is activated (middle plot). The

memory trace is weakened at the location of the previously

learned duration, a weak trace is stored for the longer durations

(bottom plot).

Fig. 6 shows the same dynamics as Fig. 5 for EB2 (move

to the target 2 in Fig. 4, which is the second action in

the instructed sequence) on the trial 1 (Fig. 6a) and trial 4

(Fig. 6b). This action is shorter on trial 4 than on the three

previous trials.

Similar as in Fig. 5a, the CoS node is activated in Fig. 6a

and the memory trace of activity of the timing DNF is

accumulated at location, corresponding to the experienced

duration of the EB2’s action. On trial 4, the first action (EB5)

was aborted without reaching the goal, consequently, the path

to the target #2 is shorter and the EB2 takes less time than on

the three previous trials. A new memory trace is formed in the

memory trace field (Fig. 6b, bottom) of EB2 that represents

an instance of a new, shorter experienced duration. This action

is completed on time and the CoS node is activated by the

sensory input (top plot).

Fig. 7 shows the snapshots of the memory trace layer,

uB(x, t), for three actions of the instructed sequence (EB5,

EB2, and EB4) over all five trials (from top to bottom). Note,

how for the EB5 (left plot), on the forth trial (forth line

from the top), the strength of the memory trace is reduced

and the center of the memory trace bump is shifted to the

right (longer durations). On the other hand, for EB2 (middle
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(b) A trial with obstacles.

Fig. 4: Snapshot of the path followed by a simulated mobile robot performing a serial order task.

Timing DNF

Memory Trace of the Timing DNF

Nodes of EB#5 
start of the action end of the action

(a)

Timing DNF

Memory Trace of the Timing DNF

Nodes of EB#5 
start of the action end (failure) of the action

(b)

Fig. 5: Activity of the intention, CoS, and CoD nodes (top), the timing DNF (middle), and the memory trace field (bottom)

for the EB5 on two different trials. (a) Trial 1: the robot successfully accomplished the action (the CoS node is activated,

green line in the top plot), the action’s duration is stored in the memory trace of the Timing DNF (bottom plot). (b) Trial 4:

an obstacle caused a delay in reaching the target, leading to activation of the CoD node (red line in the top plot) the memory

trace is weakened for the previously learned duration of EB5, small activation for a alter time is visible in the bottom plot.
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Fig. 6: Activity of the intention, CoS, and CoD nodes (top), the timing DNF (middle), and the memory trace field (bottom) for

the EB2 on two different trials. (a) Trial 1: the robot successfully accomplished the action (the CoS node is activated, green

line in the top plot), the action’s duration is stored in the memory trace of the Timing DNF (bottom plot). (b) Trial 4: abortion

of the action of EB5 makes the route to the target #2 shorter; a shorter duration is stored in the memory trace layer of the

timing DNF (bottom plot).

plot), the memory trace on trial 4 becomes bi-modular, since

a (much) shorter duration was experienced and stored. After

only one such experience, the strength of this memory trace

won’t allow it to be read out by the read-out DNF (uC(x, t)),
although because of the noise in the system this might happen.

When in trial 5 the usual, longer, duration is experienced again,

the strength of the “unusual” memory trace is further reduced

(bottom line in the middle plot in Fig. 7).

An example of the evolution of the memory trace for EB5

is shown in Fig. 8. It is possible to see that already after

two trials, a well defined peak around x ≈ 245 is created. A

delayed stable input from the non-moving peak in the timing

DNF leaves a memory trace in trial 4 after x ≈ 245, but this

experience alone is not strong enough to reshape the stable

peak. A new “normal” trial adds activity around the stable

peak in the memory trace. The memory trace is continuously

updated and one can observe its slow decay from trial to trial

(in times when no positive update happens, i.e. other EBs are

active).

