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Abstract— In this paper, we investigate the use of ultra low-
power, mixed signal analog/digital neuromorphic hardware for
implementation of biologically inspired neuronal path integra-
tion and map formation for a mobile robot. We perform spiking
network simulations of the developed architecture, interfaced
to a simulated robotic vehicle. We then port the neuronal map
formation architecture on two connected neuromorphic devices,
one of which features on-board plasticity, and demonstrate
the feasibility of a neuromorphic realization of simultaneous
localization and mapping (SLAM).

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is one of
the basic tasks in mobile robotics and amounts to building
a map of an unknown environment while at the same
time keeping track of the agent’s location. When the robot
estimates its location based on its own sensory information
(e.g., visual or odometry), errors accumulate, leading to an
increasing uncertainty. Probabilistic models and graph-based
methods are typically used to integrate sensory inputs and
update the map of the environment, delivering successful
solutions to the SLAM problem [1]. However, when com-
putational and power resources are limited, as in mobile
applications, aerial vehicles, or robotic insects, more efficient
solutions are needed to enable real-time processing and long
operating time for embedded SLAM systems [2], [3], [4].

In contrast to the high computational demand of robotic
SLAM, even animals with rather small brains, such as bees
or ants, are amazingly good at keeping track of their position
and storing a map of an environment [5]. Seeking inspiration
in biology for the development of SLAM systems is therefore
a promising path and many neurally-inspired SLAM systems
have been developed [6], [7], [8], [9], [10], [11], [12], [13].
For instance, inspired by the navigation system of rats,
a competitive biologically-inspired neural SLAM system –
RatSLAM – was proposed [11], [6]. Using the RatSLAM
algorithm, a mobile robotic platform can estimate its pose
using a 3D attractor network (for position and orientation)
and simultaneously use landmark information to build a map
in indoor and outdoor environments.

A drawback of neuronal SLAM is that simulations of
neuronal systems on conventional computers waste a lot of
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computing resources on traversing the “von Neumann mem-
ory bottleneck” of this sequentially processing hardware.
This renders real-time low-power processing of neuronal
algorithms practically impossible. However, neuromorphic
hardware offers a computing substrate that is inspired by the
structure and dynamics of biological neural systems, which
allows us to fully exploit advantages of neuronal SLAM.
First approaches towards neuromorphic SLAM have been
attempted recently using neuromorphic computing hardware
or sensors [14], [15]. Neuromorphic hardware is massively
parallel and event-based, and, in case of mixed-signal ana-
log/digital devices used in this work, particularly energy
efficient and compact [16], [17], [18]. The latter systems,
however, suffer from device mismatch, leading to noisy,
unreliable, and hard to control computing units [19]. By
drawing inspiration from biology, robust and reliable spiking
neural network architectures can be realized on mixed signal
hardware [20], [21]. Such architectures could lead to a
breakthrough in energy-efficient and fast real-world SLAM.

Recently, we have reported first steps towards fully neuro-
morphic SLAM in mixed signal analog/digital neuromorphic
hardware. In particular, we have introduced a 1D path
integration architecture, realized with a spiking neural net-
work on the neuromorphic device Reconfigurable On-Line
Learning Spiking (ROLLS), interfaced to a robotic vehicle
[22]. Here, we extend this work to a fully-fledged path
integration in a 2D environment and realize a collision map
using plastic synapses of the spiking neural network on the
neuromoprhic chip. We first validate the simulated spiking
neural architecture with a robotic simulator, then we present
a proof of concept realization of the 2D path integration in a
prototype neuromorphic device. We show how this system
can be extended to learn a map using a combination of
two neuromorphic devices, one of which features an on-chip
plasticity (learning) mechanism [23], [17]. In simulation, we
show how the learning rule, realized on the ROLLS chip,
can be used both to initially learn and update (correct) the
map.

II. METHODS
A. Biological neural networks and neuromorphic hardware

In the hippocampus and entorhinal cortex of rats, dif-
ferent types of spatially-tuned neurons were found: the
head-direction cells are sensitive to the heading direction
of the animal, place cells are active each time the animal
visits a particular part of the environment, and grid cells
presumably perform path integration [25]. In this work, we
draw inspiration from the rat’s navigation system and build
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Fig. 1: Neuromorphic hardware used in this project. (A) A basic principle of realization of a simple model of biological
neuron and synapse using electrical circuits, from [24]. (B), (C) layout of neuromorphic chips, used in this work.

a spiking version of RatSLAM [11] that is suited for a
neuromorphic realization.

