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Abstract—Mixed-signal analog/digital neuromorphic circuits
are characterized by ultra-low power consumption, real-time
processing abilities, and low-latency response times. These fea-
tures make them promising for robotic applications that require
fast and power-efficient computing. However, the unavoidable
variance inherently existing in the analog circuits makes it
challenging to develop neural processing architectures able to
perform complex computations robustly. In this paper, we present
a spiking neural network architecture with spike-based learning
that enables robust learning and recognition of visual patterns in
noisy silicon neural substrate and noisy environments. The archi-
tecture is used to perform pattern recognition and inference after
a training phase with computers and neuromorphic hardware
in the loop. We validate the proposed system in a closed-loop
hardware setup composed of neuromorphic vision sensors and
processors, and we present experimental results that quantify its
real-time and robust perception and action behavior.

Index Terms—Neuromorphic computing, noisy spiking neural
networks, robust object recognition, unsupervised learning

I. INTRODUCTION

Neuromorphic engineering is concerned with emulating the
dynamics of biological neurons and synapses in silicon [1],
as well as the organizing and computing principles of real
neural processing systems. A primary goal of these studies is
to take advantage of the unique features of the brain, such as
low-power consumption, massive parallelism, and low-latency
processing, in order to perform efficient cognitive computa-
tions. In contrast to the classical von Neumann architecture of
state-of-the-art digital computers, in neuromorphic hardware,
memory and processing are co-localized in the synapses
and neurons present in such devices. Previously developed
neuromorphic computing hardware devices are using either
asynchronous mixed-signal analog/digital [2]–[4] or purely
digital circuits. Asynchronous neuromorphic systems process
data and transmit signals only if and when they receive and
produce events (spikes). Unlike purely digital approaches, the
mixed-signal analog/digital approach has recently produced
promising technologies for implementing computing architec-
tures based on silicon neurons and synapses which exhibit
dynamics that are similar to their biological counterparts [5].

Similar to the widely observed variance across biological
neural networks [6], variability exists in all analog spiking neu-
rons due to the unavoidable circuit noise and manufacturing
mismatch, which has a strong effect on the behavior of neurons
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when the circuits are working in the sub-threshold domain [7],
[8]. It is very challenging to implement desired behaviors
and computations on such hardware [9]. However, it has been
observed in the brain that despite the noisy neural substrate
and environment, the behavior of biological spiking neural
networks remains robust and reliable. It raises the question:
can proper network connectivity enable mixed-signal spiking
neural systems to perform computations with high robustness
despite their noise and mismatch?

To address this question, we present a spiking neural archi-
tecture that comprises three biologically plausible mechanisms
geared toward variability reduction and robust computation.
Namely, we use a dis-inhibition mechanism to reduce the
effect of noise and enable robust feature detection, an up-
and down-scaling mechanism of connections which leads to
the spatial invariance during recognition, and a group of
Neural State Machine (NSM) structures [10], [11] to perform
unsupervised learning. Besides, we present an on-line spike-
based learning rule for both excitatory and inhibitory plastic
synapses that enables the network to memorize trained vi-
sual patterns and perform visual pattern recognition. Along
with the inherent ultra-low-power and event-driven computing
paradigm of the mixed-signal analog/digital devices, the high
robustness achieved on such hardware makes it possible to
build an always-on and massively distributed system. Such
a system reports an event or takes action only if and when it
recognizes a visual stimulus as a pre-trained pattern; otherwise,
the network keeps running with ultra-low power consumption.
In Section II, we describe the used mixed-signal neuromorphic
hardware in this work. In Section III, we present the network
architecture and the learning rule. In Section IV, we validate
the network in a real-time real-world task.

II. METHODS

The setup used to train and configure the neuromorphic
electronic system proposed is illustrated in Fig. 1. It is com-
posed of a neuromorphic vision sensor - the Dynamic Vision
Sensor (DVS) (DAVIS240C) [12] and a group of Dynamic
Neuromorphic Asychronous Processor (DYNAP) chips [3].
The DVS emulates the dynamics of biological retina cells in
silicon using mixed-signal analog/digital technologies. There
are 240 × 180 pixels integrated on each chip. Each of them
independently detects the illumination intensity change in
a small area of the visual scene. It captures fast moving
objects from the environment in a wide range of lighting
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Fig. 1. The neuromorphic electronic system consists of DVS sensors and
DYNAP chips. A computer is used to configure the sensors and chips, monitor
their activities, or perform learning algorithms. Once a network is set up, or
the learning stops, the computer can be disconnected. The perception and
processing in neuromorphic sensors and processors are ultra-low-power.

conditions. The DYNAP integrates 1024 silicon neurons on
each chip. Every neuron features 64 programmable synapses
and can stimulate 4096 destination synapses. The neurons
realize adaptive exponential integrate-and-fire dynamics with
biologically realistic time constants [13]. The synapses are
non-plastic but can be trained with a computer in the loop.
The parameters of the neurons and their connectivity are
configurable via on-chip analog bias generators and digital
latches. The events generated by the DVS silicon retina are
sent to the silicon neurons on-chip using the Address-Event
Representation (AER) protocol.

