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LEARNING ALGORITHMS AND SIGNAL PROCESSING 
FOR BRAIN-INSPIRED COMPUTING

rtificial neural networks (ANNs) and computational neuro-
science models have made tremendous progress, enabling 
us to achieve impressive results in artificial intelligence 

applications, such as image recognition, natural language pro-
cessing, and autonomous driving. Despite this, biological neural 
systems consume orders of magnitude less energy than today’s 
ANNs and are much more flexible and robust. This adaptivity 
and efficiency gap is partially explained by the computing 
substrate of biological neural processing systems that is funda-
mentally different from the way today’s computers are built. 
Biological systems use in-memory computing elements oper-
ating in a massively parallel way rather than time-multiplexed 
computing units that are reused in a sequential fashion. More-
over, the activity of biological neurons follows continuous-time 
dynamics in real, physical time instead of operating on discrete 
temporal cycles abstracted away from real time.

Here, we present neuromorphic processing devices that 
emulate the biological style of processing by using parallel 
instances of mixed-signal analog/digital circuits that operate 
in real time. We argue that this approach brings significant 
advantages in efficiency of computation and show examples of 
embodied neuromorphic agents that use such devices to inter-
act with the environment and exhibit autonomous learning.

Introduction
Tremendous progress in machine learning and computational 
neuroscience is leading to the development of neural process-
ing algorithms that may have a far-reaching impact on our 
daily lives [1]. For example, recently developed deep and con-
volutional neural network algorithms can be trained to per-
form remarkably well in pattern-recognition tasks, in some 
cases even outperforming humans. Typically, these algo-
rithms run on conventional computing systems based on the 
von Neumann architecture and, consequently, are commonly 
implemented using large and power-hungry platforms, some-
times distributed across multiple machines in server farms. 
The power required to run these algorithms and achieve im-
pressive results is orders of magnitude larger than the power 
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used by biological nervous systems that once served as inspi-
ration for the ANNs. This high power consumption is not sus-
tainable for the future needs of ubiquitous computing at scale.

The reasons for the large gap in energy costs between artifi-
cial and natural neural processing systems are still being inves-
tigated; however, it is clear that one fundamental difference lies 
in the way the elementary computing processes are organized: 
Conventional computers use Boolean logic, bit-precise digital 
representations, and time-multiplexed and clocked operations. 
Nervous systems, on the other hand, carry out robust and reli-
able computation using analog components that are inherently 
noisy and operate in continuous time and activation domains. 
These components typically communicate among each other 
with all-or-none discrete events (spikes), thus, using a com-
bination of analog computation and digital communication. 
Moreover, they form distributed, event-driven, and massively 
parallel systems, and they feature a considerable amount of 
adaptation, self-organization, and learning, with dynamics that 
operate on a multitude of timescales.

One promising approach for bridging the efficiency gap 
between the biological and artificial neural systems is to devel-
op a new generation of ultralow-power and massively parallel 
computing technologies that are optimally suited to implement 
neural network architectures that use the same principles of 
computation used by the brain. This “neuromorphic engineering” 
approach [2] was originally proposed in the early 1990s [3] 
but now takes advantage of the progress made in very large-
scale integration (VLSI) technologies to scale up the number 
of neurons and synapses per device, as well as the development 
in computational neuroscience to implement more complex, 
spike-based signal processing and learning architectures. Neu-
romorphic circuits are typically designed using analog, digital, 
or mixed-mode analog/digital CMOS transistors, and are well 
suited for exploiting the features of emerging memory tech-
nologies and new memristive materials [4]–[6]. Similar to the 
biological systems they model, neuromorphic systems process 
information using energy-efficient, asynchronous, event-driv-
en methods [7]; they are often adaptive and fault-tolerant, and 
they can be flexibly configured to display complex behaviors 
by combining multiple instances of simpler elements.

Remarkable neuromorphic computing platforms have been 
developed in the past for modeling cortical circuits, solving 
pattern recognition problems, and implementing machine 
learning tasks [8]–[19], as well as for accelerating the simula-
tion of computational neuroscience models [15], [17]. In paral-
lel, impressive, full-custom dedicated accelerators have been 
proposed for implementing convolutional and deep network 
algorithms following the more conventional digital design 
flow [20], [21]. While these systems significantly reduce the 
power consumption in a wide variety of neural network appli-
cations compared to conventional computing approaches, they 
still fall short of reproducing the power, size, and adaptivity of 
biological neural processing systems that can produce adap-
tive behavior that consumes just a few watts of power. Indeed, 
developing low-power, compact, and autonomous electronic 
agents that can interact with the environment in real time is 

still an open challenge. Such agents must be capable to extract 
relevant information from the signals they sense, adapt to the 
changes and uncertain conditions present in the external inputs 
and internal states, and learn to produce context-dependent 
behaviors for carrying out goal-directed procedural tasks.

We argue that to address this challenge and find a computa-
tional substrate that minimizes size and power consumption in 
real-time behaving systems, the computing hardware in which 
computation is realized needs to match the computing principles 
underlying autonomous adaptive behavior. In particular, to fully 
benefit from the emulation of biological neural processing sys-
tems, it is important to preserve two of their fundamental charac-
teristics: the explicit representation of time and the explicit use of 
space, instantiating dedicated physical circuits for each neuron/
synapse element and avoiding the use of time multiplexing. In 
the following, we first present the design principles for building 
neuromorphic electronic systems that make use of these repre-
sentations and then show how such explicit representation of time 
and space matches a computing framework of dynamic neural 
fields that embody principles of autonomous behavior generation 
and learning [22], [23]. Finally, we demonstrate successful real-
izations of autonomous neural-dynamic architectures in neuro-
morphic hardware, emphasizing the role of using physical time 
and space representation in hardware for efficiency of the autono-
mous neuronal controllers.

