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Abstract—The ability to learn re-occurring patterns in real-
time sensory inputs in an unsupervised way is a key feature of
neural networks that can enable them to carry out complex tasks
directly, or to simplify the learning process of subsequent layers in
powerful deep network configurations. Dedicated neuromorphic
computing electronic systems can implement low-power real-time
neural network inference engines. However, unsupervised on-
line learning in these systems remains an open challenge. In
this paper, we demonstrate spike-based unsupervised learning
in a neuromorphic hardware device that has ultra low-power
spiking neuron circuits and on-chip plasticity synapse circuits
implemented with analog electronics. We configure populations
of silicon neurons in a soft winner-take-all (WTA) network
configuration, which enables them to learn the classification of
different spike-rate input patterns in an unsupervised manner.
We demonstrate the ability of this neuromorphic hardware to
perform unsupervised learning of the pattern classification in
real-time, and characterize its robustness as a function of network
parameters and network configuration.

I. INTRODUCTION

Unsupervised learning is a powerful learning mechanism,
used by biological systems when learning to classify objects
in categories based on their similar properties. In machine
learning, when data is unlabeled or no teacher to provide
rewards is available, unsupervised learning can be used to
infer hidden structures in the data [1], [2]. The self-organizing
map (SOM) is as algorithm based on a competitive artificial
neural network (ANN), originally introduced by Kohonen [3].
After training a SOM based on similarity between the already
stored and new input vectors, clusters of neuronal nodes
emerge in an unsupervised way that correspond to different
data classes. This principle has been realised in a simulated
spiking neural network for pattern classification [4] and the
capacity of a neuromorphic device to store patterns in attractor-
states, shaped by synaptic connections, was analyzed in [5].
Here, we introduce a simplified hardware neural architecture
that uses a similar to SOM principle, which implements unsu-
pervised clustering in real-time neuromorphic hardware. The
neuromorphic hardware we use in this work comprises hybrid
analog/digital circuits that directly emulate the biophysics of
the biological processes they model [6] so that computation
is distributed, event-driven, and massively parallel. In order
to achieve robust computation, given the noisy and variable
nature of analog circuits, adaptation, self-organisation, and
learning are of paramount importance.

In this work, we show how the silicon neurons of the Recon-
figurable On Line Learning Spiking (ROLLS) neuromorphic
processor [7], configured in a soft winner-take-all (WTA)
topology, can perform unsupervised pattern recognition. We
use unlabelled Poisson spike trains with different frequencies
as exemplary patterns that stimulate plastic synapses of the
silicon neurons. The plastic synapses either depress or poten-
tiate depending on different pre- and postsynaptic firing rates.
After learning, different groups of neurons respond to different
input patterns because of varying potentiated and depressed
synapses. Neurons within a group form local clusters and
fire with a similar postsynaptic frequency when stimulated
with one of the patterns, thus demonstrating unsupervised
clustering.

We proceed with a brief introduction to the ROLLS neu-
romorphic processor and the WTA architecture that performs
unsupervised learning. We then present the pattern classifica-
tion task and the evaluation of the architecture.

II. NEUROMORPHIC PROCESSOR

The ROLLS neuromorphic processor [7] is a full-custom
mixed signal analog/digital VLSI device. It comprises analog
neuromorphic circuits that emulate the biophysics of spiking
neurons and dynamic synapses in real-time and asynchronous
digital circuits that manage the transmission and routing
of spikes, using the Address Event Representation (AER).
The chip comprises a column of 1×256 neurons, an array
of 256×256 non-plastic programmable synapses, an array
of 256×256 plastic synapses, and 8×256 time-multiplexed
“virtual” synapses that can be used to provide direct external
input to neurons.