Mixed-signal neuromorphic hardware emulates the dy-
namics of biological neurons and synapses using properties
of transistors in subthreshold regime, leading to ultra low
power consumption (on the order of several mW when 4K
neurons fire at a rate of 100Hz) and compact device size
(< 40mm2) [16], [17], [18]. This inherently parallel and
event-based hardware offers an efficient computing substrate
for architectures of spiking neural networks.

Fig. 1 shows the basic working principle of an artifi-
cial silicon neuron that emulates a leaky integrate-and-fire
model1 (A) and layouts of the two neuromorphic hardware
platforms, for which we develop the SLAM system. The
Dynamic Neuromorphic Asynchronous Processor (DYNAP)
(B) comprises 4K neurons, divided into four chips with four
cores each [27]. This board enables efficient communication
between neurons and other devices using the Address-Event
Communication Protocol (AER) and 64 analog synapses per
neuron. The synapses are non-plastic however (no on-chip
learning). Fig. 1(C) shows the ROLLS, a smaller chip with
256 neurons that features on-chip learning using dedicated
plasticity circuits [17].

B. Spiking neural network simulations

We use the spiking network simulator Brian2 [28] to
test feasibility of the developed neuronal architectures for
path integration and map formation before porting them on
the prototype neuromorphic devices. Brian2 allows us to
simulate the neuronal dynamics and the plasticity rule that
are emulated on the neuromorphic hardware.

To provide the neural simulation with realistic input, we
interfaced Brian2 to the robot simulator V-REP [29]. In our
experiments with neuromorphic hardware, a physical robotic
vehicle was used2.

III. THE MODEL

Fig. 2 shows an overview of the spiking neural network
(SNN) architecture for localization and map formation. The
proposed neural architecture models neural networks that

1A more sophisticated circuitry is needed to make this basic principle
work in a reliable, configurable, and scalable manner [26], [17].

2Custom-made platform “Omnibot” provided by Jörg Conradt, TUM

were discovered in the cortical-hippocampal parts of the
rodents’ brain. The SNN consists of 3 main networks: the
collision detection (CD) network, the heading direction (HD)
network, and the position network (PN). The PN is connected
to the CD network via plastic synapses to enable learning of
the locations where obstacles have been encountered.

The HD network uses the wheels’ encoder output to
perform 1D angular path integration to obtain the robot’s
heading direction. The estimated heading direction of the
robot is passed to the PN, which performs 2D path integra-
tion of motor commands to obtain the robot’s position. The
CD network receives input from the robot’s collision sensors
(IR sensors in V-REP and a bumper sensor on the physical
robot) and forms an activity “bump” representing the position
of the collision relative to the robot’s heading direction,
if a collision is detected. Finally, an association between
the position of the robot and a collision event is learned
(or unlearned) by plastic synapses that realize a spike-
timing dependent plasticity rule [30]. We have demonstrated
previously that such a synaptic “memory” representation is
capable of solving the SLAM problem in a “haptic-SLAM”
scenario [31], [32].

A. Collision detection network

The CD network shown in Fig. 3 represents the location
of collision events around the robot relative to its current
heading direction. Each neuron in this neural population
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Fig. 2: Overview of the path integration and map formation
SNN.



Fig. 3: Collision detection network: CD neurons are driven
by 8 collision-sensors and represent the position of the colli-
sion around the robot in an activity “bump”. The “collision-
or-not” (CON) neuron signals a collision independent of
its position around the robot. Plastic synapses between the
position network (PN) and the CON neuron represent the
collision map (one of the plastic synapses that is currently
updated is shown in blue).

represents a range of angles around the robot. The CD
neurons are connected in a winner-take-all (WTA) network,
which helps to filter out sensor noise [33], [21]. Thus,
each neuron in the CD population inhibits all other CD
neurons, apart from its two neighbors. In simulation, CD
neurons receive input from 8 Poisson spike generators that
fire whenever the 8 IR sensors of the robot detect presence
of an object in a specific direction. In the neuromorphic
hardware implementation, the CD neurons are stimulated
directly by the output of the omnibot’s bumper sensors.