Design principles for building biologically plausible 
neuromorphic processors

Dedicated neuronal circuits in hardware  
neural-processing systems
In an effort to minimize silicon-area consumption, digital 
neuromorphic processors typically use time-multiplexing 
techniques to share circuits that simulate neural dynamics for 
modeling multiple neurons [16], [18], [19]. This requires that 
the shared circuits continuously transfer their state variables 
to and from an external memory block at each update cycle 
(therefore, burning extra power for the data transfer). The faster 
the transfer and cycle rate, the larger the number of neurons 
that can be simulated per time unit. In addition, if these circuits 
need to model processes that evolve continuously over natural 
time, such as the leak term of a leaky integrate and fire (I&F) 
neuron model, it is necessary to include a clock to update the 
related state variables periodically and manage the passing of 
time (thus, adding extra overhead and power consumption).

Unlike digital simulators of neural networks, analog neuro-
morphic circuits use the physics of silicon to directly emulate 
neural and synaptic dynamics [2]. In this case, the state vari-
ables evolve naturally over time, and “time represents itself” [3], 
bypassing the need to have clocks and extra circuits to manage 
the representation of time. Furthermore, since the state vari-
able memory is held in the synapse and neuron capacitors, 
there is no need to transfer data to extra memory blocks, dra-
matically saving energy that would otherwise be required to 
shift the neuron state variables back and forth from the mem-
ory. Examples of neuromorphic architectures that follow this 
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mixed-signal approach include the Italian Istituto Superiore di 
Sanità (ISS) learning attractor neural network that has plastic-
ity and a long-term memory chip (LANN-21) [8]; ISS “final 
learning attractor neural network” (F-LANN) chip [9]; Georgia 
Tech learning-enabled neuron array integrated circuit (LENA-
IC) [10]; University of California San Diego integrate-and-fire 
array transceiver (IFAT) architecture [11]; Stanford University, 
California, Neurogrid system [12]; University of Zürich recur-
rent online learning spiking (ROLLS) neuromorphic processor 
[14]; and University of Zürich dynamic neuromorphic asyn-
chronous processor- scalable (DYNAP-SE) chip [13].

In these devices, the analog synapse and neuron circuits 
have no active components [2]. The circuits are driven directly 
by the input “streaming” data. Their synapses receive input 
spikes, and their neurons produce output spikes at the rate of 
the incoming data. So, if they are not processing data, there 
is no energy dissipated per synaptic operation (SOP) and no 
dynamic power consumption. Therefore, this approach is 
particularly attractive in the case of applications in which the 
signals have sparse activity in space and time. Under these con-
ditions, most neurons would be silent at any one time, thus, 
bringing the system power consumption to the minimum.

A quantitative comparison of the specifications of these 
devices is presented in Table 1. The spike-based learning algo-
rithms that some of these devices implement are based on the 
basic version of spike-timing-dependent plasticity (STDP) [24] 
or the more elaborate spike-timing and rate-dependent plastic-
ity (STRDP) [25].

While this approach is very power efficient, it is necessary to 
instantiate and place one distinct physical neuromorphic circuit 
per emulated synapse or neuron, therefore, requiring a physical 
area that scales with the number of synapses and neurons in the 
network. This was a serious limiting factor with older VLSI 
fabrication processes. However, technology scaling pushed by 
Moore’s law, and the emergence of novel nanoscale memory 
device technologies that can be used to implement synaptic and 
neural dynamics [5], [6], bring renewed interest to this approach 
and make it very competitive compared to the classical one of 
resorting to more compact digital designs based on shared time-
multiplexed circuits, as was done, for example, for the IBM 
TrueNorth [16] and Intel Loihi [19] neuromorphic processors.

A clear difference between the use of pure digital circuits 
versus mixed-signal analog/digital ones is the higher sensitiv-
ity to noise and variability of the latter. The higher robustness 
of digital circuits is given by their feature of restoring signals to 
high or low states at each processing stage. This ensures accu-
rate representation of signals and is a crucial requirement for 
deterministic and reproducible computation using the standard 
computing paradigms based on Boolean logic. However, ani-
mal brains are an existence proof that noisy and analog com-
putational elements can, indeed, be used to perform reliable 
computation in sensory processing tasks at much lower power. 
Within this context, mixed-signal neuromorphic processors 
represent a promising approach that can potentially lead to 
robust computation by using the same strategies used by real 
nervous systems, such as adaptation, learning, and smoothing 
over space (for example, with population coding [26]) and time 
(through the low-pass filtering property of transferring the 
function of the physical computing elements).