Activity of the memory trace �eld for EB#5 through all trials

Trials

T
im

e

1 2 3 4 5

0

125

250

375

Fig. 8: Activity of memory trace layer for EB5 throughout all

trials. Trial 4 shows a decrease in the activity of its maximum

due to the memory formation from the delayed reaching of

target 5.

Video of a simulated experiment can be seen at

https://www.youtube.com/watch?v=DZ6WiirA4eY, Matlab
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Fig. 7: Accumulation of the memory trace of the Timing DNF over all five trials for three EBs (EB5, EB2, and EB4). See

text for details.

code of the experiment can be shared on request.

V. DISCUSSION

This paper presented a neural-dynamic model for learning

durations of actions. The model details the neural-dynamic

mechanisms, which are, in our opinion, required to learn

durations of actions and to use these learned duration rep-

resentations to influence behavior of an embodied agent.

These mechanisms include: (1) The concept of an elemen-

tary behavioral unit, which comprises an intention, condition

of satisfaction (CoS) and condition of dissatisfaction (CoD;

failure) neuronal populations (“nodes” in our model). In order

to measure and store duration of a state, or an action, its

beginning and the end need to be detected by the neuronal

system. In a complex neuronal architecture, where different

neuronal populations are activated and deactivated at every

moment in time, detecting the temporal “boarders” of an

action is a non-trivial task and such structured representation

of the behavioral states is required. (2) A time-representing

substrate (a timing DNF in our model), in which time can be

measured (by a running activity peak in our model) and the

measured durations can be stored (in the memory trace layer)

and retrieved (through the read-out DNF). (3) Finally, when

the stored duration is read-out, it shall influence the action

production. In our model, the simplest impact on the action

production is modelled: the system detects when the stored

usual duration of an action is exceeded and aborts the action

in such case. This influence could take a more sophisticated

form, for instance, coordinating different effectors that should

accomplish an action at the same time.

The architecture described in this article builds on our

previous work on serial order [53], [30], [46] and hierarchical

sequences [33] with DNFs. The tools and methodology of

DNFs have been used for learning durations here. We have

demonstrated the functionality of the model in a simulated

experimental setup, in which a mobile robot navigates to a

number of pre-defined locations in a two-dimensional space,

avoiding an obstacle on one of the trials. This setup demon-

strates how durations of a sequence of actions can be stored,

updated, and used to detect an unusual situation, in which an

action takes longer. This simulated setup can be easily trans-

ferred to a physical robot and the model can be implemented

in neurally inspired hardware [34] and it can be scaled-up for

more complex behavioral scenarios.

We used neurally-based dynamic neural fields as the build-

ing blocks of our model and can state that the implemented

mechanisms for measuring, storing, and reading-out the tem-

poral intervals can be realised by biological neuronal popula-

tions. However, in this work we did not aim to account for any

neuronal or behavioral findings, although we believe that our

architecture is supported by a number of such findings (briefly

reviewed next) and we aim to study biological relevance of our

model in the future.

A multitude of studies, e.g. listed in [54], [6], [11], [55],

[10], [56] establish that timing of motor responses undergoes

learning and adaptation. This is true for temporal intervals in

the range of hundreds of milliseconds to a few seconds [57],

[12] and means that the variability of a timed action reduces

with practice: the requested durations can be reproduced and

discriminated with increasing accuracy. The mechanism for

storing durations in our architecture – the memory trace

dynamics of the DNF framework – is a memory mechanism

of a graded nature, in which graded values can be stored

together with their uncertainties (expressed in the width of the

stored activity distributions). The memory traces are summed

up over experiences and have their intrinsic dynamics (i.e.,

decay). Importantly, the new memory traces interact with

memory traces of previous experiences in a non-linear way

in the timing DNF: for a short distance (on the dimension

of duration) between the memory traces, they are merged

while being pulled closer to each other, for a larger distance

between the new and the old memory trace, a new memory

trace is stored. The accumulated memory traces make activity

stronger as more consistent evidence for a given time interval

is accumulated. This leads to a more reliable reproduction

of durations with training. With inconsistent experience, the

memory traces are weak and do not influence the behavior

considerably, but may lead to categorisation of the newly

perceived temporal intervals. Thus, our model in principle

accounts for learning and adaptation of timing. In contrast to

more descriptive models of memory formation, e.g. Bayesian

inference, our model offers a neuronal mechanism for this

process.