B. Heading direction network

The neuromorphic HD network was first developed by
us in [22]. This work demonstrated path integration of a
constant angular velocity of the robot on the ROLLS chip.
Here, we generalize this HD architecture by adding an array
of “turning speed” neurons that indicate different angular
velocities. Fig. 4 shows part of the HD network. The network
consists of HD neurons, which represent the angle of the
robot’s heading relative to a fixed external reference frame;
integrating heading direction neurons (IHD) that update the
heading representation in HD as the robot moves; shift left
(SL) and shift right (SR) layers that realise different shifts
between HD and IHD, and turn left (TL) and turn right (TR)
motor neurons that represent different turning speed of the
robot. A reset population can correct the activity in the HD
based on another sensory modality (e.g., vision or IMU [22]).
The HD and IHD neurons form WTA networks. The number
of layers in the SL/SR populations corresponds to the number
of neurons in TL/TR.

In HD network in Fig. 4, each neuron of the HD layer has
inhibitory connections to all neurons of every Shift layer,
except for the neurons with the same index. We call this
connectivity pattern the inhibitory masking, which provides
a robust mechanism for activation of a neuron on crossing
of two inputs on the noisy neuromorphic hardware. The

Fig. 4: Heading direction network (only TR and SR neurons
are shown. Line with circle show inhibitory and arrow
excitatory connections.

“turning” neurons (TL, TR) excite a corresponding shift layer
with a one-to-all connectivity pattern. Due to the inhibition
from the HD layer, only a single shift neuron in SL/SR
becomes active for each combination of an active HD and
TL/TR neuron.

The Shift layers connect to IHD neurons such that the
post-synaptic neuron’s index is shifted (by one or more, de-
pending on the current angular velocity and the, respectively,
the active shifting layer). The IHD neurons, in their turn,
strongly excite the HD neurons in a one-to-one manner. The
activity in the IHD layer, shifted relative to the previous
activity in the HD layer, leads to an update of the estimated
heading direction.

As the HD network integrates motor commands (the
TR/TL activity), it accumulates errors. A reset population
periodically corrects the activity in the IHD population. In
our experiments, we periodically acquire the robot’s orienta-
tion from its compass and use it to reset activity in the IHD
network. We have previously shown how visual reset can be
used in a similar manner [22].

C. Position network

The position network uses the heading direction output
of the HD to perform path integration and to estimate the
robot’s position. Fig. 5 shows the overview of the position
network, which has a similar structure as the HD network.

The PN forms a 2D array of neurons that represents the
Cartesian coordinates on the map. In addition, the network
comprises a number of shifting layers, one for each estimated
heading direction (eight directions were used here). Each
layer shifts the neural activity to the corresponding direction.
The shifting layers drive activity in the integrating position
neurons (IPN), which, in their turn, shift the activity peak in
the PN population. For example, the North shifting layer
connects to IPN such that the index of each neuron is
increased in the y direction, whereas, e.g., the South-West
shifting layer connects to IPN such that the neuron index is
decreased both in x and y direction. The magnitude of the
shift depends on the robot’s speed and is kept constant in
our experiments. A layer of reset units can reset the position
estimate based on an external signal.



Fig. 5: Overview of the position network.

D. Plastic connections: learning a map

Our goal here is to learn a map of walls in an arena using
plastic synapses between the CD and the PN populations.
These plastic synapses store an association between the
representation of a collision event and the robot’s position.
We use a spike-timing dependent learning rule that updates
the synaptic weight at each pre-synaptic spike depending on
the state of the post-synaptic neuron [30], which is realized
in plastic synapses on our neuromorphic chip [17].

Every neuron in the CD network connects to a Collision-
or-not (CON) neuron with all-to-one excitatory synapses
(Fig. 3). The CON is active whenever a collision happens3.
All neurons in the PN network connect to the CON with
plastic synapses, in order to learn the correlation between
the firing of CON and position neurons.

According to the learning rule [30], simultaneous firing
of two neurons leads to potentiation (strengthening) of the
connecting synapse. On the other hand, when the pre-
synaptic neuron (PN) fires without the post-synaptic neuron
firing (CON), the synapse is depressed (weakened). Weight
depression enables the correction of falsely learned plastic
synapses resulting from error in heading direction or position
networks. In addition, this unlearning mechanism allows
updating of the map if the environment changes.

