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Abstract Research is continually expanding the empirical

and theoretical picture of embodiment and dynamics in

language. To date, however, a formalized neural dynamic

framework for embodied linguistic processes has yet to

emerge. To advance embodied theories of language, the

present work develops a formalized neural dynamic frame-

work of spatial language that explicitly integrates linguistic

processes and dynamic sensory-motor systems. We then

implement and test our spatial language architecture on a

robotic platform continuously linked to real-time camera

input. In a suite of tasks using everyday objects we demon-

strate the framework’s capacity for both contextually-

dependent behavioral flexibility and the seamless integration

of spatial, non-spatial, and symbolic representations. To our

knowledge this is the first unified, neurally-grounded archi-

tecture integrating these processes and behaviors.

Keywords Dynamical systems � Spatial cognition �
Spatial language � Neural fields

Introduction

Theories of cognition are often dissociated from the real-

time generation of behaviors. This is particularly true in the

domain of language, where theoretical treatments tend to

emphasize highly abstracted concepts and symbolic rep-

resentations (e.g. Jackendoff 2002).

Recently, however, attention has shifted to how lan-

guage is produced and experienced by real bodies in the

real world (Clark 1996). Work from beim Graben et al.

(2008a, b), for example, shows that non-linear dynamical

systems approaches can enhance our understanding of

syntactic processing within neural systems. A recent

review by Elman (2009) further highlights how dynamical

models (e.g. simple recurrent networks) can shed light on

language processing, particularly contextual dependencies

in grammar and word learning. The role of context is also

increasingly prominent in recent models of language

development, revealing how language processing dynamics

shape infant categorization (Gliozzi et al. 2009), lexical

organization (Li 2009) and task-specific noun generaliza-

tion behaviors (Samuelson et al. 2009).

This attention to the contextually rich, coordinated

dynamics of language is part of a growing view that lin-

guistic processes are embedded within a broader embodied,

dynamic system intimately linked to the physical world

(Glenberg 1997, Barsalou 1999, Spivey and Dale 2004).

The evidence supporting the role for the body and real-time

dynamics in language is broad and includes motion-

dependent action word processing (Glenberg and Kaschak

2002), the activation of motor circuits when listening to

action-related sentences (Tettamanti et al. 2005), signa-

tures of continuous dynamic processes in spoken word

recognition and semantic categorization (Spivey and Dale

2006), and the synchronization of speech and gesture

(McNeill 1992, 2003). Yet, despite this expanding empir-

ical and theoretical picture, a formalized theoretical

framework for embodied linguistic processes has yet to

emerge.

J. Lipinski (&) � Y. Sandamirskaya � G. Schöner
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Spatial language provides a useful entry point for

developing such a framework because it is an elementary

link between integrative linguistic processes and the

embodied, dynamic sensory-motor systems that fluidly

operate in the spatial world. Given these embodied roots, a

viable spatial language framework must specify how dif-

fering behaviors (e.g. language production and language-

guided action) can emerge from the same system, how non-

spatial object features (e.g. color) can be integrated with

spatial information, and how linguistic symbols can be tied

to the continuous sensory-motor representations.

Some spatial language theories to date have touched on

related embodiment issues. Recent modeling work, for

example (Coventry et al. 2005, Carlson 2006), accounts for

empirical results showing that functional relations between

objects influence spatial language behavior. Regier and

Carlson (2001) have also provided important insights into

the complex contributions of attention and landmark shape.

However, these models do not generate flexible behaviors

in real-time nor do they provide transparent accounts of the

representational integration supporting this flexibility. This

represents a substantial theoretical gap. We contend that a

process-based account of spatial scene representations and

behaviors derived from these representations is required to

address this gap.

Recent work suggests that a systems-level neural dynamic

approach to human cognition can provide the conceptual

foundation for such a process-based account. At the broadest

level, this perspective argues that behaviors unfold in real-

time from the continuously coupled interplay between neural

dynamic decision processes, the sensory-motor system, and

the feature-rich environment in which bodies are embedded

(Sporns 2004, Tononi et al. 1998, Beer 2000, Thelen and

Smith 1994, Schöner 2008). These approaches have estab-

lished strong contact with observable human behaviors across

a variety of contexts, including saccadic eye movements

(Wilimzig et al. 2006), visual discrimination and visual

working memory (Simmering et al. 2008, Johnson 2008,

Johnson et al. 2009), spatial working memory development

(Schutte et al. 2003, Schutte and Spencer 2009), and infant

reaching errors (Thelen et al. 2001). These empirical ties

suggest that complex, integrative spatial language behaviors

may be similarly described in neural dynamic terms. To

advance embodied theories of language, the present work

therefore seeks to develop and test a formalized neural

dynamic architecture of spatial language.

To this end, we first discuss three key characteristics of

embodied spatial language, namely behavioral flexibility,

the integration of spatial and non-spatial features, and the

integration of symbolic and continuous representations.

Next, we briefly outline three principles of a neural

dynamic system that collectively address these aspects:

gradedness, autonomy, and stability. With this conceptual

background we introduce the Dynamic Field Theory

(DFT), a neurally-based theoretical language that incor-

porates activation profiles defined over continuous dimen-

sions and emphasizes attractor states and their instabilities

(Schöner 2008, Spencer et al. 2009). The DFT is the

foundation of our neural dynamic architecture.

The gradedness, stability and autonomy of the DFT

framework allow one to couple the cognitive architecture to

the sensory-motor system. To demonstrate this capacity we

implement and test our spatial language architecture on a

robotic platform. Importantly, we use the low-level sensory

input provided by the robot’s camera. Thus, our model deals

with the problem of extracting the categorical, cognitive

information from the low-level sensory input through the

system dynamics, not through the preprocessing of the visual

input in an ungrounded, neurally implausible way. Models

which do not directly link cognitive behavior to lower-level

perceptual dynamics risk side-stepping this difficult issue. Our

explicit connection to behavior through the robot provides a

key demonstration of sufficiency of our neural dynamic

approach and a heuristic for understanding how spatial com-

munication emerges from lower-level sensory dynamics.

In a suite of varying spatial-language tasks using everyday

objects we demonstrate the framework’s capacity for both

contextually-dependent behavioral flexibility and the seam-

less integration of spatial, non-spatial, and categorical repre-

sentations. In doing so, we draw particular attention to the time

course of these behaviors, thereby revealing the neural

dynamic roots of representational integration and behavioral

flexibility within our spatial language system. To our knowl-

edge, this is the first unified neurally-grounded architecture

that integrates these processes and behaviors. As such, our

system represents a step towards the development of a more

comprehensive, neural dynamic model of human spatial lan-

guage and embodied language processes more generally.

Flexibility and integration in spatial language

The neural dynamics of any language behavior are

immensely complex and multifaceted. To develop a con-

ceptually manageable framework, we focus on three core

aspects of spatial language that arise from its embodied

roots, namely behavioral flexibility, the integration of

spatial and non-spatial representations, and the integration

of categorical and continuous representations. The present

section considers each in turn.

The power of the spatial language system is revealed in

its broad behavioral range, from following directions

(Denis et al. 1999) and creating mental models (Taylor and

Tversky 1992) to telling stories (Levinson 2003) and

coordinating joint attention and action (Bangerter 2004,

Keysar et al. 2000, Schober 1993). Even within a single,

highly constrained environment such as a shared tabletop
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workspace, spatial language exhibits an impressive degree

of flexibility.

Consider, for example, a cluttered office desk in which a

cup of coffee sits to the right of a laptop computer. Given this

context, the human spatial language system can freely gen-

erate descriptions of object-centered relations in the scene

(i.e. spatial descriptions that select another object as a refer-

ence point). Thus, if one asks ‘‘Where is the green coffee cup

in relation to the laptop?’’ then a person with knowledge of the

scene can easily answer ‘‘To the right.’’ On the other hand, if

one asks ‘‘What is to the right of the laptop?’’ one viewing or

remembering the scene could instead respond ‘‘The green

coffee cup.’’ The production behavior in both these instances,

of course, also assumes the complementary capacity to com-

prehend the questions. Moreover, both spatial language pro-

duction and comprehension flexibly process different

reference objects and spatial terms across highly variable

visual scenes—people can use spatial language to describe

just about anything. Behavioral flexibility is thus part and

parcel of functional spatial communication.

Our second critical aspect is the integration of the fine-

grained, metric sensory-motor representations (Johnson 2008,

Gottlieb 2007) with the categorical, linguistic representations

rooted in the ‘language faculty’ (Hauser et al. 2002, Pinker

and Jackendoff 2005). To successfully index items in the

world one must map the symbols of language to the dynamic

representational states of perception. Referring to the coffee

cup, for example, assumes the ability to link information in the

visual system to words like ‘‘green’’, ‘‘cup’’, ‘‘laptop’’, and

‘‘right’’. This link is of course functionally bidirectional,

enabling us to produce language about the visible world and

map the words we hear onto a visual scene. Moreover, because

spatial language can be used to guide others’ behaviors, this

representational integration also extends into the motor pro-

cesses controlling behavior. Considered together, these

aspects highlight the need to ground language in the neural

dynamics underlying scene representations in a manner that

permits flexible manipulation of the symbolic units (for rela-

ted discussion see also Glenberg and Robertson 2000,

Barsalou 1999, Pfeifer and Bongard 2006, Glenberg 1997,

Cangelosi and Riga 2006, Harnad 1990).