In this setup, spike-based learning can be run on a computer
in real time with the neuromorphic chips in the loop. Whenever
a neuron emits a spike, it will send its neuron ID and the
timing of when it emits the spike to the computer. A learning
algorithm on the computer will write the received information
into a ring buffer, for example, at position S. After that, the
algorithm will read the ring buffer from the position S − 1
to S − N to go through the history of the received spikes.
The parameter N is chosen by the algorithm to make sure the
maximum timing difference between the read-out spikes and
the newly arrived spike is within a time window (50ms in
this implementation). For each pair of the neurons that emit
the read-out spike and the newly arrived spike, the algorithm
checks a look-up table. The table stores the information of
whether there is a plastic synapse between two neurons. If
there is one between this checked neuron pair, the algorithm
will calculate a new synaptic weight according to the current
weight and the timing difference between the two spikes.

As for biological retinas, illumination intensity change is
critical for the silicon retina to perceive the environment.
To ensure that there is retinal activity also for static scenes
biological vision systems resort to two types of eye move-
ments: saccades [14] and microsaccades [15]. In our setup,
we simulate these eye movements by fixing the DVS and
moving the objects in front of it. The mean rate of the events
generated by DVS indicates the speed of the relative movement
between the silicon retina and the objects. The online learning
algorithm monitors the generated events and simulates the
firing of the motor neurons which activate the saccades.
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Fig. 2. The network architecture. The network is composed of an input layer, a
feature layer, and an output layer. The neurons of these layers form a learning
pathway and a recognition pathway. At the bottom of the figure, there is an
arbitration mechanism implemented by neuron populations A1, A2, A3, and
A4 that control which pathway will become dominant. In this paper, each of
the populations A1, A2, A3, and A4 is implemented by 4 silicon neurons to
make their behaviors robust.
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Fig. 3. The detailed structure of the feed-forward pathways from input
neurons to output neurons. To simplify the illustration, here we only show
the neurons of the recognition pathway while the learning pathway has the
same on and off cells and the same connectivity principle. The on cells receive
spikes from the previous layer, whereas the off cells tend to fire spontaneously
due to a continuously supplied stimuli or a constant current. However, they
receive a strong inhibition from the on cells in a one-to-one manner.

III. SPIKING NEURAL NETWORK ARCHITECTURE

The architecture we propose is illustrated in Fig. 2. It has a
feed-forward structure consisting of three layers of neurons. It
starts from a 16×16 input layer. We select the center 128×128
pixels on the silicon retina and down-sample them to match
the 16 × 16 input neurons. A feature layer follows the input
layer. Due to the limited number of neurons on the prototype
DYNAP chip, we choose to configure the feature layer to
detect only horizontal and vertical bars. The feature layer
neurons receive spikes from the input layer in a convolutional
manner with kernel size 8× 8 and stride 1. The output layer
consists of multiple groups of neurons, each of which learns to
recognize a different visual pattern. Output selecting neurons
excite them to start the learning.

There are two pathways in the network. One pathway is for
learning, and the other one is for recognition and inference,
denoted by blue and pink colors respectively in Fig. 2. Each
pathway has its group of feature neurons: neuron groups L
and R for the learning and recognition pathways respectively.
For recognition, we connect neuron group L to the output
neurons in a convolutional manner with different kernel sizes.
For learning, to the contrary, there is an up- and down-scaling
mechanism through which we connect all the neurons in R to
each output neuron and the connection maintains the spatial



information of the feature neurons. However, the connections
are not direct. There is a group of mapping neurons that relay
the spikes from the feature neurons to the output neurons.
The learning takes place at the plastic synapses between the
mapping neurons and the output neurons. Here we present the
detailed structures and the learning rule as follows:

a) Dis-inhibition mechanism: The input layer and the
feature layer consist of on and off cells. The on and off
cells are excitatory and inhibitory neurons respectively. They
cooperatively perform a dis-inhibition mechanism that makes
the recognition robust to the noise from inputs and the inherent
mismatch of analog circuits. The connectivity of the on and
off cells is illustrated in Fig. 3. The on and off cells have the
same connectivity manner to the next layer like the one shown
in Fig. 2. However, only the on cells receive spikes from the
previous layer whereas the off cells are not connected to the
previous layer but receive a one-to-one inhibition from the on
cells. Also, the off cells receive excitation from a continuously
supplied stimuli or a constant current. In this way, the on and
off cells always exhibit opposite behaviors.