E. Neuromorphic hardware realization of the architecture

Fig. 6 shows an overview of the hardware realization of
the 2D path integration architecture (only most important
populations are shown here). In this proof of concept, we
used the DYNAP device to implement the heading direction,
position, and turning networks, whereas we used the ROLLS
device that features on-chip plasticity to realize map learning.
We have used sensory inputs recorded from the robot, driving
in an environment and colliding with walls, to stimulate
neuron populations on the neuromorphic devices: the TL
and TR populations on the DYNAP were stimulated based
on the robot’s turning speed, and the CD population on the

3Thus, we disregard the egocentric location of the collision here, which
could be used to obtain a more precise collision map
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Fig. 6: Spiking neural network architecture for 2D path
integration and map formation, realized in the neuromorphic
devices ROLLS and DYNAP.

ROLLS was stimulated when the robot’s bumpers signaled
a collision.

The DYNAP processor is limited in the number of neurons
(4096), and each neuron can maximally receive 64 synaptic
inputs. The 32x32 map that was learned in simulation
required 1024 position neurons and a directional shifting
layer with a total of 8192 neurons. Using a 16x16 map
for pose estimation, the shifting layer alone would already
require 2048 neurons. Thus, we used a modified shifting
mechanism in hardware by reducing the 2D shifting layers to
one-dimensional vectors. Each neuron in the vector excites
a slice of neurons in the IPN network towards the direction
that is represented by the activity peak in the HD network.

IV. RESULTS

A. Precision of the neural path integration

In the heading direction network, we simulated 72 spiking
neurons in the HD, IHD, and Reset populations (leading
to a resolution of 5◦), and 6 angular velocity neurons in
the TR and TL populations. Thus, there were 6 layers of
72 neurons in SL and in SR populations. In the 2D path
integration network, a 32×32 populations of neurons were
used to represent the x and y axes of the map, leading to a
total of 1024 neurons in the PN, IPN, and shift populations.
Therefore, a total of 1024×8 = 8192 neurons were used in
the position shifting layers. Resolution of the PN networks
in the hardware realization was 16×16.

Fig. 7 shows the outcome of a 270 seconds simulation,
comparing ground-truth for position estimation (converted
to neuron units, red curve) and activity of spiking neurons
in the PN neural population. Fig. 7(a) shows that without
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Fig. 7: The comparison of the robot’s true position in neuron
units (red dots) and the position read from the PN network
(blue dots): (a) without reset in both HD and PN networks;
(b) without reset in HD network but reset every 47 seconds in
PN network; (c) with reset every 28 seconds in HD network
but without reset in PN network; and (d) with reset every 28
seconds in HD network and every 47 seconds in PN network.
Plots on the right show the trajectory of the robot from the
top view; green star indicates the starting point.

the reset in either heading direction or position networks,
the error that originates from the error in the HD neural
population accumulates and activity in the position network
quickly diverges from the ground truth. In Fig. 7(b), the
position network is reset every 47 seconds and in Fig. 7(c),
only the heading direction network is reset every 28 seconds.
Here, the remaining error results from quantization in the
position network.

Finally, in Fig. 7(d), where the HD network and the PN
were reset every 28 and 47 seconds respectively, the estima-
tion becomes more accurate. The relatively coarse position

Fig. 8: Mean square error of 10 simulations; error bars
indicate one standard deviation. Five different conditions on
error evaluation are shown.

network is able to track the position of the robot. However,
reset in both heading direction and position networks is
essential to keep the accumulated error within bounds.

The errors of the robot localization under 5 reset condi-
tions are shown in Fig. 8. These conditions were derived from
the permutation of the reset conditions in heading direction
and position networks, which were “no reset” or reset every
25 or 37 seconds, using the value of the robot’s heading
direction from its compass. The mean errors are computed
from 10 simulations in the environment shown in Fig. 9(a)
and the error bar is one standard deviation of each data point.

Inaccurate estimation of the heading direction in the HD
population leads to fast error accumulation in the position
network (see the steep slope of the red and green curves
in Fig. 8). When the true heading value is used, the error
increases constantly with time (purple line), indicating that
also the position network contributes to error accumulation.
Thus, the periodic reset using vision or IMU is required for
accurate position estimation in our neuromorphic realization.

