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Giacomo Indiveri, Senior Member, IEEE

Abstract—Mixed-signal analog/digital neuromorphic circuits
are characterized by ultra-low power consumption, real-time
processing abilities, and low-latency response times. These fea-
tures make them promising for robotic applications that require
fast and power-efficient computing. However, due to the device
mismatch and variability present in these circuits, developing
architectures that can perform complex computations in a robust
and reproducible manner is quite challenging. In this paper, we
present a spiking neural network architecture implemented using
these neuromorphic circuits, that enables reliable control of an
autonomous agent as well as robust learning and recognition
of visual patterns in a noisy and real-world environment. While
learning is implemented with a software algorithm running with a
chip-in-the-loop setup, the inference and motor control processes
are implemented exclusively by the neuromorphic processor,
situated on the neuromorphic agent. In addition to this processor
device, the agent comprises a dynamic vision sensor which
produces spikes as it interacts with the environment in real-
time. We show how the robust learning and reliable control
properties of the system arise out of a recently proposed neural
computational primitive denoted as Neural State Machine (NSM).
We describe the features of the NSMs used in this context and
demonstrate the agent’s real-time robust perception and action
behavior with experimental results.

Index Terms—Neuromorphic computing, noisy spiking neural
networks, robust object recognition, self-supervised learning,
ultra-low-power

I. INTRODUCTION

Neuromorphic engineering is concerned with the emulation
of the dynamics of biological neurons and synapses directly
in silicon, and with the identification and exploitation of
the organizing and principles of biological neural processing
systems. [1], [2] A primary goal of these studies is to re-
produce the unique features of the brain, such as low-power
consumption, massive parallelism, and low-latency processing,
in order to perform efficient computation.

In contrast to the classical von Neumann architecture of
state-of-the-art digital computers, in neuromorphic hardware,
memory and processing are co-localized in the synapses and
neurons present in such devices. Neuromorphic computing
devices that have these properties have been built using either
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mixed-signal analog/digital circuits [3], [4], [5] or pure digital
circuits [6], [7]. A common feature to both approaches is
the use of asynchronous circuits for transmitting spikes from
source neurons to destination synapses. These systems carry
out computation (and burn power) only if there is data being
delivered and processed. The mixed-signal analog/digital ap-
proach has recently produced promising devices that comprise
silicon neurons and synapses which exhibit dynamics that are
similar to their biological counterparts [3], [4]. These devices
make use of sub-threshold electrodynamics of transistors and
thus achieve ultra-low power consumption, compact system
size, and real-time performance. However, similar to the
widely observed variance across biological neural systems [8],
also these systems are affected by variability due to the
unavoidable circuit noise and manufacturing device mismatch
effects [9]. As a consequence implementing robust desired
behaviors and computations on such hardware substrate is a
very challenging task [10].

In biology, despite the noise and variability of the neural
substrate, the behavior of neural processing systems remains
robust and reliable. This raises the question: can a suitable
network structure enable mixed-signal spiking neural systems
to perform computations with high robustness despite their
noise and mismatch? To address this question, we present a
spiking neural network architecture that comprises multiple
biologically plausible mechanisms geared toward variability
reduction and robustness. Namely, we present an on-line
spike-based plasticity rule for changing the weights of the
network on a chip-in-the-loop setup, for learning to recognize
visual patterns; we propose to use dis-inhibition mechanisms
to recognize input patterns robustly, based on the learned
features; we present an up- and down-scaling mechanism
of connections which leads to the spatial invariance during
recognition; and we show how multiple Neural State Machine
(NSM) structures [11], [12] can be combined to autonomously
select neural population resources and feedback signals from
output motor neurons, to focus the network’s attention on new
targets.

The NSM is a primitive structure for implementing state-
dependent and context-dependent computation in spiking neu-
ral networks [13], [12]. Multiple NSMs can interact with
each other. They have been used as a modular building block
in Spiking Neural Networks (SNNs) to construct complex
cognitive computations in neuromorphic agents, such as solv-
ing Constraint Satisfaction Problems (CSPs) [14]. With the
spiking neural network architecture proposed in this work, we
show that this structure plays a vital role in implementing the
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Fig. 1. Mixed-signal multi-chip neuromorphic electronic system setup. The
neuromorphic electronic system consists of DVS sensors, a ROLLS, and
DYNAP processors. The solid lines denote event communication, and the
dotted lines denote configuration signals. The red color denotes the event
communication within the neuromorphic system, and the blue color denotes
the input and output of the system. A computer is used to configure the
sensors and chips, monitor their activities, or perform learning algorithms.
The computer can be disconnected if the configuration or learning is finished.
The perception and processing in neuromorphic sensors and processors are
ultra-low-power.

autonomous learning of neuromorphic agents.
The ultra-low-power and event-driven features of the mixed-

signal analog/digital devices used in this work, combined
with the robust processing features achieved with the archi-
tecture proposed enable the construction of compact sensory-
processing systems that could be used also in edge-computing
applications that require low-power always-on operation.

In the next section, we describe the mixed-signal neuromor-
phic hardware used in this work; in Section III, we present the
proposed spike-based learning rule that implements synaptic
plasticity; in Section IV, we describe how to simulate eye
movements using a silicon retina; in Section V, we present
the network architecture and the learning rule; in Section VI,
we validate the network in a real-time real-world task.

II. MIXED-SIGNAL MULTI-CHIP NEUROMORPHIC SETUP

The system architecture is illustrated in Fig. 1. It is com-
posed of a neuromorphic vision sensor, the Dynamic Vision
Sensor (DVS) (DAVIS240C) [15], a Reconfigurable On-Line
Learning Spiking (ROLLS) chip [3], and a group of Dynamic
Neuromorphic Asynchronous Processor (DYNAP) chips [4].
The DVS emulates the dynamics of biological retina cells in
silicon using mixed-signal analog/digital technologies. There
are 240 × 180 pixels integrated on each chip. Each of them
independently detects the illumination intensity change in a
small area of the visual scene. The DVS can detect fast-
moving objects in the environment in a wide range of lighting
conditions. The events generated by the DVS silicon retina are
sent to the silicon neurons on-chip using the Address-Event
Representation (AER) protocol. Although in this prototype
setup the events are relayed by two Field Programmable Gate
Array (FPGA) chips, for rapid prototyping and convenience,
the connection between the chips can be made directly with
parallel cables using the AER protocol, and therefore removing
the need for power-hungry glue-logic. In this prototyping
phase, a computer is used to configure the sensors and chips,
monitor their activity, or perform learning algorithms. Once a
network is set up, or the training phase for learning to recog-
nize visual pattern finishes, the computer can be removed.