Our model can be considered an instantiation of a well-

accepted principle of encoding time – the state-dependent

network (SDN) model [26] – with a particular choice of the

population dynamics that alters the neuronal state with passage

of time (the assymetric kernel of the timing DNF). The SDN
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model proposes that temporal information is encoded in a neu-

ral population with short-term plasticity, in which passage of

time changes the system’s state, implicitly encoding time along

with representations of other stimulus attributes [58], [59],

[60], [26]. Another model that proposes that timing may be

encoded in dynamically changing patterns of neuronal activity

was developed in the context of the cerebellum modelling [61].

In this population encoding model, it was proposed that a

stimulus triggers a changing pattern of neural activity as a

result of negative feedback in the network [62], [63], [56].

Such timing mechanism has been referred to as a population

clock, in which changing populations of active neurons encode

time [58], [60]. The shifting activity peak in our timing DNF is

a possible interpretation of the population clock representation

of the elapsed time, in which the underlying substrate is

modelled in a convenient topological fashion, but could be

realised by neuronal populations without spatial alignment

along the timing dimension.

Another notion, which has considerable experimental sup-

port, is that time may be encoded in the linear changes of the

firing rate of neuronal population [64]. Such ramping activity

has been observed in the neurons in different areas during

timing tasks [65], [66], [67], [68], [69], [70], [71]. Ramping

dynamics of the timing node in our model reflects this line of

neuronal findings.

In hippocampus, neuronal substrate that represents timing in

a distributed way has been determined, in which an evolving

temporal signal takes the form of a succession of briefly

firing neurons, termed “time cells” [72]. These time cells are

activated sequentially, irrespective of the content of the task

or action and represent the course of time during an action

sequence. The behavioral evidence for a distributed neuronal

substrate for representing duration was established in studies

which postulate that learning effects are duration-selective, i.e.,

training increases duration sensitivity and reduces performance

variability exclusively for the trained interval. This selectivity

seems to suggest the existence of neurons tuned to specific

temporal intervals and indicate duration-sensitive tuning as a

possible mechanism underlying the active encoding of time in

the millisecond/second range. We take inspiration from these

findings and postulate a timing-specific substrate (the timing

DNF) in our model.

Our model cannot be directly compared with the mech-

anistic biological models at this point, since we use more

abstract continuous dynamic neural fields to describe activity

of neuronal populations. Computational neuroscience models

emphasize importance of timing in neuronal dynamics both on

the microscopic scale (the scale on which neuronal plasticity

mechanisms, such as spike timing dependent plasticity, oper-

ate) and on the behavioral scale [73], [74], [75]. These models

show that both using precise timing of neuronal spikes and

using rates of neuronal firing, neuronal states can be associated

with a delayed reward [76]. Dopamine has been found to play a

crucial role both in learning these associations and in learning

the timing between the rewarded stimulus and the reward

[77]. The latter model is particularly close to our architecture,

since it uses rate-based dynamics that is conceptually close

to the dynamics of the DNFs and neuronal nodes, used in

our work. The model details several neuronal structures and

learning processes, involved in learning associations between

the conditioned and unconditioned stimuli that also include

learning the duration of the time interval between the stimuli.

However, a neuronally implausible “shortcut” is used precisely

at this point – the time in the simulation of the model when

the first stimulus arrives is stored in a variable (t0), which

influences neuronal equations to produce the timing effect

(along with a ramping variable and a bank of oscillators,

synchronised through the introduced variable t0).