B. Learning a simple collision map

The map of the environment is stored in the plastic
synaptic weights between the PN and CD populations.
Fig. 9 shows maps in 3 different environments, encoded
(“memorized”) in the plastic synapses in simulation. In each
environment, the robot is driving forwards until a wall is
detected with the simulated IR sensors; the robot then rotates
up to a random orientation, which is sampled from a normal
distribution around ±60◦ with σ = 30◦. The figure shows the
simulated environments, encoded maps, and true collision
maps. Every simulation corresponds to a 60 minutes trial
(at 50ms time step); the area of the simulated maps was
2x2m2. Qualitatively, the simulation results show a faithful
representation of the environments.

To measure the quality of the learned maps, we assigned
a score to each learned collision position. The score is
evaluated using a correlation between the neuron-based map
and the ground-truth of the collisions positions: If the learned



(a) Environment1 (b) Encoded map1 (c) True collision map1

(d) Environment2 (e) Encoded map2 (f) True collision map2

(g) Environment3 (h) Encoded map3 (i) True collision map3

Fig. 9: Learned maps after 60 min of simulation. Left: the
simulated environments; middle: the learned maps recon-
structed from plastic synaptic weights between PN and CON;
right: the true collision map.

position is the same as the true collision position, the system
scores 1 point, if the learned position deviated from the
true position by 1 neuron unit in any direction, the system
scores 0.5 point, etc. The score of the encoded maps grows
linearly with simulation time, with a slope of 0.25-0.3 of the
ideal score. The constant rate of error accumulation is due to
discretization errors in both heading direction and position
networks.

C. Dynamic mapping

In this section, we demonstrate how unlearning (depres-
sion) in plastic synapses can be used to update the map in a
changing environment. Fig. 10 shows a 35 minute simulation,
starting with an environment as shown in Fig. 10(a). After 5
minutes of simulation time (at 50ms simulation time step),
the inside walls are removed while the robot continues to
navigate. Fig. 10(c) shows the final environment.

After 5 minutes of simulation, plastic synapses encode the
map as shown in Fig. 10(b). Fig. 10(d) shows the encoded
map at the end of the simulation. These results show that the
previously learned collision positions are unlearned after the
walls are removed, if the robot passes the respective position
without encountering a collision. Our path integration and
map formation SNN is thus not only able to learn the map of

Fig. 10: Demonstration of dynamic mapping. At the begin-
ning, the robot is confined within walls in a small square
space (a). The walls are removed after 5 minutes forming a
larger square (c). The robot is able to unlearn the previous
map.

a static environment, but also to update the map in a dynamic
environment, using synaptic depression and potentiation.

D. Neuromorphic realization

Fig. 11 shows activity of spiking neurons on the neuro-
morphic device DYNAP [34] that were wired up to form
the path-integrating architecture. The first plot in the figure
shows the arrangement of neurons on the 4 chips of the
DYNAP (each chip is divided into 4 cores of 256 neurons).
Figs. 11 (2-6) show snapshots of activity on the chip as the
robot turns left (0-9s), stops turning and continues moving
to the west (11s), and then turns to the right, moving in
the East direction after 24 seconds, Fig. 11(6). In the PN
and IPN populations, one can observe the activity moving
according to the HD population, which, in its turn, is driven
by the TR or TL populations. The activity “bump” in the PN
population is marked with a black circle around the purple
spikes.

A SNN realized with neuromorphic hardware is thus able
to represent and update the position on a map based on the
angular velocity information using computation realized with
silicon spiking neurons only.

E. Learning the map using plastic synapses on ROLLS

Finally, Fig. 12 demonstrates learning of collisions in
plastic synapses on the ROLLS chip. Here, The PN neurons
(#34-88) are activated one after another in a succession,
resulting in spikes moving along the PN up and down. When
a collision is sensed with the bumper (marked with red dots
in the lower part of the plot) the collision neurons (#128-144)
are stimulated and spike. At t > 80s, no more collisions are
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Fig. 11: (1): Neural populations configured on the DYNAP board. (2-6): snapshots of spiking activity during an experiment.
Colored dots are neurons that spiked during the snapshot (see main text for details).

sensed. However, the collision population is activated via the
potentiated plastic synapses whenever the learned position in
the PN is active.