During operation, in absence of sensory stimuli, other
peripheral devices such as the robot and motors can be turned
off. Once the neuromorphic sensors and processors detect
relevant events in the environment, they can be used to turn
on these peripheral devices.

The learning algorithm developed in this work is purely
spike-based and spike-triggered. When a neuron emits a spike,
it sends its neuron ID together with its timestamp to the com-
puter. The learning algorithm writes the received information
into a ring buffer, for example, at position S. After that, the
algorithm reads the ring buffer from the position S − 1 to
S − N to go through the history of the received spikes. The
parameter N is chosen by the algorithm to make sure the
maximum timing difference between the read-out spikes and
the newly arrived spike is within a specific time window (e.g.,
50ms in the implementations in Section VI). For each pair
of neurons that emit the read-out spike and the newly arrived
spike, the algorithm checks a look-up table. The table stores if
a plastic synapse exists between the two neurons. If it exists,
the algorithm calculates a new synaptic weight according to
the current weight and the timing difference between the two
spikes or the firing rate of the neurons.

In Section VI we evaluate the neuromorphic pattern recog-
nition in a robotic sensory-motor task. Output neurons on
the DYNAP chip send their events in a one-to-one mapping
to the pattern representing groups on another neuromorphic
chip ROLLS [3]. ROLLS is a spiking neuromorphic processor
that features 256 silicon neurons and 256x256x2 integrated
synaptic connections. 256x256 of these synapses realize a
long-term plasticity mechanism – a version of spike-time
dependent plasticity [16], [17], [18] directly on-chip. This
device facilitates learning of associations between patterns and
movements when interfaced with a robotic agent. The robotic
agent can easily be connected to the ROLLS device due to its
back-to-back connection to a miniature computing platform
Parallella board P1602 [19] which runs the software for the
robot’s motor execution.

III. SPIKE-BASED LEARNING RULE

The learning rule that runs on the computer with the
DYNAP chip in the loop is triggered by the pre- or post-
synaptic spikes emitted by neurons on hardware. Learning
triggered by the spikes of post-synaptic neurons can lead
to Long Term Potentiation (LTP) or Long Term Depression
(LTD), while learning triggered by the spikes of the pre-
synaptic neurons only lead to LTP. The pre- and post-synaptic
neural activity both affect the weight strength of a synapse.
Different to the conventional description of Hebbian-like or
STDP-like learning rules, here we consider the proposed
learning rule as two separate parts: the synaptic plasticity
driven by the spikes of pre-synaptic neurons and driven by
post-synaptic neurons. Due to the nature of state-dependent
computation in Neural State Machines (NSMs) the pre- and
post-driven learning rules are not the same. In our setup, the
network needs to autonomously trigger state transitions and
learn to avoid the same transitions. Therefore, the spikes of the
transition (pre-synaptic) neurons drive the synapses to increase
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the weight and with that initiate a state transition. The spikes
of the state (post-synaptic) neurons on the other hand drive
the synapses to decrease the weight and with that prevent the
same transition from happening again. The use of this learning
rule will be further discussed in the next section.

The learning rule can be described as:

w(t) = f(w(t) + αpre ·∆wpre(t) · Spre(t) (1)
+ αpost ·∆wpost(t) · Spost(t)) (2)

where

∆wpre(t) =

{
0 if

∑
t−∆t<t′<t

Spost(t
′) > 0

βpre otherwise
(3)

∆wpost(t) = βpost
∑

t−∆t<t′<t

Spre(t
′)− 1 (4)

where f(·) is the half-wave rectification function max(·, 0).
w denotes the weight of a synapse. pre and post denote
the indices of the pre-synaptic and post-synaptic neurons of
the synapse respectively. αpre and αpost denote two signed
learning rates. They are set to values > 0 and < 0 for
excitatory and inhibitory synapses respectively. βpre and βpost
denote two learning rates. They are always greater than 0. t′

represents time from t − ∆t to t. Si(t
′) =

∑
k
δ(t′ − tik)

denotes whether there is a spike generated by the neuron i at
time t′, where tik represents the timing of spikes and δ(x) = 1
when x = 0 otherwise δ(x) = 0. With this learning rule, the
learning triggered by post-synaptic neurons is Hebbian-like
for excitatory synapses while anti-Hebbian-like for inhibitory
synapses. In contrary, the learning triggered by pre-synaptic
neurons is anti-Hebbian-like for excitatory synapses while
Hebbian-like for inhibitory synapses.

Since the synaptic weight on the DYNAP chips is low-
precision and discrete, in the chip-in-the-loop software exper-
iments, we set a threshold for the weight to generate discrete
values from the learned continuous one.

weight on chip =

{
We or Wi if w > T

0 otherwise
(5)

where T denotes a threshold, and We and Wi represent
the weight configured in the hardware for excitatory and
inhibitory synapses respectively. Once the weight learned on
the computer accumulates to be larger or lower than the
threshold, the synaptic weight on the chip will be updated.
In the chip-in-the-loop setup, the weight update has a short
delay due to the time cost in communication between the
computer and the neuromorphic chips. In the experiments of
Section VI, we set T = 0.5 for both excitatory and inhibitory
synapses. We set the time window size ∆t to 500 ms, and the
learning rates βpre and βpost to 0.0004. We choose to use
these low learning rates to limit the speed of weight evolution
so that they can match with the ‘slow’ neurons’ biologically
plausible large time constants in hardware. The computational
role of the proposed learning rule for inhibitory synapses will
be discussed in the next section.

IV. SIMULATION OF EYE MOVEMENTS

Illumination intensity change is critical for the biological
retina [20] and silicon retina [15] to perceive the environment.
In order to ensure that there is retinal activity even for
static scenes, biological visual systems resort to two types of
eye movements: saccades [21] and microsaccades [22]. The
primary role of the saccade is to find the target in the visual
environment [23], while that of the microsaccade is to maintain
visual scenes after saccades [22].

Saccades lead to relative movements between the eyes and
objects, which results in illumination intensity changes at
the retina. Unexpected deflection could occur when moving
either the silicon retina or the objects. Compared with moving
the objects, moving the silicon retina would lead to a larger
distortion of the perceived visual pattern. As a result, to
achieve a finely controlled relative movement, it is easier
to move the objects compared to moving the silicon retina.
Therefore, we simulate saccades by fixing the silicon retina
(DAVIS240C) and moving the objects in front of it.