Our third point of focus is the integration of spatial and non-

spatial features. Consider again our description of the green

coffee cup that sits to the right of the laptop. In this case, the

individual must process both the explicit spatial term ‘‘right’’

and the non-spatial descriptor ‘‘green’’ to identify and use the

landmark. This link between categorical spatial relations

(e.g. right) grounded in metric space and non-spatial percep-

tual features (e.g. green) enables one to reference landmarks

within the visible (or remembered) environment using non-

spatial object characteristics such as color, texture, or size. The

ability to integrate different features is thus central to gener-

ating and comprehending spatial descriptions.

Embodied cognition supporting neural dynamic

concepts

To this point, we have identified three critical aspects of

spatial language that a viable neural dynamic approach must

address. As we previously noted, extant spatial language

models have addressed a number of important dimensions

that speak to the embodiment of spatial language includ-

ing attention, landmark shape, and functional features

(e.g. Coventry et al. 2005, Carlson 2006, Regier and Carlson

2001). Nonetheless, no model to date has brought the

detailed aspects of behavioral flexibility and representational

integration together within a single framework.

The limits of current spatial language theories arise from

the failure to provide a neurally-grounded account of real-

time spatial language behaviors and their roots in spatial

scene representations. Consequently, current theories typi-

cally overlook some questions fundamental to understanding

representationally complex, embodied spatial communica-

tion. For example, how do neurally-grounded scene repre-

sentations develop over time on the basis of sensory

information? How do the dynamic processes supporting

scene representation shape the time course of spatial lan-

guage behaviors? How do context-specific inputs like spatial

terms and visible objects dynamically structure the integra-

tion of the multiple components supporting behavioral

flexibility? Developing a neurally grounded, formalized

framework is a key step to answering such questions.

What are the concepts underlying such a neural frame-

work? The first such concept is autonomy. Autonomy

means that neural processes unfold continuously in time on

the basis of both past and present neural states and past and

present sensory information. As a result, the autonomous

cognitive systems are sensitive to input, but not purely

input-driven (Sandamirskaya and Schöner 2006).

Autonomy is critical for a cognitive system because it

provides the basis for structuring behavior in a context-

dependent manner. To be effectively adaptive, cognitive

systems must be able to smoothly flow from decision to

decision and action to action in accord with both the cur-

rent environment and the behavioral context (Schöner

2008). Autonomy makes this flexible and continuous

integration of goals, decisions, and actions within an

embodied system possible. Without autonomy, a neural

dynamic system would not be able to modulate the multi-

dimensional integration supporting this flexibility and

would instead more closely approximate input-compute-

output processes or stimulus-response associations.

Representational gradedness is the second neural con-

cept central to describing cognitive processes grounded in

the sensory-motor system. A graded representation of a

behavior or percept is defined over one or several contin-

uous feature dimensions which constitute the behavior or
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percept linked to the motors or sensors. Within an auton-

omous neural dynamic system, the computations taking

place over these graded representations may be described

using concepts from non-linear dynamical systems (Erl-

hagen and Schöner 2002). The neural dynamics of move-

ment preparation, for example, may be characterized

according to non-linear signatures emerging over the con-

tinuous dimensions of reaching amplitude. Low-level

visual processing, on the other hand, may be described by

the neural dynamics of spatial and non-spatial metric fea-

tures (e.g. color) available in the visible scene. Importantly,

metric features have also been shown to shape spatial

language behaviors (Lipinski et al. 2009, Regier and

Carlson 2001). As a result, such graded, metric features,

which are critical to sensory-motor dynamics (Bastian

et al. 1998, 2003, Erlhagen and Schöner 2002) and non-

linguistic decision processes (Johnson 2008, Johnson et al.

2009), may also be used to probe the neural dynamics of

spatial language.

The successful integration of graded sensory-motor rep-

resentations with the spatial language system depends on the

notion of stability, a core principle of dynamical systems

thinking and the third neural concept we emphasize. Sta-

bility is the capacity of a dynamical system to resist change.

It thus plays a central role in the neural dynamics of cog-

nition because it provides for consistent behavior in the face

of neural or environmental noise. In the absence of stability,

graded representations grounded in the sensory-motor sys-

tem would be subject to continual shifts arising from

inherently noisy neural states. Stability is therefore a pre-

requisite for the grounding of sustained cognitive behavior

on neural dynamic states linked to sensory data (Schöner

2008).

Observe, however, that to be adaptive, autonomous

dynamical systems must also be able to destabilize and form

new stable states as the contexts and behaviors demand. This

balance between stability and instability is fundamental to

behavioral flexibility and is the prime challenge for for-

malized theories of autonomous embodied cognition.

The Dynamic Field Theory incorporates each of these

concepts and therefore provides the representational foun-

dation of our proposed framework. We introduce this the-

ory in the following section.

Methods

Dynamical field theory (DFT)

Dynamical Field Theory is a neural dynamic approach to

embodied cognition in which cognitive states are repre-

sented as distributions of neural activity defined over

metric dimensions. These dimensions may represent

perceptual features (e.g., retinal location, color, orienta-

tion), movement parameters (e.g., heading direction, end-

effector velocity) or more abstract parameters (e.g., loca-

tion relative to an object, visual attributes of objects like

shape or size). These metric spaces are continuous, repre-

senting the space of possible percepts, actions, or objects

and scenes. They are endowed with a natural metric which

represents perceptual or motor similarity.

Spatially continuous neural networks, or neural fields,

were originally introduced as approximate descriptions of

cortical and thalamic neuroanatomy based on the spatial

homogeneity of cortex along its surface (Wilson and Cowan

1973). The principle of topographic mapping of feature

spaces onto cortical surfaces (Kohonen 1982) has been

evoked to extend the notion of neural fields to dimensions

beyond the neuroanatomical ones (Wersing et al. 2001) (see

Basole et al. 2003 for critical discussion). More recently,

however, the notion of Distributions of Population Activation

shows how neural fields may describe neural representa-

tions of metric dimensions independently of neuroanatomy

(Erlhagen et al. 1999, Bastian et al. 2003, Cisek and Kalaska

2005). Each neuron contributes its tuning curve to the rep-

resentation of a feature dimension, weighted with its current

firing rate. As a result, neurons are not localized within the

neural fields, but distributed according to the specificity of

their response. A single, localized peak in such a distribution

of population activation represents a specific value of the

metric dimension, but potentially involves broad populations

of neurons that may be spatially distributed. The population

vector reflects both the specified metric value and the total

amount of activation (Georgopoulos et al. 1986).

Neural fields are recurrent neural networks whose tem-

poral evolution is described by iteration equations. In

continuous form, these take the form of dynamical systems.

The mathematics of dynamical neural fields was first ana-

lyzed by Amari (1977) and much modeling has since built

on the original Amari framework (Schneegans and Schöner

2008) which we briefly review here. The activity distri-

bution of a neural field u(x, t), defined over a continuous

metrical space X; x 2 X , evolves in time according to

s _uðx; tÞ ¼ �uðx; tÞ þ hþ Iðx; tÞ

þ
Z

f
�

uðx0; tÞ
�
xðx� x0Þdx0:

ð1Þ

The rate of change, _uðx; tÞ, of the field’s activation at a

time, t, and a field site, x, is proportional to the negative of

the current activation level, u(x,t). This provides the

fundamental stabilization mechanism. Added to this are a

negative resting level h\0, inputs from sources outside the

field, I(x, t), and inputs from other sites, x0, of the same

neural field. This last term represents lateral neural

interaction and is characterized by excitatory coupling
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among field sites that are close to each other and inhibitory

coupling across larger distances:

xðDxÞ ¼ cexc exp
ðDxÞ2

r2
exc

" #
� cinh exp

ðDxÞ2

r2
inh

" #
ð2Þ

(where Dx ¼ x� x0 and rexc \ rinh).

Only sites with sufficient activation contribute to this

lateral interaction as described by the sigmoidal non-

linearity:

f ðuðx; tÞÞ ¼ 1

1þ e�buðx;tÞ ; b[ 1 ð3Þ

Thus, while activation stays below the threshold of this

sigmoid (defined as the zero level of activation), interaction

plays a minor role in the evolution of the field, which is

dominated by input. This is true for sufficiently weak

external inputs I(x, t)\ h. With increasing external input,

activation of the field, u(x, t), surpasses the threshold

and interaction begins to engage at locations at which

f(u(x, t)) [ 0. This induces a bifurcation in the field

dynamics, the so-called detection instability (Schöner 2008).

Beyond this instability, localized peaks of activation are self-

stabilized: activation is stabilized against decay by local

excitatory interaction and stabilized against diffusive spread

by global inhibitory interaction. The resulting localized peak

of activation is a unit of representation in the Dynamic Field

Theory approach to cognition. When multiple fields are

coupled, as will be the case in the model developed here, the

detection instability is critical also for the propagation of

activation from one field to another. The extent to which such

peaks are sensitive to further changes of input depends on the

strength of interaction. Fields with strong interaction support

self-sustaining peaks which maintain activation after the

complete removal of the external input that initially induced

them. Such peaks are robust to new distractor input and

comprise a form of working memory (see e.g. Schutte and

Spencer 2009, Johnson et al. 2009, Simmering et al. 2008,

Spencer et al. 2007).