Natural time in hardware neural processing systems
For the approach based on parallel instances of mixed analog/
digital circuits as described previously, the most power-efficient 
way of processing time-varying signals is to use circuit time 
constants that are well matched to those of the dynamics of the 
signals that need to be processed. For example, real-world “nat-
ural” events and signals, such as speech, biosignals measured 
from the body, human gestures, and motor and sensory signals 
measured from roving robots, would require the synapse and 
neural circuits to have time constants in the range of 5–500 ms. 
It is important to realize that although the speed of the individual 
synapse or neuron computing elements in such architectures is 
very slow (for example, compared to digital circuits), the re-
sponse time of the overall system can be extremely fast. This is 
due to the fact that the distributed parallel processing nodes in 
the system will be affected by device mismatch and have differ-
ent initial conditions; so, upon the arrival of an external input, 
there will be many neurons very close to their firing threshold, 
and they will produce an output with a latency that is much 
shorter than their natural integration time constant. While these 
fast reaction times can be achieved with any (mismatched and 
matched) system, for example, via stochastic resonance, neural 

Table 1. The quantitative comparison of mixed-signal neuromorphic processor specifications. 

LANN-21 [8] F-LANN [9] LENA-IC [10] IFAT [11] NeuroGrid [12] ROLLS [14] DYNAP-SE [13]

Technology 0.6 nm 0.6 nm 0.35 nm 90 nm 0.18 nm 0.18 nm 0.18 nm
Supply Voltage 3.3 V 3.3 V 2.4 V 1.2 V 3 V 1.8 V 1.8 V
Core Area 10 mm2 68.9 mm2 25 mm2 139 nm2 170 mm2 51.4 mm2 7.5 mm2

Neurons/Core 21 128 100 2,000 65,636 256 256
Synapses/Core 129 16,384 30,000 N/A 4,096 128,000 16,000
Fan-In/Fan-Out 21/21 128/128 100/100 N/A N/A 256/256 64/4,000
Synaptic Weight Capacitor Capacitor 210 bits 8 bits 13-bit shared Capacitor 1 + 1 bit
Online Learning STRDP STRDP STDP No No STRDP No
Neurons/mm2 174 N/A 27 7,142 360 1,089 812
Energy per SOP N/A N/A 10 pJ 22 pJ 31.2 pJ 77 fJ 17 pJ

fJ: femtojoule; pJ: picojoule.
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networks that use dedicated circuits per neuron and that are af-
fected by mismatch do not need to implement explicit random 
number generators and cycle through each time-multiplexed 
neuron to inject the noise needed to achieve this effect.

The relatively long time constants required by this approach 
are not easy to realize using analog CMOS technology. Standard 
analog circuit design techniques either lead to bulky and silicon-
area expensive solutions or fail to meet this condition, resorting to 
modeling neural dynamics at accelerated timescales [27]. One ele-
gant solution to this problem is to combine the use of subthreshold 
circuit design techniques [3] with a current-mode design [28]. A 
very compact subthreshold log-domain circuit that can reproduce 
biologically plausible synaptic and neural temporal dynamics and 
that has been used in a wide variety of neuromorphic applications 
[25], [29]–[31] is the differential pair integrator (DPI) circuit [32], 
depicted in Figure 1. The analytic transfer function of this circuit 
can be derived following a translinear-loop log-domain analysis 
[2], [28]. From Figure 1(b), it follows that
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where Iout  represents the synaptic or neuron dynamic variable, 
Iin  the input signal, Ix  a user-defined leakage current, and Ig  a 
global gain term useful, for example, for modeling spike-based 
learning, intrinsic plasticity, and synaptic scaling. This is a 
nonlinear differential equation. However, under the reasonable 
assumptions of nonnegligible input currents, such that ,I Iin & x  
and observing that, for such conditions, the output current Iout  
will eventually grow to be ,I Igout &  this equation simplifies to
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The circuit time constant is defined at .CU IT_x l x/  Long time 
constants are achieved by using a combination of large capaci-
tors and small currents. Even though it is possible to implement 
such long time constants without sacrificing large amounts 
of silicon real estate area, for example, using high dielectric-
constant materials, memristive devices, and active circuits that 
minimize leakage currents [31], there is a limit to the maximum 
time constants that can be implemented at the level of the single 
neural or synaptic components, and to the temporal scales that 
they can deal with for processing slow-changing signals. This 
is a problem that biological neural processing systems also face 
and that can be solved by using network dynamics to model at-
tractors and long-term memory phenomena.

Signal processing in neuromorphic hardware on 
behavioral timescales
Biological nervous systems are capable of controlling behavior 
and processing sensory inputs in an adaptive and robust man-
ner over a multitude of timescales that extend well beyond those 
of the single synapse and neuron time constants [33]. Indeed, 
in such systems, there is a multitude of neural circuits and 
mechanisms that underlies the ability to process and generate 

temporal patterns over behavioral timescales [34]. A common 
circuit motive found throughout multiple parts of the cortex that 
is believed to subserve these functions is the “winner take all” 
(WTA) network [35], [36], which is a specific type of attractor 
network [37]. Theoretical studies have shown that such networks 
provide elementary units of computation that can stabilize and 
denoise the neuronal dynamics [35], [38], [39]. These theoretical 
considerations have been validated in neuromorphic hardware 
systems to generate robust behavior in closed sensorimotor loops 
[40]. However, to extend these models and hardware neural pro-
cessing circuits to more complex systems, such as autonomous 
agents that can make decisions and generate goal-directed be-
havior, it is necessary to develop higher-level control strategies 
and theoretical frameworks compatible with mixed signal neu-
romorphic hardware, and endowing neuromorphic architectures 
with compositionality and modularity. The core challenge is to 
design neuronal networks for neuromorphic hardware that can 
create and stabilize a neuronal state that can, for example, drive 
movements of a robot that unfold at arbitrary timescales.