We use a layer of ‘receiver’ neurons in hardware to receive
the events generated by the silicon retina. There are 256
receiver neurons arranged in a 16×16 array. The events
generated by the silicon retina are sent to excitatory synapses
of the receiver neurons. We select the center 128× 128 pixels
on the silicon retina and down-sample them to match the
16×16 receiver neurons. We configure these receiver neurons
so that they fire only if the input frequency is higher than
a certain threshold. In this way, events that are elicited from
noise in the environment or arise from inherent noise in the
analog circuits, can be filtered out.

The mean rate of the events elicited by the silicon retina
indicates the speed of the relative movement between the
silicon retina and the objects. When an object starts to move
relative to the silicon retina, the mean rate of the receiver
neurons quickly increases from zero to a much higher fre-
quency. The online learning algorithm monitors the firing rate
of the receiver neurons and detects this increase. Then the
algorithm generates artificial events that are sent to a group of
motor neurons in hardware, to simulate the motor neurons that
activate the saccades in biological neural networks. Once the
relative movement stops, the firing rate of the receiver neurons
decreases to zero. The online learning algorithm detects this
decrease and stops sending artificial events to the hardware
motor neurons.

After every saccade, the learning algorithm supplies con-
stant stimuli to the input layer neurons of the network de-
scribed in the next section. These constant stimuli reproduce
the firing rate of each receiver neuron in the 50 ms before the
saccade stops. This simulates the maintenance of visual scenes
achieved by microsaccades.

V. SPIKING NEURAL NETWORK ARCHITECTURE

The SNN architecture that we propose is illustrated in Fig. 2.
It has a feed-forward structure consisting of three layers of
neurons. It starts from a 16 × 16 input layer. We down-
sample the center 128 × 128 pixels of the silicon retina and
connect them to the input layer neurons. Thus, during the
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Fig. 2. SNN architecture of a recognition network. The network is composed
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layers form a learning pathway (pink) and a recognition pathway (blue). At the
bottom of the figure, there is an arbitration mechanism implemented by neuron
populations A1, A2, A3, and A4 that controls which pathway dominates. In
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by four silicon neurons each to make their behaviors robust. The yellow area
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In our experiment, the receptive fields of the output neurons have four different
sizes: 16×16, 14×14, 12×12, and 10×10. Two of them are illustrated in the
figure. The dotted line between the receiver neurons and the input neurons
represents the indirect nature of the connection. The events given to the input
layer are generated by a computer algorithm according to the firing rate of
the receiver neurons as discussed in Section IV.

saccades, the silicon retina generates events to excite the input
layer neurons, while during the microsaccades, the computer
algorithm generates artificial events to excite the input layer
neurons.

A feature layer follows the input layer. Due to the limited
number of neurons on the DYNAP chips, we choose to config-
ure the feature layer to detect only horizontal and vertical bars.
The feature layer neurons receive spikes from the input layer
in a convolutional manner with kernel size 8× 8 and stride 1.
The output layer consists of multiple groups of neurons, each
of which learns to recognize a different visual pattern. Output
selecting neurons excite these to start the learning process.

A. Applying learned features on different scales

We construct two pathways in the network to perform the
learning and apply the learned features on different scales.
This is necessary because the learning object may show up
at a different distance, or the size of the object is changed.
The same projection used in this structure could be changed
to apply the learned input features on other scenarios, for
example, objects with different orientations. One pathway is
for learning, and the other one is for recognition and inference,
denoted by blue and pink respectively in Fig. 2. Each pathway
has its group of feature neurons: neuron groups L and R for
the learning and recognition pathways respectively. For recog-
nition, we connect neuron group R to the output neurons in a
convolutional manner with different kernel sizes. For learning,
on the contrary, there is an up- and down-scaling mechanism
through which we connect all the neurons in L to each
output neuron and the connection thus maintains the spatial
information of the feature neurons. However, the connections
are not direct. Instead, a group of mapping neurons relays the
spikes from the feature neurons to the output neurons.

Learning takes place at the plastic synapses between the
mapping neurons and the output neurons. The spikes emitted

Mapping neurons
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Fig. 3. Detailed structure of the feed-forward pathways from input neurons
to output neurons. To simplify the illustration, here we only show the neurons
of the recognition pathway. The learning pathway uses the same ON and OFF
cells and the same connectivity principle. The ON cells receive spikes from
the previous layer, whereas the OFF cells tend to fire spontaneously due to a
continuously supplied stimulus or a constant current. However, they receive
strong one-to-one inhibition from the ON cells.

by the post-synaptic neurons drive the learning. It is im-
plemented using the learning rule described in Section III.
Initially, the weight of all plastic synapses is set to 0.

B. Reducing the effect of noise on learned features

A dis-inhibition structure is constructed to avoid false
responses due to incomplete features. Here, each part of the
input is considered as a necessary feature to recognize the
input pattern.

Neurons that are connected to the next layer (i.e., the
input layer and the feature layer) consist of ON and OFF
cells. The ON and OFF cells are excitatory and inhibitory
neurons, respectively. They cooperatively implement a dis-
inhibition mechanism that makes the recognition robust to
noise from inputs and the inherent mismatch and noise of the
analog circuits. The connectivity of the ON and OFF cells
is illustrated in Fig. 3. ON and OFF cells have the same
type of connectivity to the next layer as shown in Fig. 2.
However, only the ON cells receive spikes from the previous
layer whereas the OFF cells are not connected to the previous
layer but receive a one-to-one inhibition from the ON cells.
The OFF cells also receive excitation from a continuously
supplied stimulus or a constant current. In this way, the ON
and OFF cells always exhibit opposite behaviors.

Due to a stronger inhibition than excitation, only if the entire
learned input feature shows up, the neurons in the next layer
are able to respond. Parameters such as inhibitory synapses’
strength can be tuned to lower this requirement to have a
higher tolerance on incomplete patterns during recognition.
These input features could be the result of a preprocessing
(e.g., classifying pre-trained features) on the original visual
input.