From spatially continuous fields, categorical states may

emerge. This is based on the same mechanism as the

detection instability which may amplify small inhomoge-

neities in the field into macroscopic peak states (Schöner

2008). Assume, for instance, that a few locations in a field

are frequently activated. Generic learning mechanisms may

change the neural dynamics such that these field locations

are more excitable than other, less frequently activated

locations. If a broad input is now applied to the field, one of

the more excitable field locations may be the first to be

pushed through the threshold at which interaction engages.

A full-fledged self-stabilized peak will develop at that

location, which then prevents additional peaks from being

generated at other locations through inhibitory interaction.

This peak reflects categorical behavior, because the field

location depends on the learned inhomogeneities in the

field, not on the spatial structure of the inducing input.

In this paper, we will not address the learning mecha-

nisms through which learned inhomogeneities in the field

arise. Instead, we will use an effective dynamical

description of such categorical behavior by introducing

discrete dynamical neurons with self-excitatory interaction,

which represent the activation at excitable field sites. Given

sufficient input to such neurons, a detection decision is

made at which the neuron switches to an activated state.

This state can stabilize itself against weaker input in a

bistable regime. Conversely, a discrete neuron may provide

localized input to an activation field exactly like a localized

peak of activation in a field does. Dynamical Field Theory

thus provides a framework for integrating metrically con-

tinuous and metrically discrete categorical representations.

The spatial language architecture

Spatial language is a complex behavior that draws on

numerous cognitive processes including vision, spatial cog-

nition, and language. Spatial language behaviors therefore

depend on numerous cortical and subcortical regions. Com-

prehending or producing spatial language about a visual

scene, for example, not only involves a neural scene repre-

sentation that emerges from the retinal image but also the

integration of long-term memory about objects and their

features and the neural representation of spatial semantic

terms (e.g. right, above, etc). Critically, these semantics must

be applied to the current scene and they are often aligned with

a reference object (Landau and Jackendoff 1993). Not sur-

prisingly, the neural populations accomplishing these various

functions are widely distributed over the cortex with V1-MT

processing visual features (Grill-Spector and Malach 2004),

the parietal cortex supporting spatial representation and ref-

erence frame transformations (Andersen 1997, Colby 1998,

Crowe et al. 2008), and the frontal, inferotemporal, and the

temporal-occipital-parietal junction regions supporting spa-

tial language (Damasio et al. 2001, Wallentin et al. 2005).

Our model is similarly distributed and contains several

interconnected modules each maintaining a unique func-

tionality that affects the dynamics of the other modules.

The feature-space fields (Fig. 1a) are driven by the visual

input and represent the locations and features of objects.

The reference field (Fig. 1b) represents the reference object

location, the point relative to which spatial terms are

defined. The spatial semantic templates (Fig. 1c) express

the semantics of the spatial terms. These templates are

aligned with the location of the reference object by the

‘‘shift’’ mechanism (Fig. 1d) and then integrated with the

visual, feature-based object representations in the spatial

semantic neural fields (Fig. 1e). The language terms
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specifying features (‘‘red’’, ‘‘green’’, ‘‘blue’’) or spatial

terms (‘‘left’’, ‘‘right’’, ‘‘above’’, ‘‘below’’) are represented

by bi-stable dynamical nodes, which are interconnected

with the neural fields of the model. These connections

express the semantic meaning of the particular term.

Although our network is distributed, each functional

component is based on the same dynamical neural field

principles. This creates a functionally and theoretically

coherent spatial language architecture that not only

respects core neural principles but which can also be linked

to real-world sensory information and behavior.

To provide the most rigorous test of our embodied

approach, we implement the model on a robot that is

equipped with a vision system. In doing so, we directly link

the sensory and motor properties of the robot to the internal

neural dynamics of the system, bringing this robotic

implementation in line with known principles of the human

nervous system.

The sections below detail these functional modules and

the robotic implementation.

Representing locations and colors

When using spatial language, people often refer to spatial

relations between objects. In ‘‘The toaster is to the right of the

sink’’, for example, the toaster’s location is defined relative

to the sink. To either produce or act on this spatial infor-

mation, both the target object (the toaster) and the reference

object (the sink) must be identified in the visual scene. The

image of the visual scene on our retina is first processed by

the early visual regions of cortex, where the perceptual fea-

tures are extracted and retinotopic feature maps are built

(Gardner et al. 2008, Grill-Spector and Malach 2004). In the

DFT, these feature maps are modeled as a set of feature-

space fields. Each site of these dynamical fields is sensitive to

a particular value of a visual feature at a certain retinotopic

location.

In the present work we focus on color as the visual

feature. Color—as with other local features such as ori-

entation and texture—is known to contribute to represen-

tations in early visual processing (Gegenfurtner 2003) (see

also Faubel and Schöner 2008 for a comprehensive DFT

approach to multi-dimensional object representation). As a

low-level feature with an underlying metric, color can be

also easily mapped onto a continuous dimension of a neural

field.

The color-space neural field is a three-dimensional

dynamical field F(x, y, c; t), each site of which responds to

a color, c, at a certain location on the retina, (x, y). The

activity distribution in this field thus represents the color

distribution in the visual scene. A localized blob of a cer-

tain color in the scene can potentially give rise to an

activation peak in the color-space field. Such a peak is a

dynamic object representation grounded in the object’s

graded location and color distribution.

In our implementation, the color dimension is resolved

sparsely, because we require only a few colors to represent

the objects used in our demonstrations. The three-dimen-

sional dynamical field is therefore implemented as a stack

of six two-dimensional dynamical fields. Each of these

color-space fields is a two-dimensional field whose sites

respond to the spatial position of a particular color. These

fields are globally inhibitory such that an activation peak

within one field leads to a uniform inhibition of the

remaining color-space fields.

The visual input to the color-space fields is provided by

a robotic camera. The camera image here plays a role

similar to that of retinal images in human cognition. The

process of extraction of feature maps from the retina

images is substituted by a color extraction algorithm. The

result is a distribution of colors defined over the space of

the image plane. These distributions correspond roughly to

the retinotopic feature maps found in early visual pro-

cessing (Gardner et al. 2008). In particular, the color is

extracted from the camera image as the hue of each pixel in

the hue-saturation-value (HSV) color space. This hue value

is binned according to one of six equidistant hue ranges

(representing the basic colors red, orange, yellow, green,

blue, and violet) and provides input to the corresponding

color-space field. The input into the color-space field

location matches the pixel’s image location. The pixel’s

intensity (value) determines the strength of this input.

Figure 2 illustrates this process. The visual scene here

consists of three objects: a green tube, a blue wire-roll and

a red plastic apple (Fig. 2a). They provide inputs to the

color-space fields (mainly to ‘‘green’’, ‘‘red’’, and ‘‘blue’’

Spatial semantic

“to red”

“to green”

“to
 blue”

Spatial
templates

 b
Feature-space

a

e

 c
d

Reference

f

g

i 

Fig. 1 Overview of the neural dynamic spatial language architecture
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fields respectively) at positions corresponding to the loca-

tions of the objects in the image (see Fig. 2b). These

localized input activations to the color-space fields are

subthreshold. This means that when the input is summed

with the negative resting levels, the activation at the

specified field sites remains negative. Thus, the fields

produce no output and no activation is propagated to other

sites in the fields or to other parts of the architecture. When

a localized activation surpasses threshold, however, output

is produced that is then passed to other field sites and other

parts of the model. This activation plays a key role in the

dynamic structuring of activity in these other elements and,

ultimately, the generation of task-specific linguistic and

motor behaviors (see below).

Representing color terms

When people refer to objects in the world, they link discrete

linguistic representations to the graded, metric features of the

visible world. The exact nature of these connections in cortex

has yet to be identified, however (although for work in this

direction see Martin et al. 1995, Goldberg et al. 2006). In our

model, we represent language terms by simple bi-stable

dynamical nodes within a winner-take-all network of com-

peting nodes.

Each discrete node is reciprocally linked to one of the

color-space fields. The discretization of the three-dimen-

sional color-space field thus provides the linguistic cate-

gorization along the color dimension. Such linguistic

mappings between the discrete linguistic and the underly-

ing continuous feature maps are hypothesized to emerge

from experience over development. Because we are aware

of the categorization properties of the neural fields (Wil-

imzig 2009) and emergence of the color categories is not of

interest for this paper, we allow this simplification here.

Color-term nodes may become active through external

linguistic input. The color-term node’s activation is further

propagated along its link to the color-space field. Figure 2c

illustrates the linguistic boost effect, in which the user-

specified linguistic input ‘‘blue’’ activates the ‘‘blue’’ color-

term node, thus raising the resting level of the ‘‘blue’’

color-space field and pushing the activation there beyond

the detection threshold. When this threshold is surpassed,

the active sites in the field engage in lateral interactions.