Recurrently connected neural populations can, indeed, 
create sustained activation to keep a neuronal state active for 
macroscopic, behavioral time intervals, providing a model of 
working memory [41]. Such sustained neuronal states do not 
need to lead to static behavior but should create an attractor 
in the behavioral space that generates the desired behavior. 
This desired behavior can be periodic or correspond to a fixed-
point attractor [42].
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FIGURE 1. (a) The DPI circuit diagram; the red arrows show the translinear 
loop considered for the log-domain analysis. (b) The circuit and translin-
ear loop equations used to derive the circuit transfer function. The term 
I0  in the equation represents the transistor dark current, UT  the thermal 
voltage, and l  the subthreshold slope factor [3].
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These attractor-based representations can sustain a variable 
duration of actions and perceptual states and help to bridge the 
neuronal and behavioral timescales in a robust way [23], [41]. 
The recurrent neural network dynamics that can be used for 
this purpose are described by the following equation [22]:

,( , ) ( , ) ( , ) ( ( )) ( ) .x t u x t h I x t f u x t w x x dx
dt

ud ; ;x =- + + + -l l l#
� (3)

Here, ( , )u x t  is a neuronal activation function defined across 
a perceptual or motor space, ,x  that is encoded by a neuronal 
population. Such a dimension, ,x  could represent a continuous 
sensory feature, such as color or orientation of a visual stimu-
lus, or a motor variable, such as a hand position or location in 
space. The term h  in (3) is a negative resting level of the neuro-
nal population; the term ( , )x tI  is an external input, and ( )f $  is 
a sigmoid nonlinearity that smoothly filters population activ-
ity. The final integral term in the equation expresses the lateral 
connectivity in the neuronal population with activity described 
by the activation function ( , ).u x t  In particular, the integral is 
a convolution shaped by the interaction kernel ( )w x x; ;- l  that 
only depends on the distance between two positions. The inter-
action kernel has a “Mexican hat” form of the type
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where Aexc inh/  and exc/inhv  are the amplitude and spread of the 
excitatory and inhibitory parts of the kernel. Such a pattern of 
lateral connections creates a soft WTA dynamic in the neuro-
nal population: If they are supported by neighboring (in the 
behavioral space) neurons, the neurons that get activated first 
stay activated and inhibit other neurons in the population. This 
formalization of the dynamics of recurrent neural populations 
is known as a dynamic neural field (DNF) [43], [44]. Through 
decades, DNF theory was developed into a framework for a 
neuronal basis of cognition [22] that has been recently applied 
to the control of cognitive robotic agents [23], [45].

The DNF dynamics described by (3) can be simulated on 
a computer using the Euler or Runge-Kutta method for the 
numerical integration of the integro-differential equation. 
Such simulations were developed in the past using MAT-
LAB (https://dynamicfieldtheory.org/cosivina/) and C++ [46] 
(https://cedar.ini.rub.de) software libraries, and they usually 
require substantial computing power since the dense recurrent 
connections in large neuronal fields do not allow for parallel-
izing architectures efficiently. In some cases, when interaction 
kernels are separable and unchanging, the computation can 
be brought into Fourier space and run more efficiently. How-
ever, even in these cases, the performance of large-scale DNF 
architectures on a conventional computer is still unsatisfactory 
for real-world robotic applications. To the contrary, implemen-
tation of DNFs in neuromorphic hardware enables running 
these networks in real time, since computation is performed 
in parallel using hardware connections instead of simulating 
convolutions and numerical integration over time.

Figure 2(a) shows a scheme of a WTA/DNF implementa-
tion with spiking neurons. Here, red circles designate neurons, a 
larger number of which form an excitatory pool that represents 
the behavioral variable; the smaller pool of neurons forms an 
inhibitory group that realizes the inhibitory part of interaction 
kernel in (3). Red lines are excitatory, and blue lines are inhibi-
tory connections (shown for one of the inhibitory neurons each).

The stable attractors created by such WTA dynamics are 
critical to enable behavior learning in a closed sensory-motor 
loop in which the sensory input changes continually as the 
agent generates action. To learn a mapping between a sensory 
state and its consequences, or a precondition and an action, the 
sensory state, before the action, needs to be stored in a neuronal 
representation. This can be achieved by creating a reverberating 
activation in the neuronal population that can be sustained for 
the duration of the action, even if the initial input ceases. The 
sustained activity can be used to update sensorimotor mappings 
when a rewarding or punishing signal is obtained [45], [47].

Implementing on-chip learning in  
neuromorphic processors
Learning is probably the most important aspect of neural pro-
cessing systems: It allows us to train ANNs to perform pattern 
classification and recognition tasks, and in biological neural 
systems, it allows animals to form memories and create as-
sociations. Most importantly, however, it endows agents with 
the capability to adapt to changes in the statistics of the input 
signals or changes in the properties of their actuators across 
different timescales.

Usually, in machine learning, the supervised-, unsuper-
vised-, and reinforcement-learning procedures are distin-
guished. All three cases of learning must be addressed, both in 
biological neural systems and on neuromorphic hardware that 
emulates those principles, using spiking neuronal dynamics 
and spike-based learning rules [48], [49]. One line of research, 
thus, tries to adapt the learning methods and training proce-
dures developed for “rate-based,” continuous-valued ANNs to 
spiking neural networks, which do not support nonlocal com-
puting across synaptic weights or the computation of deriva-
tives [50]–[52]. The hardware principles that we present here 
will support these developments. In our own work, addition-
ally, we aim to develop learning architectures that enable the 
adaptation of synaptic weights and other network parameters 
when the neuronal network is used to produce behavior. Such 
“online” continual learning relies on stabilized representations 
of behavioral states (that include both perceptual states and 
action intentions) and their consequences or preconditions in 
attractor networks, presented in the “Signal Processing in Neu-
romorphic Hardware on Behavioral Timescales” section. The 
weight update mechanism itself is not critical and can, then, be 
implemented by simple Hebbian learning mechanisms.