b) Arbitration mechanism: The two pathways alternate
to perform the learning and recognition of visual patterns.
They are controlled by the arbitration neuron groups A1, A2,
A3, and A4 at the bottom of Fig. 2. The learning pathway
gains and maintains the opportunity to start and finish the
learning as follows. Since the Post-Synaptic Potential (PSP)
of inhibition is longer and stronger than that of excitation for
the feature neuron group L, given a visual pattern, they will
start to fire only if both neuron groups A3 and A4 are silent.
They are silent when the following condition is satisfied: the
output layer does not recognize the visual pattern, and the
simulated eye-movement motor neurons stop to fire. If the
neuron groups A3 and A4 are firing, they will reset the output
selecting neurons, which send spikes to the output neurons to
start the learning. Thus, it ensures that if the visual pattern
is already learned or it is not stable at the input layer, the
learning phase will not start. Once the neuron group L starts
to fire, they will excite the neuron group A1 to ensure that the
neuron groups R and A4 are silent during the learning process
so that they will not interfere with the learning. The arbitration
neuron group A2 inhibit A1 when the motor neurons fire. This
ensures that after learning when the silicon retina or the visual
pattern starts to move, the neuron group A3 will inhibit L and
the recognition phase starts.

c) Spike-based learning rule: The learning happens on
the plastic synapses between the mapping neurons and the
output neurons. Every spike of the post-synaptic neuron trig-
gers the learning of a plastic synapse. The learning rule is
Hebbian-like for excitatory synapses and anti-Hebbian-like for
inhibitory synapses. It can be described as:

wij(t) = max((wij(t) + α∆wij(t) · Sj(t), 0) (1)

∆wij(t) = β
∑

t−∆t<t′<t

Si(t
′)− 1 (2)

where i and j denote the indexes of the pre-synaptic and post-
synaptic neurons respectively. α > 0 if the pre-synaptic neuron
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Fig. 4. Network structure that implements the automatic selection of output
neurons during learning. The NSM structure is modified from [10]. Here
within each NSM, the connections between neuron groups S1 and T1, and S2

and T2, as well as the winner-take-all structure built upon the neuron groups
S1 and S2 are simplified for visualization. It only shows the connectivity
between NSM 1 and NSM 2 as an example. Every pair of the NSMs has the
same connectivity. The dotted line represents plastic synapses. Each circle
represents a neuron population of 4 neurons that share the same connectivity.

i is an excitatory neuron, and α < 0 if neuron i is an inhibitory
neuron. β denotes a learning rate. wij(t0) = 0, where t0
denotes when the learning starts. Si(t) =

∑
k
δ(t−tik) denotes

whether there is a spike generated by neuron i at time t,
where tik represents the timing of spikes and δ(x) = 1 when
x = 0 otherwise δ(x) = 0. Once the weight change of a
synapse accumulated to be larger than a predefined threshold,
the learning algorithm will update the new synaptic weight
onto the chips. Otherwise, the synapse will keep the current
weight. When a neuron is activated longer than a threshold
period (80ms in this implementation), the learning of its
incoming synapses will stop. After learning, the synapses can
memorize the pre-synaptic neural activities. This learning rule
ensures that the learning phase will only affect the firing rate
but not the firing-or-not activity of the post-synaptic neurons.
It makes learning more robust and predictable.

d) Unsupervised learning: The output selecting neurons
and a plastic winner-take-all mechanism are illustrated in
Fig. 4. Multiple NSM structures of the type described in [10]
implement the plastic winner-take-all mechanism. Each NSM
has two states: S1 and S2. The network connectivity ensures
that anytime only one NSM can stay at state S1 as the winner
and all the other NSMs are at state S2. Once a NSM wins
the competition, it will self-maintain its activity. Meanwhile,
the synapses that are coming into the neuron group S1 of
the winner NSM will decrease their weights. Therefore, next
time, this NSM will not be selected as the winner again.
In detail, each NSM could stay at either state S1 or S2,
meaning that the neuron groups S1 or S2 of the NSM are
firing respectively. The neuron groups T1 and T2 will fire
only if and when its two groups of in-coming synapses both
receive spikes [10]. The inter-connected NSMs carry out a
winner-take-all behavior because they always push each other
to alter the states. Anytime only one NSM can stay at state
S1 and the others are at state S2. After the competition, the
neuron group S1 of the winner NSM will decrease their in-
coming synaptic weights according to the same learning rule as
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Fig. 5. The recognition of visual patterns after learning. Left: recorded
neural activities of the input and output layers in a duration of 20 ms. Right:
performance of the network in two simple tasks. Each element in the confusion
matrix represents the percentage of spikes that belong to each of the four
groups of output neurons compared to the total number of spikes when we
show a visual pattern to the neuromorphic system.