This induces a localized activation peak whose location

corresponds to that of the target object in the camera image.

In addition to linguistic input, a peak in a color-space

field can also be driven by positive activation coming from

other parts of the cognitive architecture. Because the color-

term nodes are reciprocally linked to the color-space field,

such a peak would increase the activation of the linked

color-term node and trigger the generation of a descriptive

color term. The color-term nodes thus provide the means of

generating a specific color term description as well as

processing linguistic input from the user.

Reference field

To describe a target object location by reference to another

object (e.g. ‘‘The toaster is to the right of the sink’’), the

reference object location must also be represented in a

feature-dependent manner. The reference field (Fig. 1b)

serves this role in our framework. In our implementation,

the reference field is a two-dimensional neural field

(Fig. 3c) that receives visual input (Fig. 3a). This input is

modulated by the reference color-term node, which speci-

fies the color of the reference object. The color information

is then extracted from the camera image in a manner

similar to that of the color-space fields (‘‘Representing

locations and colors’’); only those pixels with the color

specified by the reference color-term node serve as input to

the reference field.

The reference field is always in the ‘‘detection’’ mode.

This means that an object of the specified color always

induces an activation peak in this field. This peak, which

represents the location of the reference object in the image,

“red” “green” “blue”

“red” “green” “blue”

color

color

Visual input

user input
“blue”

a

b

c

Fig. 2 a The visual scene containing three objects—green tube of

creme, blue tape-roll and a red plastic apple—provides input to the

color-space fields (b three fields shown here). c Specification of the

blue color term activates the blue color-term node, raising the resting

level of the blue color-space field. The peak of positive activation in

the blue color-space field represents the location of the blue object in

the image
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is stabilized by the interactions in the field. Nonetheless, it

is also updatable if the reference object moves.

Spatial semantic templates

Spatial language terms typically represent prototypical

regions (Hayward and Tarr 1995, Logan and Sadler 1996,

although see also Coventry et al. 2005). Thus, saying

‘‘left’’ usually highlights the same part of the visual scene

for English speakers. These semantically specified spatial

regions, or ‘‘templates’’ (Logan and Sadler 1996), may be

described by weight matrices in which regions corre-

sponding to prototypical instances of the term have higher

weight strengths. Regions which provide a poorer fit with

the spatial term, on the other hand, have lower weights.

In the present architecture, the precise connection

weights between the four spatial term nodes (‘‘left’’,

‘‘right’’, ‘‘below’’, and ‘‘above’’) and the spatial fields are

based on a neurally-inspired approach to English spatial

semantic representation (O’Keefe 2003). These connection

weights are defined by Gaussian distributions in polar

coordinates (see Eq. 4 and parameter values in ‘‘Appen-

dix’’). When viewed in Cartesian coordinates as applied

here, they take on a tear-drop shape (see Fig. 3b):

M ¼ exp �ðq� q0Þ2

2r2
q

" #
exp �ðh� h0Þ2

2r2
h

" #
ð4Þ

Spatial semantics alignment

As previously mentioned, spatial terms are often used

in conjunction with a reference object (see ‘‘Reference

field’’). Consequently, spatial semantic templates must be

aligned with the reference object location. However,

objects are initially represented in the retinotopic rather

than object-centered reference frame. The spatial templates

must thus be dynamically coupled with the space of the

visual scene to permit the flexible use of spatial descrip-

tions that are anchored in the world.

Although the exact neural mechanism of this reference

frame transformation process has yet to be identified, dif-

ferent solutions are possible (Pouget et al. 2002, Lipinski

et al. 2009). In the present work we solve this problem

through a spatial template ‘‘shift’’ mechanism (Fig. 1d)

which aligns the semantic templates with the position of

the reference object. The semantic templates are only

allowed to contribute to the spatial semantic field dynamics

(see below) after this has occurred.

We implement this ‘‘shift’’ or ‘‘alignment’’ of spatial

semantics as a convolution of the output of the reference

field, which holds the reference object position, with the

semantic template functions. Because the reference object

is represented by a localized activation pattern, the con-

volution centers semantic weights on the reference object

location. The shift of the semantic weights can thus be

viewed as a modulation of the synaptic connection strength

between a spatial term node and the spatial semantic field

according to the activation in the reference field. Fig. 3d

shows an example of this spatial semantic alignment in

which the semantic weights are centered on the location of

the green reference object.

Spatial semantic fields

For the system to process spatial language about the visual

scene, spatial information about the target object and the

aligned spatial templates must be integrated. In our model,

the spatial semantic fields provide this function (Fig. 1e).

Spatial semantic fields are neural arrays with weak

dynamical field interactions (see parameter values in the

Attachment). Each spatial semantic field is associated with

one spatial semantic template. Each spatial semantic field

therefore represents a single spatial relation (‘‘left’’,

‘‘right’’, ‘‘above’’, or ‘‘below’’ in the present implementa-

tion, Fig. 3d).

The spatial semantic fields each receive activation from

the color-space fields which specify the target location. By

blending this target location information from the color-

space fields with the aligned semantic weights, the spatial

semantic fields integrate the target and spatial term infor-

mation, thereby linking spatial term knowledge to the

visual scene.

In addition, each spatial semantic field is also recipro-

cally linked to a categorical spatial-term node, analogous to

the color-term nodes (‘‘left’’, ‘‘right’’, ‘‘above’’, or ‘‘below’’

“left” “right” “below” “above”

“to green”

left right below above

Visual input

Semantic templates

b

dc

a

Fig. 3 Reference field and spatial semantics alignment. a Shows the

camera image containing three objects (green toothpaste tube, blue
wire roll, red plastic apple). b Shows the spatial distribution of the

weight strengths for each of the four spatial semantic terms (lighter
blue regions indicate greater weight). c Shows activation in the two-

dimensional reference field. The activation peak (yellow blob)

corresponds to the green object location identified as the referent in

this example. d Depicts the spatial semantic fields with input from the

semantic templates (b) aligned with the reference object location (i.e.

the light blue region in the right spatial semantic field represents

region to the right of the green reference object)
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node; see Fig. 1g). If the activation within a spatial

semantic field is sufficient, it will trigger the activation of

the linked node, signaling the selection of one of the four

represented spatial categories. In addition, this node can

also receive external linguistic input. This linguistic acti-

vation of a spatial term boosts the activation of the linked

field and can thus contribute to the dynamics of the system.

Linguistic input and motor output

To communicate with the robot, we use a graphical user

interface (GUI), not speech input. Nevertheless, the

implemented interface does incorporate some properties of

the real-world communication. In particular, the order of

the linguistic inputs and the timing interval between them

are arbitrary rather than fixed. Moreover, the model inte-

grates these GUI inputs continuously in time, just as the

human nervous system continuously integrates linguistic

inputs. The timing of the input and its contribution to the

internal dynamics are therefore flexibly determined by the

user. For this reason, sustaining this characteristic flexi-

bility of natural language is a non-trivial property of the

spatial language framework.

To generate a motor behavior, we implemented a

dynamics controlling the camera-head configuration (pan

and tilt; see ‘‘Appendix’’). Attractor dynamics are known

to be a viable model for many human motor behaviors

(Erlhagen and Schöner 2002). The dynamical system

implemented here has an attractor that is effectively set

by the localized activation peak at the target object

location (as represented in the color-space fields), forcing

the robot to turn the camera head and center the attended

object in the corresponding field. This coupling of the

spatial language architecture to motor behavior further

highlights the power of the neural dynamic framework to

integrate higher- and lower-level processes within a single

system.

In generating this motor behavior, it is important to note

that such sensor movements change the spatial relations

between the objects out in the world and the robot’s sen-

sory surface (image plane). Yet, these very spatial relations

continuously structure the camera movement dynamics.

Consequently, moving the camera potentially disrupts the

visual inputs on which the contextually-adaptive camera

movements depend. For this reason, camera movements in

our dynamically integrated system provide a rigorous test

of the model’s stability properties.

Results: demonstrations on a robotic platform

Our goal is to model the neural dynamic processes sup-

porting flexible spatial language behaviors within a unified

system. Such behaviors include generating a spatial

description of an object location (e.g. ‘‘The apple is to the

right of the toaster’’) from visual input and localizing

objects in a scene based on a linguistic description.

Because our robotic implementation links a formalized

neural dynamic model with visual input, we can test the

real-time behavioral flexibility of our model through lin-

guistically and visually varied dialogues. We here detail

our model’s performance in five such scenarios.

Each demonstration combines real-world visual input

with user-specified linguistic input provided through the

GUI. The robot’s task is to either (a) select a descriptive

color or spatial term that matches the described target

object or (b) build a peak at the described target location.

Thus, in Demonstration 1a, for example, we ask ‘‘Where is

the blue object relative to the green one?’’ and the robot

must choose the correct spatial term. In Demonstration 4b,

on the other hand, we ask ‘‘Where is the red object to the

left of the blue object?’’ and the robot must select the

correct object by building a peak at the correct location and

centering that object in the visual image.