In artificial neural processing systems, learning typically 
involves the update of synaptic weight values. In hardware, this 
can require significant amounts of extra resources: In time-mul-
tiplexed systems, these resources are typically in the form of 
state memory, memory-transfer bandwidth, and power. These 
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extra resources can be especially significant if the storage is 
done using memory banks that are not on the processor die (for 
example, dynamic random-access memory in large-scale sys-
tems). On the other hand, the overhead needed to implement 
learning in mixed-signal neuromorphic architectures that place 
multiple instances of synaptic circuits per emulated synapse is 
very small. For example, Figure 3, depicting the chip micro-
graph of the ROLLS device [14], shows how the synapses that 
comprise learning algorithms occupy approximately the same 
area of the nonplastic synapses that have fixed programmable 
weights and short-term plasticity (STP) dynamics. Since each 
of these synapse circuits can be stimulated individually by the 
chip input spikes, they can operate in parallel using slow dynam-
ics (for example, driven by picoampere currents), without hav-
ing to transfer state memory at high speeds to external memory 
banks. Here, the area used by the parallel circuits enables us to 
save bandwidth and power in implementing neural dynamics. 
Furthermore, the feature of implementing biologically plausible 
time constants and making use of explicit natural timescales 
enables us to use the fast digital AER [7] circuits for stimulating 
multiple synapses in parallel.

In our work, we used the ROLLS device in Figure 3 to enable 
learning in WTA networks to implement a hardware model of 
sequence learning [53] as well as learning maps [54] and senso-
rimotor mappings [55] in neuromorphic agents. Specifically, we 
used interconnected populations of spiking neurons in a WTA 
fashion, creating excitatory recurrent connections between 

neurons that encode similar features. When a group of such 
interconnected neurons is activated, the excitatory connections 
create an activation flow between neurons that can sustain itself 
after the initiating input yields. Such sustained activation forms 
an attractor that can drive down-stream structures, resulting in a 
movement of the agent; the time structure of this movement can 
be decoupled from the dynamics and timing of sensory input. 
Moreover, learning between sustained attractor states can be 
triggered when a rewarding or error signal is perceived.

The rather dense WTA connectivity requires parallel pro-
cessing to be efficiently computed. Moreover, nonlinearities 
of the DNF dynamics, which are crucial for its attractor prop-
erties, need to be processed for a large number of neurons 
in parallel. The dedicated neuronal circuits in neuromorphic 
devices, such as the one in Figure 3, lead to a direct imple-
mentation of the neuronal attractor networks in the wiring on 
the chip, with local synapses and neurons performing signal 
processing (such as filtering and smoothing), symbolic com-
putation (selecting stable attractors), and state-holding (mem-
ory storage). Such implementation is more efficient compared 
to hardware with time multiplexing and virtual time, in terms 
of energy, because it does not require moving the state data 
(neuronal activation and weight values) between separate 
memory blocks and processing ones. We, thus, argue that 
neuromorphic devices that feature real-time processing with 
timescales matching the task, and with a massively parallel 
network of analog computing elements, when matched with 
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FIGURE 2. (a) The neuronal connectivity realizing a WTA/DNF (red are excitatory connections and blue are inhibitory connections; only one set of excit-
atory-to-inhibitory and inhibitory-to-excitatory connections is shown). (b) The same connectivity is realized in nonplastic synapses on a mixed-signal 
neuromorphic processor. (c) The illustration of the noise-reducing properties of the DNF dynamics: a raster plot of spiking activity in a WTA architecture 
implemented on a neuromorphic processor [14]. The distractor input is suppressed after 1 s. 
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a neuronal architecture of attractor-based population dynam-
ics, can lead to efficient implementations of neuromorphic 
systems capable of generating cognitive behavior. In the fol-
lowing sections, we present representative examples of such 
neuromorphic agents.

Signal processing for neuromorphic agents
In this section, we describe neuronal architectures that make 
use of the properties of neuromorphic devices with explicit 
representation of neuronal substrate and real time, using con-
cepts of attractor dynamics in neuronal populations as a means 
to program the devices to implement desired functionalities. 
We describe, in detail, two seminal architectures: a realization 
of a closed-loop navigation controller inspired by a Braitenberg 
vehicle, and a sequence-learning architecture that makes use 
of plastic on-chip synapses to store sequences of observations. 
We review a few more examples where on-chip plasticity was 
used to learn along with behavior. Both these architectures 
were realized on the ROLLS neuromorphic processor [14]. 
Despite the small size of the network that was implemented, 
the neuromorphic processor is capable of producing robust be-
havior on a robotic agent in real time.