C. Controlling the network’s attention on new targets

An arbitration mechanism is constructed to ensure that only
if the input becomes stable (the subject is doing the microsac-
cade) and the input pattern was not previously learned, the
learning starts. The two pathways alternate to perform learning
and recognition of visual patterns. They are controlled by
the arbitration neuron groups A1, A2, A3, and A4 at the
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representation of NSMs used in the rest of this paper.

bottom of Fig. 2. The learning pathway gains and maintains
the opportunity to start and finish the learning as follows:

Since for the feature neurons L, the inhibitory Post-Synaptic
Potential (PSP) is longer and stronger than the excitatory one,
given a visual pattern, neurons will start to fire only if both
arbitration neuron groups A3 and A4 are silent. This is the
case when the following condition is satisfied: the output layer
does not recognize the visual pattern, and the simulated eye-
movement motor neurons stop firing. If the neuron groups
A3 and A4 start to fire, they will reset the output-selecting
neurons, which send spikes to the output neurons to start the
learning. Thus, it ensures that if the visual pattern is already
learned or it is not stable at the input layer, the learning phase
will not start.

Once the neuron group L starts to fire, it excites the neuron
group A1 to ensure that the neuron groups R and A4 are
silent during the learning process so that they will not interfere.
The arbitration neuron group A2 inhibits A1 when the motor
neurons fire. This ensures that after learning when the silicon
retina or the visual pattern starts to move, the neuron group
A3 inhibits L and the recognition phase starts.

D. Selecting available output neurons

A scalable architecture is constructed to select available
output neurons (they have not been used to learn previous
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NSM 1 and NSM 2 as an example. Every pair of the NSMs has the same
connectivity. The dotted line represents plastic synapses. Each circle represents
a neuron population of four neurons that share the same connectivity.

input patterns). The output selecting neurons and a plastic
winner-take-all mechanism are illustrated in Fig. 5. Multiple
NSM structures of the type described in [11] implement a
plastic winner-take-all mechanism. The NSM structure and its
schematic representation is illustrated in Fig. 4. Each NSM
has two states: s1 and s2. The network connectivity between
NSMs ensures that anytime only the winning NSM can stay
at state s1 and all the other NSMs are at state s2. Once a
NSM wins the competition, it will self-maintain its activity.
Meanwhile, the synapses connected to neuron group s1 of the
winning NSM will decrease their weights. Therefore, in the
next iteration, this NSM will not be selected again. Both, the
pre- and post-synaptic spike-triggered learning rules play a
critical role in this task.

In detail, each NSM can stay at either state s1 or s2,
meaning that the neuron groups s1 or s2 of the NSM fire
respectively. The neuron groups t1 and t2 fire only if their
two groups of incoming synapses both receive spikes [11]. The
inter-connected NSMs carries out a winner-take-all behavior
since they push each other to alter the states until only one
group remains active. After this competition, the neuron group
s1 of the winning NSM will decrease its incoming synaptic
weights according to the learning rule discussed above, except
that initially wij(t0) > 0. Therefore, this NSM will not
become the winner again.

When learning of a visual pattern is finished and the motor
neurons fire once again, the arbitration neuron groups A3 and
A4 send spikes to reset all the NSMs to state s2. This reset is
necessary to prepare the learning of the next pattern. Because
each group of the s1 neurons excite a different group of the
output neurons, these will take turns to learn different visual
patterns. This mechanism enables learning in a self-supervised
manner.

When all NSMs have been the winner once, all the plastic
synapses’ weight would be close to zero. After removing the
reset signal, all the transition neurons t2 will be active but no
NSM can transition to the state s1. Synaptic plasticity driven
by pre-synaptic neurons increases the weight of all synapses
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Fig. 6. Neural activity of the interacting NSMs that implement the WTA
computation. This is a raster plot. Here we implement the network of Fig. 5,
but the synaptic plasticity is turned off during the experiment. Each neural
population is implemented by four neurons. For the s1, s2, t1, t2, and output
neurons, from bottom to top, they are arranged in the order of NSM1, NSM2,
NSM3, and NSM4.

Fig. 7. Synaptic plasticity enables an NSM network to show round-robin
behavior. In this raster plot, the neurons are denoted in the same way as Fig. 6.
After 65 s, the same NSM is selected again when there is no option left. This
is due to the increase of synaptic weights driven by the firing activity of the
pre-synaptic neurons. The weight evolution is illustrated in Fig. 8.

between t2 and s1 neurons until an NSM transitions to s1 and
becomes the winner. Next, the plastic synapses’ weight of this
NSM will decrease back to zero. In this way, as long as there
is no output neuron left, a new round will start. The previously
used NSMs can be selected as the winner again, but repetitions
in the new round are avoided. Old memories can therefore
be updated. This network connectivity supports tasks, such
as associating different external stimuli with distinct internal
states of the network.

VI. EXPERIMENTAL RESULTS

We present experiments in which objects either move with
speed in the range of [60, 1200] pps (pixels per second on
the silicon retina) or are continuously shaken in front of the
silicon retina. 60 pps and 1200 pps are measured values. 60 pps
is the minimum speed, below which the generated events are
too few for the network to recognize the patterns. 1200 pps is
the maximum speed, above which the response of the neurons
and synapses on-chip are not fast enough to distinguish the
visual patterns.

A. Selection mechanism for output neurons

We first test the proposed network architecture’s capability
to select output neurons without repetition. The network of

Fig. 8. Weight evolution of the plastic synapses within NSMs. Top and
middle: the raster plot of the firing activity of the transition neurons t2 and the
state neurons s1, respectively. Bottom: the weight evolution of the synapses
connecting the transition neurons t2 and the state neurons s1.

Fig. 5 is implemented in the DYNAP chips [24], [4]. Learning
is implemented with the chip-in-the-loop setup introduced in
Section II. Initially, the weight of all the plastic synapses in
Fig. 5 is set to 1. This initial synaptic strength ensures that
the transition neurons t2 can successfully send spikes to the
state neurons s1 in order to trigger state transitions. At the
beginning of each trial, we manually send the reset signal to
force every NSM to stay in state s2. Whenever the reset signal
is removed, the competition starts.

Figure 6 shows the WTA competition formed by interacting
NSMs without synaptic plasticity. During competition, the
state neurons fire at the same time. However, since the output
neurons receive excitation and inhibition from both s1 and s2

neurons, the output neurons only emit events for the winning
NSM. Without synaptic plasticity, the network might select
the same output group as the winner again.

Figure 7 shows that the network implements a round-robin
behavior when synaptic plasticity is turned on. The output
neurons are activated in turn without any repetition in each
round. In detail, the NSMs take turns to remain at state
s1 during the first four trials. Since learning is driven by
post-synaptic neurons, the t2 neurons cannot activate the s1

neurons which have been selected as winner before. There is
no repetition in the first four trials. After the first trials, all the
NSMs have been selected once. Since the synaptic weights can
be recovered when learning is driven by pre-synaptic neurons,
the same NSM can be selected as the winner when there is
no more available output group. Here, in the last four trials,
all four NSMs are re-selected once. There is no repetition in
these four trials due to the learning driven by post-synaptic
neurons.