In providing the linguistic input through the GUI, it is

important to note that appropriate selection decisions do not

in any way depend on the sequence or the timing intervals in

this input. Indeed, as we show below, the autonomous

neural dynamics of our system are at once continuously

sensitive to new linguistic inputs but nonetheless behav-

iorally robust with respect to the fine-grained timing

details—getting the right answer does not depend on careful

input timing. In this vein, we further observe that the localist

nodes activated by these linguistic inputs can be used in

different ways in different tasks. In some instances, node

activation drives activity in a continuous field. In others,

node activation represents a decision driven by the internal

neural dynamics. Because these nodes can be flexibly

operated upon, they provide key symbolic functionality.

Importantly, the flexibility in timing of the human-robot

interaction is achieved by the attractor dynamics. Being in

an attractor state, the system can sustain variable time

intervals between user actions. Keeping in mind that the

real-time behaviors and interaction with the user are central

in our work, we measure time in our demonstrations in

physical units (seconds) rather than the more conventional

simulation time-steps. Because the system relaxes to an

attractor state rapidly—as guaranteed by the choice of the

time-constant of the dynamics s & 2.5 ms—the timing of

the relevant events in the system is more sensitive to the

real-world processes than to the computational power of

the computer hardware. To maintain consistency across the

demonstrations, we kept this notation even when showing

the cascade of instabilities leading to a single decision in

the framework when the user input and the perceptual input

did not change.
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Demonstrations 1a and 1b: the neural dynamics

of ‘‘where’’ and ‘‘what’’

One basic function of spatial language is to describe where

an object is. Another basic function is to talk about what

object occupies some described space. Our architecture

dynamically integrates spatial and feature-specific lin-

guistic input through metric visual information, giving rise

to two basic interactive pathways: a ‘‘Where’’ pathway and

a ‘‘What’’ pathway. Our model therefore directly addresses

these two basic functions.

When probing the ‘‘Where’’ pathway in Demonstration

1a, the user specifies the target and reference objects and the

robot provides a descriptive spatial term response (i.e. a

‘‘Where’’ response). For instance if the user specifies that the

target object is blue and the reference object is green, this

would be analogous to asking ‘‘Where is the blue object

relative to the green one?’’ and expecting a descriptive spa-

tial term in response. When probing the ‘‘What’’ pathway in

Demonstration 1b, on the other hand, the user specifies the

spatial term and the reference object and the robot selects a

color term that describes the target object (i.e. a ’’What’’

response). For example, if the user specifies that the refer-

ence object is blue and the target is to the right of this referent,

this would be analogous to asking ‘‘What is the color of the

object to the right of the blue one?’’ and expecting a

descriptive target color response. Note that the specification

of the reference object’s color is obligatory in these and the

following scenarios (although we could use the default ref-

erence point in the center of the working space otherwise).

We examine the dynamics of these two scenarios below

by combining the linguistic input with a visual scene of three

objects—a green tube, a blue wire-roll and a red stack of

blocks—approximately aligned horizontally (see Fig. 4a

and 6a). By integrating linguistic input, visual input, and both

spatial and non-spatial feature values in two different tasks,

these demonstrations provide the conceptual building blocks

for the additional tests that follow. To our knowledge, they

also represent the first evidence of behavioral flexibility

within a unified, neurally-grounded spatial language model.

Demonstration 1a: the ‘‘where’’ pathway

In this demonstration, we ask ‘‘Where is the blue object

relative to the green one?’’, by selecting the color blue for the

target object and green for the reference in the user interface.

Figure 4a shows the presented visual array. The robot should

select the spatial term ‘‘right’’. The plots in Fig. 4 show the

neural fields activations just before this response.

The task input first activates the color-term node ‘‘blue’’.

The activation of the ‘‘blue’’ color-term node raises the

resting level of the ‘‘blue’’ color-space field. This uniform

activation boost coupled with the camera input from the blue

object induces an activation peak in the field at the location of

the blue object (see ‘‘blue’’ color-space field Fig. 4c). Next,

the task input activates the ‘‘green’’ reference color-term

node. This causes the green camera input to enter the refer-

ence field and induces an activation peak in the reference

field representing the green item location (see Reference

field, Fig. 4b). Given our emphasis on behavioral flexibility,

we reiterate that there are no restrictions on the serial

ordering of reference and target object color information in

this scenario nor are there any constraints on the timing

interval between these linguistic task inputs: our framework

is completely flexible in this regard (see also Demonstrations

3a and 3b for probes of linguistic sequencing).

Once the target activation peak is established, the

localized target activity is then transfered to the four spatial

semantic fields (Fig. 4d). In addition to this vision-based

input, the spatial semantic fields also receive input from the

spatial semantic templates. Critically, these spatial patterns

are shifted to align with the position of the reference object.

Consequently, the target location activation overlaps within

the ‘‘right’’ spatial semantic field with the semantic tem-

plate (see large arrow in the ‘‘right’’ spatial semantic field,

left right abovebelow

“red” “green” “blue”

“left” “right” “below” “above”

“ to green”

user input

user inputvisual input
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Fig. 4 Demonstration 1a. Neural fields activity just before response

generation. The robot answers the question ‘‘Where is the blue object

relative to the green one?’’ by selecting right. a Shows the camera

image (green toothpaste tube, a blue wire roll, and a red plastic
apple). b Shows the reference field activation corresponding to the

green reference object selected by user. c Depicts the color-space

field activations induced by the current scene. The blue color-term

node input specifying the target object uniformly raises the activation

of the entire blue color-space field, leading to an activation peak at the

blue object location. d Shows the spatial semantic field activation

profiles after the shift of semantic templates to the reference object

location. The active regions in the color-space fields propagate

activity to the spatial semantic fields. This leads to a localized positive

activation in the right field (red arrow) at the location of the blue
target. This increases activity of the linked node, triggering the

robot’s answer right
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Fig. 4d). This overlap ultimately leads to the activation of the

associated ‘‘right’’ spatial-term node and thus the selection of

the correct answer, ‘‘right’’, in the user interface.

Figure 5 makes the time course of this task in the rel-

evant dynamic fields more transparent. Figure 5a presents

the time course of the color-term node activation. The

ellipse denotes the time of the detection instability after

which the node activity is propagated to the ‘‘blue’’ color-

space field (approx. time = 1.9 s; see downward arrow).

Figure 5b shows the time course of the ‘‘blue’’ color-space

field’s activation projected onto the horizontal axes of the

image plane. When the field receives the uniform activa-

tion boost from the active ‘‘blue’’ node (approx. time =

1.9 s), the activation in the field passes through a detection

instability (ellipse) and begins passing input into the spatial

semantic fields (see downward arrow). Within the ‘‘right’’

semantic field (see Fig. 5c), this input combines with the

‘‘right’’ spatial semantic profile which pushes activity

through the detection-instability (see ellipse, Fig. 5c).

Consequently, the ’’right’’ spatial semantic field then

increases the activation of the ‘‘right’’ spatial-term node

(red line, Fig. 5d), eventually moving it through the

detection instability and triggering generation of the term

‘‘right’’ in the user interface.

Demonstration 1b: the ‘‘what’’ pathway

In this demonstration, we ask ‘‘What is the color of the

object to the right of the blue one?’’ by selecting the spatial

term ‘‘right’’ and the ‘‘blue’’ reference object color in the

user interface. Figure 6a shows the presented visual array.

The robot should select the color term ‘‘red’’. The plots in

Fig. 6 show the activation profiles just before the response.

The task input first activates the spatial-term node

‘‘right’’ and then the reference object color ‘‘blue’’. The

reference object specification ‘‘blue’’ causes the blue

camera input to enter into the reference field and induces

an activation peak at the blue item location (Fig. 6b).
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Fig. 5 Demonstration 1a time course. a Shows the color-term nodes

activity over the trial (the horizontal axis represents time, the vertical
axis represents activation). The blue input indicates the time point of

linguistic input into the node. This increases activity of the blue color-

term node (red line), causing a detection instability (ellipse) and

activity propagation from the blue node to the blue color-space field

(downward arrow). b Depicts the time course of the projection of the

blue color-space field activity onto the horizontal axis over the trial.

Along the vertical axis of b, the lower portion corresponds to the

leftmost image region, upper portion the rightmost image region.

When activity in the blue color-space field reaches the detection

instability (ellipse), that field passes activation into the spatial

semantic fields (downward arrow). c Depicts the time course of the

right spatial semantic field with activity projected onto the horizontal
axis in the same manner described for (b). Color-space field activity

leads to a localized activation profile for the blue object location

(middle portion of field). Once activity surpasses the detection

instability (ellipse) it propagates activation to the linked right spatial-

term node. d Depicts the activation profile for the spatial-term nodes.

The right spatial semantic field activity boosts the activity of the right
node (red line), pushing it through the detection instability (ellipse),

triggering the response. Smaller arrows indicate activity flow in the

direction opposite to that of the dominant flow of the task. We

measured time in seconds to maintain consistency across all plots in

the present work. Here,1s &4 �103 integration time-steps. xsp is the

horizontal axis of the image plane
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The activation of the ‘‘right’’ spatial-term node raises the

resting level of the ‘‘right’’ spatial semantic field. This

homogeneous boost creates a positive activation in this

field to the right of the blue reference object once the

reference information is given (see ‘‘right’’ spatial semantic

field, Fig. 6c). This spatially-specific activation is then

input into all color-space fields. This raises activation at all

those color-space field locations that lie to the right of the

reference object (see lighter blue regions, Fig. 6d). Criti-

cally, this spatially-specific activation boost overlaps with

the localized input from the red object in the visible scene.