discussed above, except that initially wij(t0) > 0. Next time
this NSM will not become the winner again. After learning
a visual pattern, with the firing of the motor neurons, the
arbitration neuron groups A3 and A4 send spikes to reset all
the NSMs to state S2. This reset is necessary to prepare the
learning of the next pattern. Because each group of the neurons
S1 excites a different group of the output neurons, the output
neurons will take turns to learn different visual patterns. This
mechanism enables learning in an unsupervised manner.

IV. EXPERIMENTAL RESULTS

We present experiments in which objects either move with
speed in the range of [60, 1.2k] pps (pixels per second) or
continuously shake in front of the silicon retina. Here the pps
represents how fast the perceived visual pattern moves on the
silicon retina. 60 pps and 1.2k pps are measured values. 60 pps
is the minimum speed, below which the generated events are
too few for the network to recognize. 1.2k pps is the maximum
speed, above which the response of the neurons and synapses
on-chip are not fast enough to distinguish the visual patterns.

a) Performance and robustness: Because of the limited
number of neurons on the prototype chips, every time we train
the network with four different visual patterns composed of
horizontal and vertical bars, namely a ’T’ shape or a ’t’ shape
symbol with different directions. Due to the up- and down-
scaling mechanism within the connections, the output neurons
reserve and represent the position and distance information of
the input pattern during recognition. To test the recognition
performance of the network after training, we show each
pattern to the silicon retina for 1000 s. Fig. 5 shows that the
network is robust to the noise and mismatch of neuromorphic
devices and the environment. The dis-inhibition mechanism
is necessary to achieve high recognition performance. For the
same feed-forward network in Fig. 2, the measured recognition
performance on-chip is 99.69% and 56.91% with and without
dis-inhibition respectively. Although we choose to use these
simple patterns due to the limited number of available neurons,
the same principle can be scaled up for more complex patterns.

b) Power consumption: Without incoming events, the
spiking neural network architecture implemented on neuro-
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Fig. 6. Real-time real-world experimental results on an omnidirectional robot.
We mount the silicon retina and neuromorphic processors on the robot. The
output neurons on-chip send out events to drive the robot’s motors to go
either forward, backward, left, or right. Up: Robot navigates in the arena
by recognizing the surface markings on the ground. Down: The robot keeps
changing between left and right movements.

morphic devices only consumes static power. The static power
dissipation is 945µW for the DYNAP chip [16]. The primary
source of the dynamic power consumption is due to neurons
firing and spikes generation. The average mean firing rate of
the neurons is 41.76 Hz when there is no visual pattern given
to the input layer, and 55.73 Hz when there is one. The silicon
retina chip consumes less than 5 mW when the input activity
is not very intensive [12]. Thus the total power consumption
of this neuromorphic hardware system is estimated to be less
than a few mW.

c) Real-time real-world tasks: The time cost for recog-
nizing each pattern depends on the properties of the neurons
and synapses (e.g., the time constant, firing threshold, and the
length of PSPs) on the feed-forward pathway. Each neuron
takes time to integrate evidence from the asynchronous input.
This delayed time, however, enables a temporal invariance in
the range from tens of to several ms. It is essential for real-
world tasks where the robot or object is not moving smoothly.
We tested two scenarios in which the robot moved in an
arena, continuously detecting and recognizing patterns that are
associated with actions accordingly. Fig. 6 illustrates the neural
activity and the robot trajectory. It proves that our spiking
neural network architecture performs well in the noisy real-
world environment.

V. CONCLUSION

We presented a spiking neural network architecture and an
on-line off-chip training method that enable robust learning
and recognition of visual patterns in noisy spiking neural
networks and noisy environments. We demonstrated pat-
tern recognition tasks in a closed-loop system composed of
asynchronous neuromorphic sensors, processors, and robotic
agents. In addition to solving practical engineering problems,
the proposed network architecture might shed light on how
the neurons are organized to carry out robust computation in
biological networks.
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