Figure 8 shows the weight evolution recorded from the
experiment shown in Fig. 7. In an NSM, when state neurons s1

fire, and the transition neurons t2 are silent, the average weight
of the synapses between them decreases. While the increase
of this weight is due to the simultaneous firing activity of the
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Fig. 9. Recognition of visual patterns after learning. Recorded neural activities
of the input and output layers over 20 ms. (a) and (c): two input patterns
projected onto the input layer. (b) and (d): responses of the output layer to
the two respective input patterns.
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Fig. 10. Performance of the network in two example tasks. Each element in
the confusion matrix represents the percentage of spikes that belong to each
of the four groups of output neurons compared to the total number of spikes
when we show a visual pattern to the neuromorphic system.

state and transition neurons during state transitions.

B. Performance and robustness

Because of the limited number of neurons on the prototype
DYNAP chips, we train the network with four different visual
patterns composed of horizontal and vertical bars, namely a
‘T’ shape or a ‘t’ shape in different orientations. Due to the
up- and down-scaling mechanism within the connections, the
output neurons represent the target’s position and size. If the
size of the object is fixed, we can deduce its distance to the
silicon retina through the output neuron which responds to it.
Although we choose to use these simple patterns due to the
limited number of available neurons, the same principle can
be scaled up for more complex patterns and features.

To test the recognition performance of the network after
training, we show each pattern to the silicon retina for 1000 s.
Figure 9 shows an example that the output neurons can
correctly respond to the visual patterns at different scales

(a) (b)

(c) (d)

Fig. 11. Real-time real-world experimental results on an omnidirectional
robot. (a) and (b): the robot keeps changing between left and right movements.
(c) and (d): the robot navigates in the arena by recognizing the surface
markings on the ground. (b) and (d) show the path of the robot moving in the
arena. The X-axis and Y-axis represent the location of the robot in the arena.
The color of the path represents the time shown in the Time-axis.

despite the noisy events present at the input. Figure 2 shows
the network’s robustness to the mismatch and noise in the
neuromorphic devices and the environment. For the same
feed-forward network in Fig. 2, the measured recognition
performance in hardware is 99.69% and 56.91% with and
without dis-inhibition, respectively. This result shows that
the dis-inhibition mechanism is necessary to achieve high
recognition performance.

C. Power consumption

Without incoming events, the spiking neural network archi-
tecture implemented on neuromorphic devices only consumes
static power. The static power dissipation is 945µW for the
DYNAP chip [24]. The primary source of the dynamic power
consumption is due to neurons firing and spikes generation.
For generating every spike, the neurons use 2.8 pJ [24]. The
average mean firing rate of the neurons is 41.76 Hz when there
is no visual pattern given to the input layer, and 55.73 Hz when
there is one. The silicon retina chip consumes less than 5 mW
when the input activity is not very intensive [15]. Thus the total
power consumption of this neuromorphic hardware system is
estimated to be on the order of a few mW.

D. Real-time real-world tasks

The time taken to recognize a pattern depends on the prop-
erties of the neurons and synapses (e.g., the time constants,
firing thresholds, and the length of PSPs) in the feed-forward
pathway. Each neuron takes time to integrate evidence from
the asynchronous input. This delayed time, however, enables
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Fig. 12. Activity of the recognition output neurons and the motor control
neurons. The raster plot shows the recognition result and the action selection
during the experiment shown in Fig. 11a. The four groups of the recognition
network’s output neurons send events to the sensory neurons in a one-to-
one manner. Each group of sensory neurons excites a different group of
motor neurons. The connectivity between the sensory neurons and the motor
neurons define which input pattern is linked to which action. The sensory and
motor neurons are implemented in the ROLLS chip. The DYNAP chips are
connected to the ROLLS chip using an AER interface.

a temporal invariance in the range of tens to several hundred
milliseconds. This is essential for real-world tasks where a
robot or object is not moving smoothly. For example, when
a robot platform moves intermittently due to ground friction,
a silicon retina will generate a sequence of events with short
intervals. The ‘slow’ neurons on the DYNAP chips that have
the same time constant as biological neurons can integrate past
events and keep them in the membrane potential. Despite the
short interval, new events that arrive will be integrated with
the current membrane potential that was reached through the
old events.

We mounted the silicon retina and neuromorphic processors
on an omnidirectional robot. The output neurons on the
DYNAP chips send out events in a one-to-one mapping to
the pattern representing group on the ROLLS chip. These
“sensory neurons” on the ROLLS chip are connected to “motor
neurons” in an all-to-all manner with plastic on-chip synapses.
The Spike-Timing Dependent Plasticity (STDP) rule that is
realized in plastic synapses and enables the neurons to learn
an association between sensory input and motor output. Four
populations of “motor neurons” that represent movement in
forward, backward, left, and right direction are stimulated
as the robot is initiated to move in each direction. During
learning, robot movements are initiated manually over the
software running on the Parallella board (by touching the
bumper sensor of the robot). As the robot moves, a pattern is
shown to the DVS. Simultaneous activation of the “motor” and
“sensory” neurons lead to on-chip plasticity and strengthening
of synapses between these neuronal populations in a Hebbian
manner. After learning, showing a pattern to the DVS suffices
to drive the associated motor population on the ROLLS chip
over plastic synapses. The firing activity of motor neurons is
detected in software and the learned movement is executed by
the robotic agent.

We tested two scenarios in which the robot moved within
an arena, continuously detecting and recognizing patterns that
were associated with different movements in the previously

Report output
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Fig. 13. Recognizing sequences of visual symbols using NSMs. (a) An FSM
that recognizes the regular expression ∗tu{tu}@. (b) Raster plot of the
firing activity of the input and output neurons. The output neuron population
(pink) emits spikes after receiving a correct sequence of input symbols.

described learning procedure. Fig. 11 illustrates the robot
trajectories in the two scenarios. Figure 12 shows the neural
activity during the experiment in Fig. 11a. This result shows
that our multi-chip SNN architecture can solve the recognition
task and activate learned movements in a real-world setting,
in a closed behavioral loop with a robotic agent.