The neuronal-dynamic architecture proposed in this paper

focuses on the process of learning timing of neuronal states,

which is involved, among other processes, in such reward-

related learning. While we don’t specify the details of the

neuronal mechanisms and brain areas involved, we propose

a functional model that uses neurally-plausible dynamics and

can be considered a particular instantiation of the SDN model,

in which the state of a neuronal population changes with the

mare passage of time (shifting the position of activity peak

in the timing DNF). Our neural-dynamic architecture shows

how such model can be embedded in a closed behavioral

loop, driven by sensory events and influencing the dynamics of

action initiation. The model can also be realised in neuromor-

phic hardware, using well-established link between the DNFs

and the winner-take-all architecture that is one of the building

blocks for cognitive systems in neuromorphic hardware [78],

[34].

Our model presents just one of possibly many mechanisms

to learn, store, and use temporal intervals during action and

perception. The characteristic aspect of this model is that it

accounts for the process of learning durations in an embodied

and situated setting, when the system has to detect relevant

events and coordinate its dynamics in time based on its own

sensory information, perceived in real time. This coordina-

tion includes, for instance, temporal organisation on different

scales: on the scale of individual behaviors, which have to

be initiated and which completion needs to be detected, on

the scale of a single behavior for which its timing must be

tracked (measured), stored, and used to control behaviors on

subsequent instances, as well as for storage of durations of

several actions in a row. Timing is only one of possibly many

aspects of actions and perceptual states in our architecture, all

modelled using DNFs.

VI. CONCLUSIONS

We presented a neurally-plausible mechanism to learn and

store the temporal duration of actions that effectively integrates

different experienced durations of the same action, averaging

over intervals that are close to each other (making the re-

spective representation broader and thus “less certain”) and

creating a bi-modal representation if the experienced instances

are far apart. This learning mechanism presents a dynamical

systems alternative to Bayesian filter and other statistical

models of long-term memory formation or creation of rep-

resentations and will be exploited further in other examples

of online sensorimotor learning. Our approach to learning

durations can be applied in neuromorphic robotic systems that
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require a neuronal timing mechanisms, in order to avoid using

a digital clock to measure time.
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[39] E. Thelen, G. Schöner, C. Scheier, and L. Smith, “The dynamics of
embodiment: A field theory of infant perseverative reaching.” Brain and

Behavioral Sciences, vol. 24, pp. 1–33, 2001.
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Architecture for the Generation of Hierarchically Organized Sequences,”
in Artificial Neural Networks and Machine Learning ICANN 2012,
ser. Lecture Notes in Computer Science, A. Villa, W. Duch, P. Érdi,
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VII. APPENDIX

A. A formal description of the model

Mathematically, the neural-dynamic architecture, depicted

in Fig. 2, can be described by the following set of differen-

tial equations: for the dynamics neural nodes, Eqs. 10, and

dynamic neural fields, Eqs. 11:

τ iv̇i(t) = F (vi(t))− ci,sf(vs(t))− ci,df(vd(t)) + Ii(t)
(10a)

τsv̇s(t) = F (vs(t)) + cs,τf(vτ (t)) + cs,if(vi(t))−

− cs,df(vd(t)) + ICoS (10b)

τdv̇d(t) = F (vd(t)) + cd,τf(vτ (t)) + cd,if(vi(t))−

− cd,sf(vs(t)) (10c)

ττ (t)v̇τ (t) = f(vi(t))(−vτ (t) + f(vi(t))) (10d)

The intention node’s activation, vi(t), Eq. 10a, follows the

neural field attractor dynamics (F ) with two inhibitory terms:

one from the CoS node (vs(t)) and one from the CoD node

(vd(t)). Ii(t) is an external (motivational) input that comes

from other EBs and context (“precondition”) nodes of the

overall architecture for behavioral organisation [79].