Closed-loop sensorimotor control
The first neuromorphic architecture demonstrates how the be-
havior of a simple roving agent can be controlled by a spiking 
neuronal network. Such behavior can be generated by a very 

simple neuronal system as has been demonstrated by V. Brait-
enberg with his classical “vehicles” that generate meaningful 
behavior in a structured environment based on the simple wir-
ing of their sensors and motors [56]. According to this view, the 
most basic ability required to generate goal-directed behavior 
is the capacity to differentiate between different sensory in-
puts. In simple terms, the agent must be able to tell one sensory 
state from another one. In terms of the neuronal architecture, 
this means that the system needs to represent combinations of 
visual features and their spatial locations to select the spatial 
target for a movement. Note that such combinations are also 
generated in deep convolutional neural network architectures 
in different feature maps. The spatial component, however, 
typically gets lost across layers of a network that is trained for 
a recognition task. The first part of our architecture achieves 
such differentiation or representation of sensory states (note, 
we are showing a small-scale example, here, on a chip with 256 
spiking neurons).

Figure 4 presents a neuronal architecture that realizes 
one of Braitenberg’s controllers on the neuromorphic device 
ROLLS. We use a WTA network to represent visual input 
obtained by a neuromorphic, event-based camera DVS mount-
ed on a miniature robotic vehicle, Pushbot. In particular, neu-
rons in two WTAs receive an external spike for each event in 
their receptive field: The first WTA population (“Target” in the 
figure) has weak lateral interactions and can represent several 
potential targets in the field of view of the robot. The second 

AER Input

A
E

R
 O

ut
pu

t

STP Synapses
(128 × 128)

STP Synapses
(128 × 128)

LTP Synapses
(128 × 128)

LTP Synapses
(128 × 128)

STP Synapses
(128 × 128)

STP Synapses
(128 × 128)

LTP Synapses
(128 × 128)

LTP Synapses
(128 × 128)

Bias Generator ADCUZH ETHTest Structures

A
E

R
 In

pu
t

Li
ne

ar
 S

yn
ap

se
s 

 P
lu

s 
I&

F
 N

eu
ro

ns

FIGURE 3. The chip micrograph of the ROLLS neuromorphic processor. Silicon-neuron integrate and I&F circuits are placed at the right of the die area and 
connected to an array of 256 512#  synapses. Half of the synapse array is composed of learning synapses that exhibit long-term plasticity (LTP), and the 
other half is composed of fixed-weight synapses that exhibit STP. Input and output spikes are routed to the synapses from the neurons via asynchronous 
digital address-event representation (AER) circuits. On-chip DACs (bias generators) can be programmed to set the bias values of the analog synapse and 
neuron circuits. On-chip analog-to-digital converters (ADCs) are used to read out the currents from the current-mode DPI circuits that emulate synaptic 
dynamics. UZH: Universität Zürich; ETH: Eidgenössische Technische Hochschule Zürich.



23IEEE SIGNAL PROCESSING MAGAZINE   |   November 2019   |

WTA population (“Target Selective”) has strong lateral excita-
tion and inhibition and selects a single target. Each physical 
neuron on the ROLLS that is assigned to belong to the Target 
WTA network is stimulated by visual events from the upper 
half of the DVS: Each neuron in the Target WTA observes a 
vertical column of the DVS frame. Because of the soft WTA 
connectivity, activity bumps emerge in the target WTA that 
correspond to locations of salient visual inputs in the field of 
vision (FoV) of the robot. In this simple example, the target 
direction is set by a blinking LED on the second robot that can 
be observed in the upper half of the FoV. Objects in the lower 
half of the FoV are considered to be obstacles and drive two 
“Obstacles” neuronal populations, shown in the upper part of 
the architecture in Figure 4: Objects in the left or right half of 
the FoV activate the left or right obstacle population, respec-

tively. Thus, in the visual part of the controller, we differentiate 
between obstacles and targets based on the location of the input 
on the vertical axis of the FoV, and we differentiate between 
locations (or directions) of input based on the horizontal coor-
dinate of the dynamic vision sensor (DVS) events.

Note that the physical instantiation of neurons on the 
ROLLS chip makes this architecture simple and elegant: 
No time-multiplexing and state-machine logic are need-
ed; in fact, no software-based arbitration or “algorithm” is 
used for processing. Instead, we have created a closed-loop 
dynamical system that processes sensory inputs and cre-
ates a representation in real, physical time. By connecting 
events from the camera to different neurons through synaptic 
weights that realize the receptive fields of these neurons, we 
represent the visual input in the neuronal substrate. In this 
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representation, each active neuron signals that there is some 
input coming from the portion of the sensor that it observes. 
If several objects are present in front of a camera, several 
neurons will be active. In the selective target population, 
moreover, the WTA connectivity makes sure that a single 
target location is selected and that distractors are suppressed 
[57]–[59], [74].

On the motor side, the neurons that initiate the turning 
movement of the robot are connected to the obstacle left/right 
populations. These motor neurons, if active, cause the robot 
to turn either to the right or left. Thus, each of the two motor 
populations in Figure 4 activates a motor primitive that causes 
the robot’s movement. In particular, the rotational velocity of 
the robot is set proportionally to the firing rate of the respective 
(left or right) motor population. The presence of an obstacle also 
makes the robot slow down; activity in the “Obstacles” popula-
tions inhibits the “Speed” neuronal population. The firing rate of 
this latter population sets the robot’s forward speed.