E. Driving Neural State Machines with visual inputs

We connect the output neurons of the recognition network
to the input of an NSM. The NSM is implemented with the
robust NSM model introduced in Section V-D. Each neural
population of the NSM is implemented with eight neurons. An
FSM is shown in the diagram of Fig. 13a. We construct the
NSM to implement the same behavior as the FSM. The NSM
network can store the past sequence of input signals (e.g., t,
u, and @) as a state of the network. The output neurons of
the recognition network send spikes to the NSM to trigger
the state transitions illustrated in Fig. 13a. We show visual
patterns to the recognition network as input signals that trigger
state transitions. The experimental result in Fig. 13b shows
that the visual patterns can successfully trigger the transitions
between states. In addition, whenever there is a sequence of
inputs compliant with the rule tu{tu}∗@ such as tu@ or
tutu@, the network reports an output, which means the
sequence is recognized. This experiment also shows that an
NSM can parse a sequence of symbols, which is considered
as a typical application of its compartment - FSMs in the fields
of computer science and engineering.

VII. CONCLUSION

We presented a spiking neural network architecture and an
online off-chip training method that enable robust learning and
recognition of visual patterns in noisy spiking neural networks
and noisy environments. We demonstrated pattern recognition
tasks in a closed-loop system composed of asynchronous
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neuromorphic sensors, processors, and robotic agents. In ad-
dition to solving practical engineering problems, the proposed
network architecture might shed light on how the neurons are
organized to carry out robust perception and computation in
biological networks.
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Abstract—Mixed-signal analog/digital neuromorphic circuits
are characterized by ultra-low power consumption, real-time
processing abilities, and low-latency response times. These fea-
tures make them promising for robotic applications that require
fast and power-efficient computing. However, the unavoidable
variance inherently existing in the analog circuits makes it
challenging to develop neural processing architectures able to
perform complex computations robustly. In this paper, we present
a spiking neural network architecture with spike-based learning
that enables robust learning and recognition of visual patterns in
noisy silicon neural substrate and noisy environments. The archi-
tecture is used to perform pattern recognition and inference after
a training phase with computers and neuromorphic hardware
in the loop. We validate the proposed system in a closed-loop
hardware setup composed of neuromorphic vision sensors and
processors, and we present experimental results that quantify its
real-time and robust perception and action behavior.

Index Terms—Neuromorphic computing, noisy spiking neural
networks, robust object recognition, unsupervised learning

I. INTRODUCTION

Neuromorphic engineering is concerned with emulating the
dynamics of biological neurons and synapses in silicon [1],
as well as the organizing and computing principles of real
neural processing systems. A primary goal of these studies is
to take advantage of the unique features of the brain, such as
low-power consumption, massive parallelism, and low-latency
processing, in order to perform efficient cognitive computa-
tions. In contrast to the classical von Neumann architecture of
state-of-the-art digital computers, in neuromorphic hardware,
memory and processing are co-localized in the synapses
and neurons present in such devices. Previously developed
neuromorphic computing hardware devices are using either
asynchronous mixed-signal analog/digital [2]–[4] or purely
digital circuits. Asynchronous neuromorphic systems process
data and transmit signals only if and when they receive and
produce events (spikes). Unlike purely digital approaches, the
mixed-signal analog/digital approach has recently produced
promising technologies for implementing computing architec-
tures based on silicon neurons and synapses which exhibit
dynamics that are similar to their biological counterparts [5].

Similar to the widely observed variance across biological
neural networks [6], variability exists in all analog spiking neu-
rons due to the unavoidable circuit noise and manufacturing
mismatch, which has a strong effect on the behavior of neurons

This work is supported by the China Scholarship Council (CSC) and by
the Institute of Neuroinformatics, University of Zurich and ETH Zurich.

when the circuits are working in the sub-threshold domain [7],
[8]. It is very challenging to implement desired behaviors
and computations on such hardware [9]. However, it has been
observed in the brain that despite the noisy neural substrate
and environment, the behavior of biological spiking neural
networks remains robust and reliable. It raises the question:
can proper network connectivity enable mixed-signal spiking
neural systems to perform computations with high robustness
despite their noise and mismatch?

To address this question, we present a spiking neural archi-
tecture that comprises three biologically plausible mechanisms
geared toward variability reduction and robust computation.
Namely, we use a dis-inhibition mechanism to reduce the
effect of noise and enable robust feature detection, an up-
and down-scaling mechanism of connections which leads to
the spatial invariance during recognition, and a group of
Neural State Machine (NSM) structures [10], [11] to perform
unsupervised learning. Besides, we present an on-line spike-
based learning rule for both excitatory and inhibitory plastic
synapses that enables the network to memorize trained vi-
sual patterns and perform visual pattern recognition. Along
with the inherent ultra-low-power and event-driven computing
paradigm of the mixed-signal analog/digital devices, the high
robustness achieved on such hardware makes it possible to
build an always-on and massively distributed system. Such
a system reports an event or takes action only if and when it
recognizes a visual stimulus as a pre-trained pattern; otherwise,
the network keeps running with ultra-low power consumption.
In Section II, we describe the used mixed-signal neuromorphic
hardware in this work. In Section III, we present the network
architecture and the learning rule. In Section IV, we validate
the network in a real-time real-world task.

II. METHODS

The setup used to train and configure the neuromorphic
electronic system proposed is illustrated in Fig. 1. It is com-
posed of a neuromorphic vision sensor - the Dynamic Vision
Sensor (DVS) (DAVIS240C) [12] and a group of Dynamic
Neuromorphic Asychronous Processor (DYNAP) chips [3].
The DVS emulates the dynamics of biological retina cells in
silicon using mixed-signal analog/digital technologies. There
are 240 × 180 pixels integrated on each chip. Each of them
independently detects the illumination intensity change in
a small area of the visual scene. It captures fast moving
objects from the environment in a wide range of lighting
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Fig. 1. The neuromorphic electronic system consists of DVS sensors and
DYNAP chips. A computer is used to configure the sensors and chips, monitor
their activities, or perform learning algorithms. Once a network is set up, or
the learning stops, the computer can be disconnected. The perception and
processing in neuromorphic sensors and processors are ultra-low-power.

conditions. The DYNAP integrates 1024 silicon neurons on
each chip. Every neuron features 64 programmable synapses
and can stimulate 4096 destination synapses. The neurons
realize adaptive exponential integrate-and-fire dynamics with
biologically realistic time constants [13]. The synapses are
non-plastic but can be trained with a computer in the loop.
The parameters of the neurons and their connectivity are
configurable via on-chip analog bias generators and digital
latches. The events generated by the DVS silicon retina are
sent to the silicon neurons on-chip using the Address-Event
Representation (AER) protocol.