A block-diagram of the chip architecture is shown in
Fig. 1. Peripheral input-output AER circuits for both receiving
and transmitting off-chip spikes in real time can be used
to stimulate individual synapses or neurons on the chip.
Silicon synapses process spikes as they arrive, and produce
output currents with biologically plausible temporal dynam-
ics. Silicon neurons integrate these currents to generate and
transmit spikes in real time. The on-chip programmable bias
generator [8], allows the user to program the properties of the
synapses and neurons (time constants, pulse widths, etc.). The
network topology can be configured using the PyNCS high-
level Python software framework [9].
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Fig. 1. Block diagram of the ROLLS chip architecture. Triangles on the right
represent silicon neurons, squares synapses, organized in three arrays: plastic,
non-plastic, and virtual. The AER blocks manage the input and output traffic
of spikes, the bias generator allows to program different parameter settings
of the analog circuits.

A. On Chip Spike-Based Learning

In the ROLLS neuromorphic processor, the plastic silicon
synapses emulate a spike-driven synaptic plasticity rule that
updates the synaptic weights according to the timing of the
pre-synaptic spike, the state of the post-synaptic neuron’s
membrane potential, and its recent spiking activity [10]. While
weights are updated with gradual analog changes with every
spike, on long time-scales they converge to one of two possible
analog high/low states, i.e., they are bi-stable. The weight-
update is evaluated upon the arrival of each pre-synaptic spike.
It is positive if at the time of the pre-synaptic spike the
membrane potential of the post-synaptic neuron is above a
given threshold, θmem, while the calcium variable of that
neuron (that represents the average activity of the post-synaptic
neuron) is in a range set by thresholds θmin and θmax. If
the membrane potential of the postsynaptic neuron is below
θmem, and the calcium variable is in the range [θmin, θ2], then
the synapse is depressed. No update happens under other
conditions. The stop-learning conditions, determined by the
thresholds θmin and θmax, are useful for normalising the weights
of all synapses afferent to the same neuron.

In addition to the event-driven weight update rule, the
weight of the synapse, wi, is constantly driven toward one
of the two stable states (wmin and wmax) with a low slew-rate,
depending on whether it is above or below a threshold θw.

B. Silicon Neuron Block

The neuron circuit integrated in the ROLLS chip ex-
hibits biologycally realistic neuronal behaviors, such as spike-
frequency adaptation, adjustable refractory period, and spiking
threshold. The neuron equations derived from the circuit
closely resemble those of the adaptive exponential I&F neuron
model [11]. Thirteen globally tunable parameters enable the
neuron to produce a range of different firing behaviours.

III. WTA NETWORK

In a soft WTA network, neurons amplify their local activity
by being excitatorily connected to their nearest neighbors and

globally inhibit each other by being all connected to a com-
mon pool of inhibitory neurons, which inhibits all excitatory
neurons back. As a consequence, the network “selects” the
local group receiving the strongest excitation and suppresses
the activity of all other neurons in the network via the
global inhibition. This type of soft-max computation has been
proposed in hierarchical models of vision [12] and in models
of selective attention and recognition [13]. Similar connectivity
patterns were analysed in a continuum model of dynamic neu-
ral fields (DNFs) to account for self-organisation and pattern
formation in cortical and thalamic nervous tissue [14] and
to develop neural-dynamic cognitive architectures [15]. Soft
WTA hardware networks have also been shown to support the
extraction of hidden structure in input patterns by selectively
enhancing the contrast between inputs [16]. Importantly, soft
WTA networks of silicon neurons have been shown to be
instrumental in reducing the effect of device mismatch of
transistor, due to fabrication imperfections, and in producing
robust network behavior by stabilizing activity of the most
active neurons. When stimulating all neurons with the same
input, the WTA selects neurons with the highest postsynaptic
average activity. Device mismatch will cause different input
patterns to select different winning neuron populations, laying
the foundation for the unsupervised learning.