Overall, the simple neuronal architecture in Figure 4 enables 
the robot to drive around, avoiding obstacles and approaching 
targets [57]–[59], [74]. This behavior is produced by a dynami-
cal system created by the sensorimotor “embodiment” of the 
robot that is situated in an environment, and the neuronal sys-
tem that closes the behavior loop, connecting perception to 
motor control. This controller does not include any algorith-
mic arbitration: The sensory signals (DVS events and gyro-
scope measurements) directly drive neurons and, eventually, 
the motors. The neuronal architecture ensures that the correct 
behavior is produced. The fact that the neurons on the ROLLS 
chip are instantiated physically makes such efficient, direct 
connection possible, reducing demands on the memory and 
arbitration that are usually managed by the CPU.

The neuronal architecture presented here does not include 
any learning. Indeed, this architecture is wired for a par-
ticular task, although the precise neuronal parameters can 
be found by a machine-learning procedure [60] instead of 
human labor tuning. In the next section, we present a neu-
ronal architecture on the ROLLS chip that includes learn-
ing using plastic on-chip synapses. This architecture is one 
of our recent examples that shows how representations—of 
temporal or spatial behaviorally-relevant patterns, such 
as sequences or maps—can be learned using principles of 
attractor dynamics in hardware with explicit, physical repre-
sentation of space and time.

Learning and processing sequences in the 
neuromorphic device
Recently, we implemented the basic serial-order sequence-
learning model based on DNFs [61] on the ROLLS chip [53]. 
In this architecture, a WTA population represents the content 
of the items in a sequence (here, the location of a target on 
the horizontal axis of the DVS’s FoV). Other neuronal popula-
tions represent serial order positions along the sequence: the 
first, second, and third ordinal group, and so on. Each group 
of these ordinal neurons is connected to the content WTA with 
plastic synapses that are updated when an ordinal neuron and a 

WTA neuron are active at the same time, according to a local 
synaptic plasticity rule. Groups of memory neurons, driven by 
the ordinal neurons, create sustained activation and keep track 
of the position in the sequence during periods of sequential 
transitions, when ordinal groups are inhibited. This inhibition 
is induced by a condition-of-satisfaction (CoS) system: a group 
of neurons that is activated when an item in the sequence has 
been successfully executed [61], [62].

In [54], we show how the sequence of states can be learned 
and replayed by a robotic agent, whose sensors and motors 
are interfaced to the neuromorphic device implementing the 
sequence learning architecture in Figure 5. In this example, 
again, the physical identity of neurons is important to be able to 
efficiently, directly distribute activity patterns in the neuronal 
architecture. Moreover, the ability of the attractor networks to 
bridge different lengths of time is critical here: Note that dur-
ing sequence learning and production, each item in a sequence 
can take different—and unknown in advance—time inter-
vals. Neuronal dynamics can sustain these long time intervals 
because stable activity bumps are created in the WTA neuro-
nal population and in the ordinal groups. No clock is needed 
to keep track of time in these neuronal systems explicitly, 
although storing typical durations of actions is also possible in 
the neuronal population dynamics [63].

Another example of a neurodynamic architecture built 
using attractor networks and allocating dedicated circuits for 
each synapse/neuron in the network is the neuromorphic self-
localization and map-formation architecture presented in [54], 
[64] and [65]. In this system, first, a WTA neuronal popula-
tion keeps track of the correct heading of the agent, perform-
ing path integration based on the motor commands sent to the 
robot. Another neuronal population keeps track of the position 
of the robot in an environment. The plastic synapses of the 
ROLLS chip are used to learn a simple map of the environ-
ment as the robot navigates it and senses walls with a bumper. 
The map is effectively an association between the representa-
tion of position (and orientation) of the robot and a neuronal 
representation of collisions. Learning happens in the moment 
when the event induced by the collision with an object acti-
vates the “Collision” population of neurons. Coactivation of 
these neurons and neurons that represent the current posi-
tion in real time leads to an increase of the plastic synapses 
between these two groups, forming a collisions map as the 
robot explores the environment. When the robot revisits the 
place of a previously experienced collision, but no collision 
happens there, the “Collision” population will be activated 
through the plastic synapses, anticipating a collision. How-
ever, the firing rate of this population will be lower than dur-
ing an actual collision, when neurons are stimulated by the 
sensory input. This causes synaptic depression in the plastic 
synapses and leads to a gradual forgetting of the associations 
that are no longer valid.

The same principles of explicit space and time representa-
tion have been used to develop a neuromorphic proportional-
integral (PI) controller that triggers the learning of a mapping 
from the target speed of a robot to a motor command that 
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realizes this speed [55]. Such mapping is an instantiation of a 
simple inverse model, which is learned using plastic synapses 
on the ROLLS chip. Here, learning is triggered when the PI 
controller (realized using the same principles of population 
dynamics and attractor WTA networks) converges and acti-
vates a zero-error neuronal population. Again, in this architec-
ture, sensory inputs drive neuronal representations in real time, 
and learning is activated autonomously.

In all these neuromorphic architectures, a neuronal system 
is designed that connects sensors and motors to solve a particu-

lar task. Learning is reserved for certain portions of these archi-
tectures; for example, a mapping between a sensory and motor 
space, or between a representation of the ordinal position and 
perceptual content. The WTA connectivity of neuronal popula-
tions that represent perceptual states ensures that representa-
tions are localized and stabilized, limiting learning in time and 
in space. We have developed more architectures that include 
learning; for example, in [64], we show how on-chip plastic-
ity combined with a WTA structure can also be used to learn 
to differentiate patterns in an unsupervised manner, while [55] 
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and [59] show how neuronal populations can be used to perform 
arithmetic operations, such as the summation and subtraction 
required, for example, to realize a PI controller in a neural net-
work, or to perform reference frame transformations [59]. The 
latter work emphasizes that some computation that can easily 
be solved on a conventional von Neumann computing platform 
might require rethinking and the design of a whole neuronal 
architecture in neuromorphic computing devices.