In this setup, spike-based learning can be run on a computer
in real time with the neuromorphic chips in the loop. Whenever
a neuron emits a spike, it will send its neuron ID and the
timing of when it emits the spike to the computer. A learning
algorithm on the computer will write the received information
into a ring buffer, for example, at position S. After that, the
algorithm will read the ring buffer from the position S − 1
to S − N to go through the history of the received spikes.
The parameter N is chosen by the algorithm to make sure the
maximum timing difference between the read-out spikes and
the newly arrived spike is within a time window (50ms in
this implementation). For each pair of the neurons that emit
the read-out spike and the newly arrived spike, the algorithm
checks a look-up table. The table stores the information of
whether there is a plastic synapse between two neurons. If
there is one between this checked neuron pair, the algorithm
will calculate a new synaptic weight according to the current
weight and the timing difference between the two spikes.

As for biological retinas, illumination intensity change is
critical for the silicon retina to perceive the environment.
To ensure that there is retinal activity also for static scenes
biological vision systems resort to two types of eye move-
ments: saccades [14] and microsaccades [15]. In our setup,
we simulate these eye movements by fixing the DVS and
moving the objects in front of it. The mean rate of the events
generated by DVS indicates the speed of the relative movement
between the silicon retina and the objects. The online learning
algorithm monitors the generated events and simulates the
firing of the motor neurons which activate the saccades.
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Fig. 2. The network architecture. The network is composed of an input layer, a
feature layer, and an output layer. The neurons of these layers form a learning
pathway and a recognition pathway. At the bottom of the figure, there is an
arbitration mechanism implemented by neuron populations A1, A2, A3, and
A4 that control which pathway will become dominant. In this paper, each of
the populations A1, A2, A3, and A4 is implemented by 4 silicon neurons to
make their behaviors robust.
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Fig. 3. The detailed structure of the feed-forward pathways from input
neurons to output neurons. To simplify the illustration, here we only show
the neurons of the recognition pathway while the learning pathway has the
same on and off cells and the same connectivity principle. The on cells receive
spikes from the previous layer, whereas the off cells tend to fire spontaneously
due to a continuously supplied stimuli or a constant current. However, they
receive a strong inhibition from the on cells in a one-to-one manner.

III. SPIKING NEURAL NETWORK ARCHITECTURE

The architecture we propose is illustrated in Fig. 2. It has a
feed-forward structure consisting of three layers of neurons. It
starts from a 16×16 input layer. We select the center 128×128
pixels on the silicon retina and down-sample them to match
the 16 × 16 input neurons. A feature layer follows the input
layer. Due to the limited number of neurons on the prototype
DYNAP chip, we choose to configure the feature layer to
detect only horizontal and vertical bars. The feature layer
neurons receive spikes from the input layer in a convolutional
manner with kernel size 8× 8 and stride 1. The output layer
consists of multiple groups of neurons, each of which learns to
recognize a different visual pattern. Output selecting neurons
excite them to start the learning.

There are two pathways in the network. One pathway is for
learning, and the other one is for recognition and inference,
denoted by blue and pink colors respectively in Fig. 2. Each
pathway has its group of feature neurons: neuron groups L
and R for the learning and recognition pathways respectively.
For recognition, we connect neuron group L to the output
neurons in a convolutional manner with different kernel sizes.
For learning, to the contrary, there is an up- and down-scaling
mechanism through which we connect all the neurons in R to
each output neuron and the connection maintains the spatial
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information of the feature neurons. However, the connections
are not direct. There is a group of mapping neurons that relay
the spikes from the feature neurons to the output neurons.
The learning takes place at the plastic synapses between the
mapping neurons and the output neurons. Here we present the
detailed structures and the learning rule as follows:

a) Dis-inhibition mechanism: The input layer and the
feature layer consist of on and off cells. The on and off
cells are excitatory and inhibitory neurons respectively. They
cooperatively perform a dis-inhibition mechanism that makes
the recognition robust to the noise from inputs and the inherent
mismatch of analog circuits. The connectivity of the on and
off cells is illustrated in Fig. 3. The on and off cells have the
same connectivity manner to the next layer like the one shown
in Fig. 2. However, only the on cells receive spikes from the
previous layer whereas the off cells are not connected to the
previous layer but receive a one-to-one inhibition from the on
cells. Also, the off cells receive excitation from a continuously
supplied stimuli or a constant current. In this way, the on and
off cells always exhibit opposite behaviors.

b) Arbitration mechanism: The two pathways alternate
to perform the learning and recognition of visual patterns.
They are controlled by the arbitration neuron groups A1, A2,
A3, and A4 at the bottom of Fig. 2. The learning pathway
gains and maintains the opportunity to start and finish the
learning as follows. Since the Post-Synaptic Potential (PSP)
of inhibition is longer and stronger than that of excitation for
the feature neuron group L, given a visual pattern, they will
start to fire only if both neuron groups A3 and A4 are silent.
They are silent when the following condition is satisfied: the
output layer does not recognize the visual pattern, and the
simulated eye-movement motor neurons stop to fire. If the
neuron groups A3 and A4 are firing, they will reset the output
selecting neurons, which send spikes to the output neurons to
start the learning. Thus, it ensures that if the visual pattern
is already learned or it is not stable at the input layer, the
learning phase will not start. Once the neuron group L starts
to fire, they will excite the neuron group A1 to ensure that the
neuron groups R and A4 are silent during the learning process
so that they will not interfere with the learning. The arbitration
neuron group A2 inhibit A1 when the motor neurons fire. This
ensures that after learning when the silicon retina or the visual
pattern starts to move, the neuron group A3 will inhibit L and
the recognition phase starts.

c) Spike-based learning rule: The learning happens on
the plastic synapses between the mapping neurons and the
output neurons. Every spike of the post-synaptic neuron trig-
gers the learning of a plastic synapse. The learning rule is
Hebbian-like for excitatory synapses and anti-Hebbian-like for
inhibitory synapses. It can be described as:

wij(t) = max((wij(t) + α∆wij(t) · Sj(t), 0) (1)

∆wij(t) = β
∑

t−∆t<t′<t

Si(t
′)− 1 (2)

where i and j denote the indexes of the pre-synaptic and post-
synaptic neurons respectively. α > 0 if the pre-synaptic neuron
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Fig. 4. Network structure that implements the automatic selection of output
neurons during learning. The NSM structure is modified from [10]. Here
within each NSM, the connections between neuron groups S1 and T1, and S2

and T2, as well as the winner-take-all structure built upon the neuron groups
S1 and S2 are simplified for visualization. It only shows the connectivity
between NSM 1 and NSM 2 as an example. Every pair of the NSMs has the
same connectivity. The dotted line represents plastic synapses. Each circle
represents a neuron population of 4 neurons that share the same connectivity.