This overlap leads to the development of an activation peak

in the ‘‘red’’ color-space field (see large arrow in the ‘‘red’’

color-space field, Fig. 6d). This stabilized peak subse-

quently activates the associated color-term node, triggering

the correct description of the target object, ‘‘red’’.

Figure 7 details the time course of this task. In Fig. 7d the

time course of the ‘‘right’’ spatial-term node (red line) shows

increased activation from the user input and the subsequent

movement through the detection instability (ellipse,

Fig. 7d). At this point the node begins to pass activation to

the ‘‘right’’ spatial semantic field (upward arrow, Fig. 7d)

thereby uniformly boosting the entire field. This spatial

semantic field then passes through the detection-instability

bifurcation (ellipse, Fig. 7c) and begins to pass activation to

the color-space fields (see upward arrow into ‘‘red’’ color-

space field, Fig. 7b). The spatially-specific activation com-

ing into the ‘‘red’’ color-space field then sums up with the

localized red object activation to produce a positive activa-

tion. The field’s activity thus moves through the detection

instability (ellipse, Fig. 7b) to drive the activation and ulti-

mate selection of the ‘‘red’’ color-term node (approx. time =

2.6 s, Fig. 7a).

Demonstrations 2a and 2b: prototypical

and non-prototypical spatial relations

Demonstrations 1a and 1b illustrated the basic model

behaviors, selecting either a descriptive spatial term or a

color term according to the combined visual and linguistic

input. This is the first demonstration of behavioral flexibilty

within a single, neurally-grounded spatial language model.

In both cases, however, the target object locations corre-

sponded to perfect examples of the selected spatial terms.

Empirical spatial language research, however, indicates

that deviation from such prototypical spatial relations can

influences spatial language decision processes (e.g. Hay-

ward and Tarr 1995, Carlson and Logan 2001, Carlson-

Radvansky and Logan 1997). Demonstrations 2a and 2b

explore the dynamic consequences of deviating from these

prototypical semantic regions.

In both Demonstrations 2a and 2b, we select ‘‘blue’’ as

the target object color and ‘‘green’’ as the reference object

color. The robot’s task in both instances then is to answer

the question ‘‘Where is the blue object relative to the green

one?’’. However, in Demonstration 2a, the relative target-

reference position corresponds to a prototypical ‘‘right’’

relation (see Fig. 8a). In Demonstration 2b, on the other

hand, the relation is neither perfectly ‘‘right’’ nor perfectly

‘‘above’’ (see Fig. 9a).

Figure 8 shows the Demonstration 2a activities in the

color-space fields (c),the reference field (b), and the spatial

semantic fields (d) just before the answer is given. The

spatially localized input from the robotic camera and the

homogeneous boost from the blue color-term node sum to

produce a localized activation peak in the ‘‘blue’’ color-

space field (see Fig. 8c). This localized activation is then

transferred to the spatial semantic fields. Here, it overlaps

with the ‘‘right’’ spatial term template which is aligned

with the reference object location (see Fig. 8d). The posi-

tive activation in the ‘‘right’’ spatial semantic field triggers

the activation of the ‘‘right’’ spatial-term node, consistent

with the relation in Fig. 8a.

In Demonstration 2b, we provide the same linguistic

input as Demonstration 2a, but this time shift the blue target

object into the upper region of the image (see Fig. 9a). As

a result, the target object’s spatial relation to the green
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Fig. 6 Demonstration 1b neural fields activity just before response

generation. The robot answers ‘‘What is the object is to the right of

the blue one?’’ by selecting red. a Shows the camera image (green
toothpaste tube, blue wire roll, and red plastic apple). b Shows the

reference field activation for the blue reference object. c Shows

the spatial semantic field activation following the semantic shift to the

reference object location. The right linguistic input boosts the entire

right spatial semantic field. This leads to positive activation that

propagates into those color-space field regions to the right of the

reference object (lighter blue regions, d). This region overlaps with

that of the red plastic apple in the red color-space field, leading to a

localized activation peak (d, red arrow) which triggers the red
response
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referent might be best described by a combination ‘‘right’’

and ‘‘above’’ (for related empirical results see Franklin and

Henkel 1995, Hayward and Tarr 1995). This semantic

ambiguity is captured by the two regions of positive acti-

vation in the spatial semantic fields, one in the ‘‘right’’ field

and the other in the ‘‘above’’ field (Fig. 9d). Eventually,

however, the ‘‘above’’ field wins the competition, thereby

leading to the selection of the ‘‘above’’ response.

These results detail how the shift of the target object’s

position not only changes the spatial term selected but also

shapes the time course of the decision processes. As Fig. 10

shows, the response latency between the specification of the

target object color and the selection of the spatial term is

substantially larger in Demonstration 2b (Fig. 10c, d) than

in Demonstration 2a (Fig. 10a, b). This outcome is consis-

tent with empirical findings (e.g. Carlson and Logan 2001)

showing that deviations from prototypical spatial relations

can slow spatial language decision processes. By describing

the competitive neural dynamics that can qualitatively

capture these effects, our model provides promising

grounds for addressing competitive spatial language pro-

cesses and spatial term selection across varied relations.

Demonstrations 3a and 3b: dynamic signatures

of linguistic sequencing

Demonstrations 1 and 2 support the sufficiency of our

neural spatial language framework, revealing its capacity

for behavioral flexibility and representational integration in

the context of real-world visual input. Nonetheless, it

should be pointed out that because the objects were dif-

ferently colored, they did not share any common repre-

sentational features in our model. In more complex visual

environments, however, visible objects often have many

features in common. As a result, unambiguously specifying

an object in these environments will often require the

combination of multiple descriptive terms. For example, if

one is trying to specify a given red object and there are

many other red objects in the scene, ‘‘The red one to the

right of the blue’’ may suffice whereas ‘‘The red one’’ will

clearly not.

Importantly, spoken language unfolds over time. Given

that language is continuously processed (Magnuson et al.

2007, Allopenna et al. 1998), this suggests that the sequence

of words specifying an object whose features overlap with
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Fig. 7 Demonstration 1b time course. d Shows the spatial-term node

activation over the trial (horizontal axis, seconds; vertical axis,

activation). The right input indicates the time point of linguistic input

at the start of the trial. The right node (red line) passes through a

detection instability (ellipse), boosting the right semantic field

(upward arrows). c Shows the right spatial semantic field time

course (projected onto the horizontal axis as in Fig. 5). Activity is

elevated in the region to the right of the reference object (upper

region), leading to the detection instability (ellipse) and activation

into the color-space fields (upward arrow). b Shows the activation

time course of the red color-space field (projected onto the horizontal
axis). The localized activation is elevated, leading to a detection

instability (ellipse). a Shows the color-term nodes activity, with the

red color-term node (red line) triggered by the red color-space field

activation. Smaller arrows indicate activity flow in the direction

opposite to that of the dominant flow of the task
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those of other objects in the scene will influence the

dynamics of visual-linguistic integration. Demonstrations

3a and 3b explore the integrative dynamics of sequential

linguistic input in a more complex visual environment where

target identification requires both the target color and the

spatial relation.

In these demonstrations, we present four items: a red

stack of blocks, a green tube, a blue wire roll, and a red

plastic apple (see Fig. 11a). The target object is the

red stack on the left side. The robot’s task is to identify the

object by building an activation peak at the specified target

location in the correct color-space field.

To unambiguously specify the red stack relative to the

blue roll, one must give both the target object color (red)

and the spatial relation (left). In line with natural speech,

however, we vary the sequences. Specifically, in Demon-

stration 3a, we specify the spatial term (‘‘left’’) first fol-

lowed by the color term (‘‘red’’). In Demonstration 3b, on

the other hand, the color term (‘‘red’’) comes first followed

by the spatial term (‘‘left’’). Although the complete

descriptions are logically equivalent, differing sequences

within an integrative neural dynamic model will lead to

differing intermediate dynamic states. To focus on the

dynamic consequences of these differing sequences, the

reference object information was provided beforehand and

this step is not shown.

Demonstration 3a: ‘‘left’’ followed by ‘‘red’’

In Demonstration 3a, we first present the spatial term (left)

followed by the target object color (red). This sequence

roughly corresponds to describing the target as ‘‘The one to

the left of the blue, the red one’’. The robot must build a peak

at the correct target location in the correct color-space field.

As shown in Fig. 11 (left column) specifying ‘‘left’’ first

leads to positive activation in the ‘‘left’’ spatial semantic field

(see Fig. 11e) which is then transmitted to the color-space

fields (Fig. 11d). Thus, all color-space field sites to the left of

the reference object receive additional input. This input

overlaps with the localized visual stimuli in the ‘‘red’’ and

‘‘green’’ color-space fields because those objects both fall to

the left of the referent. This gives rise to a competition

between the two objects (see competing objects, Fig. 11d).