The CoS and CoD neural nodes, in their turn, follow the

dynamics of Eq. 10b and Eq. 10c, respectively. These nodes re-

ceive a positive input from the intention node, vi(t), and from
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the timing node, vτ (t). When input from the intention node

is positive, the growing input of the timing node determines,

when the CoS and CoD nodes reach the activation threshold.

Both nodes mutually inhibit each other, thus only one of them

is eventually activated: either the CoS node, driven by the

sensory input that signals a successful accomplishment of the

action, ICoS = c
∫

f(uS(x, t)dx, or the CoD node, which is

activated otherwise.

Finally, Eq. 10d describes the dynamics of the timing node,

vτ (t) that doesn’t have the self-excitatory part of the neural

fields dynamics, but follows a simplified memory trace dy-

namics instead. In particular, the vτ node develops a ramping

(monotonically increasing) activity if the intention node, vi(t),
is activated. The temporal constant of this dynamics, ττ is

set to be large in the beginning of a learning session and

is influenced by the activity of the timing DNF through its

memory trace (Eqs. 9b and 9c).

By modifying the integration time of the timing node, ττ ,

according to Eqs. (9), the system “learns to wait” for a CoS

signal and activates a CoD node if the CoS node is not

activated in the expected time. In Eq. (9c), the variable φ
reads out the position of the activity peak in the field uC(x, t)
(which, in its turn, reads out the memory trace layer): the

activity value of the variable φ is proportional to the position

of the activity peak in the field uC(x, t) (form left to right) and

thus represent this position by a “rate code”. This variable is

linearly controlling the time constant of the τ node (Eq. (9b)).

The dynamics of the DNFs that constitute the architecture

for timing can be described by the following set of equations:

τI u̇I(x, t) = F (uI(x, t)) + f(vi(t))W I(x) (11a)

τS u̇S(x, t) = F (uS(x, t))+

+ cS,I
∫

wS,I(x− x′)f(uI(x′, t))dx′ + IS(x, t)

(11b)

τAu̇A(x, t) = F (uA(x, t)) + IA (11c)

τB u̇B(x, t) = λbuild

(

−uB(x, t) + f(uA(x, t))
)

f(uA(x, t))−

− λdecay

(

1− f(uA(x, t))
)

uB(x, t) (11d)

τC u̇C(x, t) = F (uC(x, t))+

+ cC,B

∫

ωC,B(x− x′)uB(x′, t)dx′ (11e)

Here, the dynamics of the intention field, uI(x, t) (Eq. 11a)

and the CoS field, uS(x, t) (Eq. 11b) follow the generic

DNF equation and are interconnected in an EB structure, as

described in [33]. The CoS field receives a “one-to-one” input

from the intention field, convolved with a Gaussian kernel,

wS,I(x − x′), and an external, sensory input IS(x, t). The

intention field receives input from the associated intention

node, vi(t), through a synaptic weights function, W I(x), that

encodes the “content” of the action’s intention. The fields uA,

uB , and uC are described in the main text (Section III-B).

B. Scalar property of timing

Although we don’t aim to account for biological findings

about learning durations, we would like to demonstrate that the

model can account for one important characteristics, found in

many experiments on learning timing of actions and perceived

signals. In particular, it is the so called scalar property of

timing: the precision of storing (and reproducing) shorter

intervals seems to be higher than precision of storing (and

reproducing) longer intervals, at least in some range. Fig. 9

shows the dynamics of a running-peak representation of time

in a timing DNF. Note that for some time, the peak’s width

grows. This is the consequence of lateral interaction in the

DNF that make the peak “lag behind” its moving front, which

is driven by the asymmetrical kernel. Thus, as the peak moves

along the DNF dimension, it becomes more diffuse for some

time, which is determined by the parameters of the DNF.
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Fig. 9: Widening of the travelling peak in a DNF in the

beginning of its propagation as a possible mechanism to

account for the scalar property of timing.

C. The code

Matlab code of the model is freely available at

https://github.com/sandayci/LearningTiming.git.
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