i is an excitatory neuron, and α < 0 if neuron i is an inhibitory
neuron. β denotes a learning rate. wij(t0) = 0, where t0
denotes when the learning starts. Si(t) =

∑
k
δ(t−tik) denotes

whether there is a spike generated by neuron i at time t,
where tik represents the timing of spikes and δ(x) = 1 when
x = 0 otherwise δ(x) = 0. Once the weight change of a
synapse accumulated to be larger than a predefined threshold,
the learning algorithm will update the new synaptic weight
onto the chips. Otherwise, the synapse will keep the current
weight. When a neuron is activated longer than a threshold
period (80ms in this implementation), the learning of its
incoming synapses will stop. After learning, the synapses can
memorize the pre-synaptic neural activities. This learning rule
ensures that the learning phase will only affect the firing rate
but not the firing-or-not activity of the post-synaptic neurons.
It makes learning more robust and predictable.

d) Unsupervised learning: The output selecting neurons
and a plastic winner-take-all mechanism are illustrated in
Fig. 4. Multiple NSM structures of the type described in [10]
implement the plastic winner-take-all mechanism. Each NSM
has two states: S1 and S2. The network connectivity ensures
that anytime only one NSM can stay at state S1 as the winner
and all the other NSMs are at state S2. Once a NSM wins
the competition, it will self-maintain its activity. Meanwhile,
the synapses that are coming into the neuron group S1 of
the winner NSM will decrease their weights. Therefore, next
time, this NSM will not be selected as the winner again.
In detail, each NSM could stay at either state S1 or S2,
meaning that the neuron groups S1 or S2 of the NSM are
firing respectively. The neuron groups T1 and T2 will fire
only if and when its two groups of in-coming synapses both
receive spikes [10]. The inter-connected NSMs carry out a
winner-take-all behavior because they always push each other
to alter the states. Anytime only one NSM can stay at state
S1 and the others are at state S2. After the competition, the
neuron group S1 of the winner NSM will decrease their in-
coming synaptic weights according to the same learning rule as
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Fig. 5. The recognition of visual patterns after learning. Left: recorded
neural activities of the input and output layers in a duration of 20 ms. Right:
performance of the network in two simple tasks. Each element in the confusion
matrix represents the percentage of spikes that belong to each of the four
groups of output neurons compared to the total number of spikes when we
show a visual pattern to the neuromorphic system.

discussed above, except that initially wij(t0) > 0. Next time
this NSM will not become the winner again. After learning
a visual pattern, with the firing of the motor neurons, the
arbitration neuron groups A3 and A4 send spikes to reset all
the NSMs to state S2. This reset is necessary to prepare the
learning of the next pattern. Because each group of the neurons
S1 excites a different group of the output neurons, the output
neurons will take turns to learn different visual patterns. This
mechanism enables learning in an unsupervised manner.

IV. EXPERIMENTAL RESULTS

We present experiments in which objects either move with
speed in the range of [60, 1.2k] pps (pixels per second) or
continuously shake in front of the silicon retina. Here the pps
represents how fast the perceived visual pattern moves on the
silicon retina. 60 pps and 1.2k pps are measured values. 60 pps
is the minimum speed, below which the generated events are
too few for the network to recognize. 1.2k pps is the maximum
speed, above which the response of the neurons and synapses
on-chip are not fast enough to distinguish the visual patterns.

a) Performance and robustness: Because of the limited
number of neurons on the prototype chips, every time we train
the network with four different visual patterns composed of
horizontal and vertical bars, namely a ’T’ shape or a ’t’ shape
symbol with different directions. Due to the up- and down-
scaling mechanism within the connections, the output neurons
reserve and represent the position and distance information of
the input pattern during recognition. To test the recognition
performance of the network after training, we show each
pattern to the silicon retina for 1000 s. Fig. 5 shows that the
network is robust to the noise and mismatch of neuromorphic
devices and the environment. The dis-inhibition mechanism
is necessary to achieve high recognition performance. For the
same feed-forward network in Fig. 2, the measured recognition
performance on-chip is 99.69% and 56.91% with and without
dis-inhibition respectively. Although we choose to use these
simple patterns due to the limited number of available neurons,
the same principle can be scaled up for more complex patterns.

b) Power consumption: Without incoming events, the
spiking neural network architecture implemented on neuro-

Robot 
position

Right

Left

Fig. 6. Real-time real-world experimental results on an omnidirectional robot.
We mount the silicon retina and neuromorphic processors on the robot. The
output neurons on-chip send out events to drive the robot’s motors to go
either forward, backward, left, or right. Up: Robot navigates in the arena
by recognizing the surface markings on the ground. Down: The robot keeps
changing between left and right movements.

morphic devices only consumes static power. The static power
dissipation is 945µW for the DYNAP chip [16]. The primary
source of the dynamic power consumption is due to neurons
firing and spikes generation. The average mean firing rate of
the neurons is 41.76 Hz when there is no visual pattern given
to the input layer, and 55.73 Hz when there is one. The silicon
retina chip consumes less than 5 mW when the input activity
is not very intensive [12]. Thus the total power consumption
of this neuromorphic hardware system is estimated to be less
than a few mW.

c) Real-time real-world tasks: The time cost for recog-
nizing each pattern depends on the properties of the neurons
and synapses (e.g., the time constant, firing threshold, and the
length of PSPs) on the feed-forward pathway. Each neuron
takes time to integrate evidence from the asynchronous input.
This delayed time, however, enables a temporal invariance in
the range from tens of to several ms. It is essential for real-
world tasks where the robot or object is not moving smoothly.
We tested two scenarios in which the robot moved in an
arena, continuously detecting and recognizing patterns that are
associated with actions accordingly. Fig. 6 illustrates the neural
activity and the robot trajectory. It proves that our spiking
neural network architecture performs well in the noisy real-
world environment.

V. CONCLUSION

We presented a spiking neural network architecture and an
on-line off-chip training method that enable robust learning
and recognition of visual patterns in noisy spiking neural
networks and noisy environments. We demonstrated pat-
tern recognition tasks in a closed-loop system composed of
asynchronous neuromorphic sensors, processors, and robotic
agents. In addition to solving practical engineering problems,
the proposed network architecture might shed light on how
the neurons are organized to carry out robust computation in
biological networks.
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