This result serves as a proof of feasibility of a hardware
implementation of map formation, robustness and precision
of the neuromorphic spatial representation will be validated
and reported in future work.
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Fig. 12: Learning of two collision-position associations on
the neuromorphic device ROLLS.

V. CONCLUSION

Drawing inspiration from biological neural networks that
play a role in the remarkable ability of animals to navigate in
novel environments could lead to new efficient solutions to
the navigational tasks in robotics using embedded, ultra low-
power, and compact computing devices. The proposed SNN
architecture solves the localization and mapping problem
using solely spiking neurons and plastic synapses. This
architecture can thus be realized completely on the mixed-
signal analog/digital neuromorphic device. This system could

potentially lead to an efficient SLAM solution consuming
< 10mW only.

Several steps are still required to achieve the goal of a
fully-fledged neuromorphic SLAM. First, scaling-up of the
developed architecture to better resolve all spatial represen-
tations in neural populations requires neuromorphic devices
with more neurons than the prototypes currently available
in our research lab. Industrial labs have started producing
larger-scale devices [35], [36] that offer potential substrate
for a high-resolution SLAM. The inherently parallel and
event-based nature of neuromorphic computing facilitates
up-scaling without increase in computing time. Second, to
achieve a fully neuromorphic solution that would feature the
target power efficiency values, direct interfaces to robotic
sensors and motors are needed. While such interfaces exist
for event-based sensors [34], spike-based motor control is an
active area of research that is yet in its beginning [37].

Finally, both detection of the loop-closure events and use
of the estimated errors to calibrate the path integration and
correct the map require development of new spiking neu-
ral network architectures that enable “autonomous”, online
learning and adaptation. We have made first steps toward
such architectures using continuous attractor dynamics [38],
[39], [31]; their realization in neuromorphic hardware is yet
an outstanding goal.

ACKNOWLEDGMENT

We would like to thanks Giacomo Indiveri, Ning Qiao,
Julien Martel, and Jörg Conradt for discussions and support.



REFERENCES

[1] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
Autonomous Mobile Robots, Second Edition. MIT Press, Cambridge
MA, 2011.

[2] R. Hoffmann, D. Weikersdorfer, and J. Conradt, “Autonomous indoor
exploration with an event-based visual SLAM system,” 2013 European
Conference on Mobile Robots, ECMR 2013 - Conference Proceedings,
pp. 38–43, 2013.

[3] F. Galluppi, C. Denk, M. C. Meiner, T. C. Stewart, L. a.
Plana, C. Eliasmith, S. Furber, and J. Conradt, “Event-based
neural computing on an autonomous mobile platform,” 2014 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 2862–2867, 2014. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6907270

[4] N. Waniek, J. Biedermann, and J. Conradt, “Cooperative SLAM
on small mobile robots,” 2015 IEEE International Conference on
Robotics and Biomimetics, IEEE-ROBIO 2015, pp. 1810–1815, 2015.

[5] M. Collett, “Spatial memories in insects,” 2009.
[6] G. Wyeth and M. Milford, “Spatial cognition for robots,” IEEE

Robotics & Automation Magazine, vol. 16, no. 3, pp. 24–32, 2009.
[7] N. Cuperlier, M. Quoy, and P. Gaussier, “Neurobiologically inspired

mobile robot navigation and planning,” Frontiers in Neurorobotics,
vol. 1, no. NOV, 2007.

[8] J. L. Krichmar, D. A. Nitz, J. A. Gally, and G. M. Edelman,
“Characterizing functional hippocampal pathways in a brain-based
device as it solves a spatial memory task.” Proceedings of
the National Academy of Sciences of the United States of
America, vol. 102, no. 6, pp. 2111–6, 2005. [Online]. Available:
http://www.pnas.org/content/102/6/2111

[9] A. Barrera and A. Weitzenfeld, “Biologically-inspired robot spa-
tial cognition based on rat neurophysiological studies,” Autonomous
Robots, vol. 25, no. 1-2, pp. 147–169, 2008.