IV. PATTERN CLASSIFICATION

Here we analyze an unsupervised pattern recognition task
in which the input patterns consist of Poisson spike trains
that stimulate the 256 plastic synapses of every neuron with
different mean frequencies. We tuned the circuit biases to
initiate long-term depression (LTD) of plastic synapses when
stimulated with low frequencies (10 Hz) and long-term poten-
tiation (LTP) when stimulated with high frequencies (110 Hz).
We configured the chip to implement four soft-WTA networks,
as described in Fig. 2b. To assess the effect of device mis-
match, we examined robustness and differences across the four
networks behaviors. Each network comprises 62 excitatory
neurons and a single global inhibitory neuron. Excitatory
neurons have excitatory connections to themselves and to
their six (three per side) nearest neighbors. The inhibitory
neuron receives excitatory input from all excitatory neurons
and inhibits them back. The recurrent connections that form
the soft-WTA network are realized using the ROLLS non-
plastic programmable synapses. Fig. 2b shows the recurrent
connectivity matrix of all four WTA networks instantiated on
the ROLLS chip. The plastic synapses, which are stimulated
by the input patterns, are initialized randomly with a 5%
probability of being in the potentiated state (see Fig. 2a, and
schematically in Fig.1, left).

A. Frequency dependence of LTD and LTP transitions

Fig. 3 shows that the average probability of potentiation
(LTP) and depression (LTD) of the plastic synapses depends
(For the given circuit parameters) on the input and output spike
frequencies. These curves were obtained using the following
protocol: for the LTP probability plot, we set all plastic weights
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Fig. 2. Connectivity on the ROLLS chip. (a) Four sets of plastic synapses,
connecting inputs to the four WTAs; 5% of the synapses are initialised to be
randomly potentiated. (b) Matrix of the non-plastic recurrent connections of
all 256 neurons. Four WTA network contain 63 excitatory and one inhibitory
neurons each. Blue is an inhibitory, and red an excitatory connection.
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Fig. 3. The blue curves
are Gaussian fits to the
measured probability of
LTD transitions and the
red curves – to the
measured probability of
LTP transitions at in-
put frequency of 110 Hz
(solid) and 10 Hz (dot-
ted). The transition prob-
abilities depend on the
postsynaptic firing rate of
the neuron.

to wmin and all non-plastic connections to zero. We sweep
the input frequency to the plastic synapses from 10 Hz to
120 Hz in steps of 10 Hz, and for each of these conditions we
stimulated the post-synaptic neurons via virtual synapses with
input frequencies that where swept from 200 Hz to 600 Hz in
steps of 100 Hz to obtain different postsynaptic firing rates. For
each neuron, we counted how many of its 256 plastic synapses
switch state from low (depressed, wmin) to high (potentiated,
wmax). Similarly, for the LTD plots, we initialized the synaptic
weights to wmax, applied the same stimulation protocol as for
the LTP, and counted the number LTD transitions per neuron.

For the classification task, we use input patterns that consist
of a combination of the 110 Hz and 10 Hz mean frequencies.
To achieve best performance, a maximum for LTP at 110 Hz
and for LTD at 10 Hz input frequency is desired to reside at
the same postsynaptic frequency. This way the synapses of
an active neuron undergo both LTP and LTD transitions only
depending on the input frequency. The learning curves from
Fig. 3 show that these two maxima occur for a postsynaptic
frequency of 10-13 Hz. We have configured the WTA network
to suppress highly active neurons by the global inhibition to
the point where they fire in this postsynaptic frequency range.
Local excitation in the WTA network makes neighboring
neurons fire at a similar frequency, so they will tend to
learn the same input patterns. Neurons with a low output are
suppressed even more by the global inhibition and do not
undergo weight transitions. They retain the random weights
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Fig. 4. (a) Postsynaptic spikes when stimulating with input pattern one (blue)
and input pattern two (red) after 14 learning trials. Spikes of each stimulation
were superimposed in order to highlight the different firing behavior for
different input patterns. b) Synaptic weight matrix after stimulating fourteen
times with each pattern.

and can potentially be recruited for different input patterns.