At this point, the system dynamics are unstable and are lar-

gely driven by the visual input and its interaction with the

spatial semantics. Because the green object is larger in the

image, it maintains a slight competitive advantage over

the red stack. Consequently, a peak is eventually built in the

‘‘green’’ color-space field at the green object location (see

incorrect activation, Fig. 11d). This activation peak in turn

inhibits the competing color-space fields.

“left” “below” “above”“right”

“red” “green” “blue”

“to green”

semantics
alignment robot’s answer

user input

Visual input

a

b

d

c

Fig. 8 Demonstration 2a neural field activity just before response

generation. The robot answers ‘‘Where is the blue object relative to

the green one?’’ by selecting right. a Shows the camera image (a red
stack, a green stack, and blue wire roll). b Shows the reference field

activation corresponding to the selected green reference object

location. c Shows the color-space field activity, with the blue color-

space field boosted by the blue linguistic input specifying the target

object. This creates a localized activation profile at the blue object

location. d Shows the spatial semantic field activations which are

aligned with the green reference object location and receive input

from the active color-space field regions. Activation is highest in the

right spatial semantic field which overlaps with the blue target object

location (see big arrow, d). This overlap leads to the activation of the

right spatial node
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Fig. 9 Demonstration 2b neural field activity just before response

generation. The robot answers ‘‘Where is the blue object relative to

the green one?’’ by selecting the spatial term ‘‘above’’. The objects

and the linguistic input are the same as that of Demonstration 2a but

the blue target object location is shifted upwards in the image.

a Shows the camera image (red stack, green stack, and blue wire roll).
b Shows the reference field activation for green reference object.

c Shows the color-space field activity, with the blue color-space field

boosted by the blue linguistic input. This creates a localized activation

profile at the blue object location. d Shows the spatial semantic field

activations which are aligned with the green reference object location

and receive input from the active color-space field regions. Unlike

Demonstration 2a, the target location activation overlaps with both

the right and the ‘‘above’’ spatial semantic fields (see large arrows).

The slightly stronger overlap for the above region provides a

competitive advantage eventually triggering the ‘‘above’’ response
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When we next specify the target object color ‘‘red’’,

however, the color-term node raises the resting level of the

‘‘red’’ color-space field (see Fig. 11f). The linguistic input

therefore works to counteract the peak-driven inhibition

from the ‘‘green’’ color-space field. This activation boost

together with the summed, overlapping activations from

the red object input and the ‘‘left’’ field region (Fig. 11g)

leads to an activation peak at the location of the described

red object (see Fig. 11f). The robot has thus selected the

correct object.

Demonstration 3b: ‘‘red’’ followed by ‘‘left’’

Demonstration 3b (Fig. 11, right column) produces a dif-

ferent dynamic structure. In this case we first present the

‘‘red’’ target color followed by the spatial term ‘‘left’’. This

roughly corresponds the description ‘‘The red one to the

left of the blue.’’ Again, the robot must build a peak at the

correct target location in the correct color-space field.

This sequence first raises the resting level of the ‘‘red’’

color-space field and brings the two red object locations in

the field to the detection threshold (Fig. 11h). Because of

the inhibitory interactions within the field, however, only

one peak can be sustained. As in Demonstration 3a, the

metric characteristics of the visual input drive the process.

In this case, the mild shading of the red stack (see Fig. 11a)

results in comparatively stronger input from the the red

plastic apple. This leads to the establishment of a peak at

that location which subsequently propagates activation into

the corresponding ‘‘right’’ spatial semantic field (see

incorrect activation, Fig. 11i). This in turn drives the

activation of the linked ‘‘right’’ spatial-term node.

When we subsequently provide user input to the ‘‘left’’

spatial-term node (see ‘‘left’’, Fig. 11k), however, this

activation overcomes the inhibition from the previously

activated ‘‘right’’ node. This leads to a bifurcation and,

accordingly, the ‘‘right’’ spatial-term node then becomes

inhibited, the activity level in the ‘‘right’’ spatial semantic

field is lowered, and that of the ‘‘left’’ field is raised

(Fig. 11k). The elevated ‘‘left’’ semantic field activation in

turn activates the left regions of the color-space fields

(Fig. 11j), most notably in the ‘‘red’’ color-space field

where it’s activation overlaps with that from the red stack.

This overlapping activation in turn creates a peak at that

red stack location. The new peak therefore corresponds to

the fully described target location (yellow blob, Fig. 11j).
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Fig. 10 Demonstrations 2a and 2b time courses for the spatial-term

and color-term nodes. In both demonstrations the robot answers

‘‘Where is the blue object relative to the green one?’’. In all panels,

the vertical axis represents the node activation value and the

horizontal axis represents time. a–b Show the activation for the

color-term (a) and the spatial-term (b) nodes in Demonstration 2a

where the target object is aligned with prototypical right. The blue
arrow in (a) marks the user input specifying the target object color;

the node remains active thereafter (blue line) and suppresses the other

nodes. The gray region indicates the response latency between the

blue linguistic input and the robot’s selection of right (green line
surpassing zero threshold). c–d Show the activation profile for the

color term (c) and the spatial term (d) nodes in Demonstration 2b in

which the target object overlaps with both the right and above
regions. The wider gray bar (compare a–b) indicates the greater

response latency from the greater competition between the right and

above spatial semantic fields

Cogn Neurodyn (2009) 3:373–400 387

123



Linguistic Sequences: comparing the neural dynamic

time courses

Figure 12 further details the sequence-dependent dynamics

of these tasks. Figure 12 (left side) shows the Demonstra-

tion 3a time course which first specifies the spatial term

(see arrow, Fig. 12g). This input supports the development

of an activation peak in the ‘‘green’’ color-space field

(yellow region, Fig. 12d) because it is the larger of the

objects to the left of the blue referent. This activation peak

in turn drives the early activation of the ‘‘green’’ color-term

node (black line, Fig. 12b).

When we complete the description by introducing the

‘‘red’’ linguistic input (see time mark, Fig. 12g), however,

the ‘‘red’’ color-term node becomes active, triggering an

instability in the system and ultimately suppressing green

node (Fig. 12b). This in turn facilitates the development of

a localized activation peak in the ‘‘red’’ color-space field

(yellow region, Fig. 12c). The new peak subsequently

extinguishes the incorrect peak in the green color-space

field (see transition from yellow to blue in Fig. 12d). The

peak location shift in the ‘‘left’’ spatial semantic field

reflects this change in the dynamic state of the system

(Fig. 12e).
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Fig. 11 Demonstrations 3a and 3b neural field activity. The robot’s

task is to locate the red object to the left of the blue object by building

a peak at the correct location in the correct color-space field. a Shows

the camera image (a red stack, a green toothpaste tube, a blue wire
roll, and a red plastic apple). b Shows the initial color space field

states before the target and the spatial term input are given. c shows

the spatial semantic field after semantic alignment with blue reference

object. d–g (Demo. 3a, left then red) In e, the user provides the left
linguistic input and the left spatial semantic field becomes more

active. This activation passes to the color-space fields (d) and

activates the regions to the left of the reference object. This region

overlaps with the green toothpaste tube and the red stack (see

competing objects, d). In (f) the user provides the red color term

input, increasing the activation of the red color-space field and

creating a peak for the red stack on the left (yellow blob). h–k (Demo.

3b, red then left) (h) shows the increased activation from the red
linguistic input, leading to competition between the two red objects

(see competing objects, h). In (k), the left linguistic input increases

activation in the left spatial term field, boosting activity for those

color-space field regions to the left of the blue reference object (j) and

leading to the selection of the red stack (see yellow blob in the red
color-space field, j)
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The Demonstration 3b time course differs dramatically

(see Fig. 12, right side). The initial ‘‘red’’ color-term node

boost increases the node activation and leads to the

development of a peak at the location of the larger red

object, in this case the apple to the right of the blue referent

(see orange-yellow region, Fig. 12j). This subsequently

builds positive activation in the ‘‘right’’ spatial semantic

field (Fig. 12m) and activates the ‘‘right’’ spatial-term node

(black line, Fig. 12n).

To complete the description, we then specify the ‘‘left’’

spatial term which triggers an instability and ultimately

inhibits the previously active ‘‘right’’ spatial-term node (see

Fig. 12n). Its positive activation also boosts the ‘‘left’’ spatial

semantic field and enhances the activation at the red stack

location in that field (note activation transitions in the ‘‘left’’

and ‘‘right’’ spatial semantic fields, Fig. 12l and m). When

this ‘‘left’’ spatial semantic field activation propagates to the

color-space fields, it increases the activation at the correct

red object location and a peak emerges there (Fig. 12j).

Although this is the same peak location as that in Demon-

stration 3a, our fine-grained analysis reveals our system’s

dynamic sensitivity to changes in linguistic sequencing.

Notably, these integrative effects are also broadly con-

sistent with empirical research. Spivey et al. (2001), for

example, found that people can use early linguistic infor-

mation about a target object in a conjunction search task to

dynamically constrain visual search processes. Eye-track-

ing results from Chambers et al. (2002) reveal similar

findings, showing that the presentation of constraining

words like ‘‘inside’’ in the context of a visual scene

immediately increases visual attention to those objects

affording containment. Our time course analyses of lin-

guistic sequencing differences are in line with these effects.