For any given task that we have solved using neuromorphic 
computing and discussed here, a conventional software solu-
tion can be developed. Indeed, the digital computing archi-
tecture can be used to realize any computation, since it is 
Turing-complete. There are two main reasons why we believe 
that developing neuromorphic agents is important, neverthe-
less. First, the cost of computation becomes a nonnegligible 
issue as computing is scaled up in terms of the amount of 
sensory information that needs to be processed in real time 
on a compact device with limited power. Thus, even if more 
precise digital solutions exist for the problems of map forma-
tion, sequence learning, and motor control, and that employ 
digital computers and conventional software, truly neuromor-
phic solutions that use physics to realize neuronal computing 
can solve these tasks using several orders of magnitude less 
power. Of course, due to today’s limitations in the number of 
artificial neurons realized in hardware, the resulting neuronal 
solutions provide a lower precision, which, however, is suffi-
cient for many tasks that include “soft” actuators and imprecise 
sensors, in particular where closed-loop control can be used to 
keep the behavior at a tolerable accuracy. 

The second reason lies in the homogeneity and adaptiv-
ity of the neuromorphic computing architectures. Indeed, all 
architectures that we briefly reviewed here use just a handful of 
neuronal structures—WTAs and plastic connections between 
them—to realize many different functions: representation, fea-
ture binding, attention, memory formation, decision making, 
reference frame transformation, and so forth. Indeed, in the 
theoretical framework of DNFs, it has been shown that most 
cognitive processing can be done with similar building blocks 
that realize attractor dynamics in neuronal populations [22]. 
Augmented with simple Hebbian learning, intrinsic plasticity, 
and homeostasis, such neuronal architectures can autonomous-
ly adapt to new situations and be easily “reprogrammed” to 
produce new behaviors just by using demonstration or self-gen-
erated supervision signals [66]–[69]. Combined with the ability 
to represent continuous variables in an adaptive, task-dependent 
way, neuromorphic computing steps outside the Turing com-
puting framework and, as the hardware matures and supports 
larger networks, could lead to more scalable and robust solu-
tions to tasks that involve interaction with the real world.

Conclusions
Neuromorphic computing represents a promising paradigm 
for artificial cognitive systems that may become an enabling 
element for the design of power-efficient, real-time, and com-
pact solutions for electronic devices that process sensory data 
and generate behavior in dynamic, real-world environments. 

To minimize power consumption, it is important to match the 
dynamics of neuromorphic computing elements to the tim-
escale of the physical processes that drive them and that the 
devices control. The impact of this approach is significant 
because, in addition to autonomous robots, “cognitive agents” 
represent low-power, always-on embedded sensory-computing 
systems (for example, in cell phones or wearable devices), in-
telligent wireless sensors (for Internet of Things applications), 
and intelligent microbiosensors (for personalized medicine, 
brain–machine interfaces, and prosthetics), and other types of 
microscale autonomous devices that extract structure from the 
data they acquire through their interactions with the environ-
ment and make decisions on how and when to act (to transmit 
information, power-up further processing stages, and so forth).

Although many of the organizing principles of nervous 
systems have successfully been adopted for the design of 
artificial intelligence systems, two of the most powerful ones 
(that is, that of letting time represent itself, and that of using 
the physical instantiations of parallel circuits rather than sin-
gle time-multiplexed ones) are not yet fully exploited. Here, 
we presented examples of systems that implement these prin-
ciples and described a computational approach that extends 
the temporal processing abilities of such devices to arbitrary 
timescales using attractor dynamics and the DNF framework. 
We discussed several examples of neurodynamic architectures 
that make use of the physical instantiation of spiking neurons 
in hardware and their real-time dynamics, matched to biologi-
cal timescales. We presented architectures that were designed 
based on the available sensory and motor systems and the given 
task as spiking neural networks that can be realized in neuro-
morphic hardware. In some cases, when such spiking neural 
network implementation is not straightforward, other methods 
can be used to either learn the architecture from examples of 
the desired behavior, recorded with a teleoperated sensorimotor 
plant using, for example, deep neural networks, or to approxi-
mate the dynamical system of the neuronal controller with spik-
ing neurons using the neural engineering framework [70].

Many more examples are being proposed for using dedi-
cated circuits for neurons and synapses to take advantage of 
emerging memory technologies based on memristive devices 
[71]. These novel types of architectures differ from the more 
classical type of deep network or convolutional network accel-
erators mainly for breaking the von Neumann bottleneck [72] 
by having distributed memory elements that act also as com-
puting devices. This in-memory computing approach enables 
dramatic power savings. For example, the (pure CMOS-based) 
in-memory computing DYNAP-SE processor presented in 
Table 1 is at least a factor of 100 times more power efficient 
than Spinnaker2 (for example, compare the power consumption 
figures in [13] versus [73]), which represents one the most 
recent state-of-the-art spiking neural network accelerators 
implemented following the classical synchronous logic, time-
multiplexed, microprocessor approach.

We believe the examples presented in this article repre-
sent the first steps toward the realization of power-efficient 
neuromorphic systems and robust computing architectures 
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optimally suited for tasks in which behavior needs to be gener-
ated by autonomous neuromorphic agents in real time, while 
staying adaptive in complex environments.
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