B. Classification performance

As a proof of concept, the following initial experiment was
chosen. We used two populations of neurons that produce
patterns of Poisson spike trains with the same rates, but
that project to distinct orthogonal sets of synapses (e.g., the
first population projects to the first 128 synapses, and the
second population projects to the other 128 sets of synapses).
Specifically, every neuron in a soft-WTA network is stimulated
with the same input pattern, which consist of either 110 Hz
Poisson spike trains on the plastic synapses 0-128, and 10 Hz
Poisson spike trains on synapses 129-255 (pattern one), or the
other way around (pattern two).

The neurons that learned input pattern one have less chance
to fire for input pattern two, as some of the synapses which
had previously received 10Hz have been depressed. Neurons
that did not fire did not depress their randomly potentiated
synapses, therefore increasing the probability to fire for the
next pattern.

After repeatedly being stimulated by the two patterns,
groups of neighbouring neurons change their plastic synapses
to be more responsive to one of the patterns. Fig. 4b shows
the synaptic weight matrix after fourteen learning trials. The
network found an equilibrium, in which a similar amount of
synapses are potentiated for each pattern.

The difference among the weight matrices of the four WTA
networks highlights the effect of mismatch of silicon neurons.
The circuit biases used here aimed to achieve most similar
behavior and successful classification of patterns in all WTAs.

After the silicon neurons learned the weight matrix shown
in Fig. 4b, a stimulation with input pattern one (blue) and input
pattern two (red) resulted in the postsynaptic spikes shown in
Fig. 4a. To emphasize timing of activity of every neuron, only
the first spikes are shown here. When stimulating with a given
pattern, the postsynaptic firing rates of different neurons can
be used for the classification.

To test how well the neurons differentiate between the
patterns, their activity was analyzed by forming a histogram of
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Fig. 5. Histogram of the se-
lectivity of the neurons: number
of neurons responding to input
pattern one (left), input pattern
two (right), and to both input
patterns (middle).
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Fig. 6. (a) Four different input patterns that stimulate the plastic synapses.
1
4

of the synapses receive 150 ms Poisson spike trains with 110 Hz, and the
remaining synapses with 10 Hz mean frequency. (b) Plastic synaptic weight
matrix after stimulating with each pattern five times.

the selectivity of neurons, shown in Fig. 5. We can observe that
majority of neurons became selective to one of the patterns.

The number of patterns that can be successfully differenti-
ated increases linearly with the number of neurons comprising
a WTA network. We show that a WTA with 63 neurons can
learn four different patterns, however by suffering loss in the
selectivity to individual inputs.

Patterns again consist of Poisson spike trains with high
(110 Hz) and low (10 Hz) mean frequencies, with 1

4 of plastic
synapses receiving the high frequency input. Fig. 6(a) shows
the four different input patterns used.

Fig. 6b shows the weight matrix of plastic synapses after
stimulating with each pattern five times. Further training does
not improve clustering, because θmax prevents learning for
high postsynaptic frequencies. This stop-learning is necessary
to avoid saturation of neurons’ activity and overwriting of the
learned patterns with the most recent one.

A decrease in performance is indicated by only four neurons
being selective to input pattern one, two, and three, while for
pattern four only three neurons are exclusively selective.

V. CONCLUSION

In this work, we evaluated the ability of neuromorphic
hardware to perform unsupervised learning by training WTA
networks to learn and recognize different frequency patterns.
Such frequency patterns can encode features of the objects and
the neuromorphic chip can potentially learn to classify objects
in an unsupervised manner. During learning, clusters form as
an effect of the WTA configuration and a Hebbian-learning
weight update. The results show that one pattern is learned by
more than one group of neurons making the network robust

to failure of a single group. A limitation of our neuromorphic
hardware is the limited number of neurons. Thus, only a few
patterns can reliably be learned. Increasing the number of
neurons would result in better selectivity performance.
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