[10] A. Arleo and W. Gerstner, “Spatial cognition and neuro-mimetic
navigation: a model of hippocampal place cell activity.” Biological
cybernetics, vol. 83, no. 3, pp. 287–99, 2000. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/11007302

[11] M. Milford, G. Wyeth, and D. Prasser, “RatSLAM: a hippocampal
model for simultaneous localization and mapping,” Robotics and
Automation, IEEE International Conference of (ICRA), pp. 403–408,
2004. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs{\ }all.
jsp?arnumber=1307183

[12] M. Mulas, N. Waniek, and J. Conradt, “Hebbian Plasticity Realigns
Grid Cell Activity with External Sensory Cues in Continuous
Attractor Models,” Frontiers in Computational Neuroscience, vol. 10,
no. February, pp. 1–11, 2016. [Online]. Available: http://journal.
frontiersin.org/Article/10.3389/fncom.2016.00013/abstract

[13] C. Axenie and J. Conradt, “Cortically inspired sensor fusion
network for mobile robot egomotion estimation,” Robotics and
Autonomous Systems, vol. 71, pp. 69–82, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.robot.2014.11.019

[14] S. Koziol, S. Brink, and J. Hasler, “A neuromorphic approach to path
planning using a reconfigurable neuron array IC,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 22, no. 12, pp. 2724–2737, 2014.

[15] D. Weikersdorfer, D. B. Adrian, D. Cremers, and J. Conradt, “Event-
based 3D SLAM with a depth-augmented dynamic vision sensor,” in
Proc. - IEEE Int. Conf. Robot. Autom., 2014, pp. 359–364.

[16] G. Indiveri, E. Chicca, and R. J. Douglas, “Artificial Cognitive
Systems: From VLSI Networks of Spiking Neurons to Neuromorphic
Cognition,” Cognitive Computation, vol. 1, no. 2, pp. 119–
127, 2009. [Online]. Available: http://www.springerlink.com/index/
10.1007/s12559-008-9003-6

[17] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, D. Sumislawska,
G. Indiveri, and G. Indiveri, “A Re-configurable On-line Learning
Spiking Neuromorphic Processor comprising 256 neurons and 128K
synapses,” Frontiers in neuroscience, vol. 9, no. February, 2015.

[18] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chan-
drasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. a. Merolla,
and K. Boahen, “Neurogrid: A Mixed-Analog-Digital Multichip Sys-
tem for Large-Scale Neural Simulations,” Proceedings of the IEEE,
vol. 102, no. 5, pp. 699–716, may 2014.

[19] E. Neftci, E. Chicca, G. Indiveri, and R. Douglas, “A Systematic
Method for Configuring VLSI Networks of Spiking Neurons.” Neural
computation, vol. 23, no. 10, pp. 2457–2497, 2011.

[20] E. Neftci, J. Binas, U. Rutishauser, E. Chicca, G. Indiveri, and
R. J. Douglas, “Synthesizing cognition in neuromorphic electronic
systems.” Proc Natl Acad Sci U S A, vol. 110, no. 37, pp. E3468–76,
2013.

[21] Y. Sandamirskaya, “Dynamic Neural Fields as a Step Towards Cogni-
tive Neuromorphic Architectures,” Frontiers in Neuroscience, vol. 7,
p. 276, 2013.

[22] M. Cartiglia, R. Kreiser, and Y. Sandamirskaya, “A neuromorphic
approach to path integration: a head direction spiking neural network
with visually-driven reset,” in IEEE Synposium for Circuits and
Systems, ISCAS, 2018, submitted.

[23] R. Kreiser, T. Moraitis, Y. Sandamirskaya, and G. Indiveri, “On-chip
unsupervised learning in winner-take-all networks of spiking neurons,”
in Biological Circuits and Systems (BioCAS), 2017.

[24] W. Gerstner, W. M. Kistler, and Werner M, Spiking
Neuron Models: Singel Neurons, Populations, Plasticity, 2002.
[Online]. Available: http://www.langtoninfo.com/web{\ }content/
9780521813846{\ }frontmatter.pdf

[25] K. Hardcastle, S. Ganguli, and L. M. Giocomo, “Cell types for
our sense of location: where we are and where we are going,”
Nature Neuroscience, vol. 20, no. 11, pp. 1474–1482, 2017. [Online].
Available: http://www.nature.com/doifinder/10.1038/nn.4654

[26] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik,
R. Etienne-Cummings, T. Delbruck, S.-C. C. Liu, P. Dudek, P. Häfliger,
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