Demonstrations 4–5: challenges of sensor and object

movement

The previous demonstrations highlight our architecture’s

flexibility and robustness in the face of varying scenes and

linguistic input. Movement presents an additional set of

behavioral challenges. First, movements (gaze, orienting,

reaching, etc) are driven by internal neural dynamic states.

Thus, providing a dynamic account of emergent cognitive

functions and linking these internal decision dynamics to

bodily movement is an important benchmark for a viable

framework.

Second, when that movement involves the sensor pro-

viding the spatial information (e.g. eyes) then the spatial

relations between that sensor and the objects in the world

change. Such changes in visual input and can disrupt the

dynamics supporting the peaks driving cognitive behaviors.

This is particularly so for spatial language where decisions

depend fundamentally on spatial relations. Robustly

adaptive behavior in the context of such movement is thus

an important benchmark for a dynamic model of spatial

language.

Finally, in addition to sensor movements, embodied

cognitive systems often encounter objects moving in the

world as well. Moving objects can also threaten dynamic

stability because they too shift the sensory inputs supporting

the peaks that drive cognitive behaviors. Generating appro-

priately adaptive behaviors in the context of object move-

ments is therefore a third important test of our framework.

Demonstrations 4a and 4b address these first two chal-

lenges through an internally driven sensor (camera)

movement. Demonstration 5 probes object movement.

Demonstrations 4a and 4b: dynamically driven sensor

movement

Previously discussed empirical work from Chambers et al.

(2002) indicates that eye-movements reflect the continuous

integration of visual and linguistic input. To provide a

behaviorally meaningful test of movement in line with the

functional spirit of these results, we again probed linguistic

sequencing using the same visual and linguistic input as in

Demonstrations 3a (‘‘The one to the left of the blue, the red

one’’) and 3b (‘‘The red one to the left of the blue’’).

As before, the robot’s task is to build an activation peak

at the specified target location in the correct color-space

field. In the current movement tasks, however, we also

integrated a dynamic motor control module. This module

drives the robotic pan/tilt unit (see ‘‘Appendix’’) based on

the location of a peak in the color-space field, centering the

corresponding object in the camera image. Movements of

the camera in this context are roughly analogous to gaze

shifts driven by internal dynamic processes.

Figure 13 presents the time courses of these differently

sequenced tasks (with the blue reference object already

specified previously in both instances) along with the

summary camera movements (see Fig. 13a and h). In

Demonstration 4a (Fig. 13, left side) the ‘‘left’’ linguistic

input is presented first. As we previously detailed, the

green object is the larger of the two objects to the left of the

reference object. This leads to a peak at that location in the

‘‘green’’ color-space field (see yellow region, Fig. 13d).

Once this peak is established, however, the camera begins

to center that location in the image by shifting to the left.

This shift in turn leads to the smearing and shift of the

activation profiles across all the depicted fields in Fig. 13

(left side). Nevertheless, note that this peak is stably

maintained across the camera movement, thus tracking the

location of the green object in the image. To this point

then, our framework has shown the ability to guide the

camera movement according to the specified peak location

and also stably maintain that peak across the movement.

Cogn Neurodyn (2009) 3:373–400 389

123



This dynamic behavioral flexibility is further born out

when we then complete the description by providing the

‘‘red’’ color term. As discussed in Demonstration 3a, this

linguistic input activates the ‘‘red’’ color-term node (red

line, Fig. 13b) and ultimately boosts the entire ‘‘red’’ color-

space field leading to a peak at the correct red object
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time [s]

Demonstration 3a Demonstration 3b

Fig. 12 Demonstrations 3a and 3b time courses. The horizontal axis in all

panels represents time. The vertical axis in (b, g, i), and (n) represents

activation level. c–f and j–m Project activation onto the horizontal axis;
the lower region corresponds to the leftmost portion of the image, the upper

region to the rightmost portion. a–g (Demo. 3a, left then red) a Shows the

camera image (blue wire roll reference object). In (g) the left linguistic

input activates the left node (red line), increasing activation for both

objects to the left of the blue reference object. This increases activation in

the left spatial semantic field at the green toothpaste location (see initial

orange ridge, e) and creates an activation peak in the green color-space

field (d); the green color-term node also becomes active (black line, b).

When the red linguistic input is given (red line, b), however, a peak forms

in the red color-space field (see emerging yellow activation ridge, c),

eliminating the green color-space field peak (d) and shifting the activation

from the green to the red object in the left spatial semantic field (e). h–n
(Demo. 3b, red then left) The red color term input activates the node (red
line, i) and leads to an activation peak in the red color-space field at the red
plastic apple location (first orange activation ridge, j); the right spatial

semantic field (m) and right node also become active (black line, n). When

the left spatial term input is given (n), the left node becomes active (red
line, n), increasing the left spatial semantic field activity in the region of the

leftmost red object (orange ridge, l). The increased spatial semantic

activation also increases activation in the color-space field regions to the

left of the reference objects. This eliminates the first activation peak in the j
and creates a new peak at the red stack in the leftmost portion of the color-

space field (see emerging yellow-orange activation ridge, j)
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Fig. 13 Time courses of Demonstrations 4a and 4b involving camera

movement. The horizontal axis in all panels represents time. The

vertical axis in (b, g, i), and (n) represents activation. c–f and j–m
Project activation onto the horizontal axis; lower region corresponds

to leftmost portion of the image, upper region to the rightmost portion.

a–g (Demo. 3a, left then red) a Shows the camera image. The arrow
next to the X indicates camera movement to the initially selected

object; the other arrow indicates the correct item selected and

centered in the image. g Shows initial left input activating the left
spatial-term node (red line). This increases activation for both objects

to the left of the blue referent. Activation at the green toothpaste
location in the left spatial semantic field increases (see initial orange
ridge, e) and creates a peak in the green color-space field (d); the

green color-term node also becomes active (black line, b). The green
tube is close to the center so the camera movement is small (small

shift in bounded region, d). When the red linguistic input is given (red

line, b) the red color-space field peak forms (see emerging yellow
ridge, c), eliminating the green peak (d) and shifting activation from

the green to the red object in left semantic field (e). The new peak at

the described red object location drives the camera to center the

selected object (see esp. c). h–n (Demo. 3b, red then left) The red
color term input activates the node (red line, i), creating a peak in the

red color-space field at the red plastic apple (first orange ridge, j); the

right spatial semantic field (m) and right node (black line, n) also

become active. This initiates a leftward camera movement (see esp.

bounded region, j). When the left input is given (n), the left node

becomes active (red line, n), increasing the left semantic field activity

by the leftmost red object (orange ridge, l). This increases activation

in the color-space field regions left of the referent. In j, the first

activation peak is eliminated and a new red stack peak emerges,

driving the camera movement
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location (Fig. 13c). This also extinguishes the peak in the

‘‘green’’ color-space field (Fig. 13d). Moreover, because

the specified object is even further to the left, the camera

continues to shift in that direction, eventually centering the

described object in the image (see centering of yellow

activation profile in ‘‘red’’ color-space field, Fig. 13c).

Again, however, this peak-driven movement does not

destabilize the peak.

Demonstration 4b (Fig. 13, right side) shows comparably

robust behavior for the alternative sequence in which we

present the ‘‘red’’ color term first. In this case, the resulting

uniform boost to the ‘‘red’’ color-space field creates an

activation peak at the red apple location in the right portion of

the image (see yellow activity in Fig. 13j). This in turn drives

the camera to center this location in the image (see especially

shifting activity profile in Fig. 13j). When we later specify

the ‘‘left’’ spatial relation(Fig. 13n), however, this initial

peak is extinguished and a peak at the fully described correct

location arises instead (see later portion of Fig. 13j). This

new peak then shifts the camera dynamics and the camera

begins to move in the opposite direction to center the correct

object (see shifting activity profiles in Fig. 13j–m).

These demonstrations together reveal our framework’s

ability to dynamically drive motor behaviors based on

emergent neural dynamic decision processes. Moreover,

they also highlight the ability to stably maintain those

decisions over the resulting input shifts.

Demonstration 5: target object movement

Elements in the visible world frequently move, either by their

own actions (e.g. animals) or the actions of others (e.g. a

person moving a coffee cup). Like sensor movements, moving

objects alter the flow of visual input and therefore risk dis-

rupting the dynamic stability on which adaptive behaviors

depend. A viable neural dynamic approach to spatial language

should be behaviorally robust to such movements.

To test this, we presented a blue wire-roll, a green

flashlight, and a red apple (see Fig. 14a) but then moved the

blue wire roll during the task. The robot’s task is to identify

the blue target object (blue wire roll), track its movement

through the scene, and then select a descriptive spatial term

when we later identify the reference object (Fig. 14b).

We began the trial by first providing input into the ‘‘blue’’

color-term node, thus selecting the blue wire roll as the tar-

get. We then move the blue wire roll through the visible

space before specifying the reference object. Fig. 14c shows

this tracking within the ‘‘blue’’ color-space field. After

approximately six seconds, we then specify the term ‘‘green’’

as the reference object color, leading the robot to select the

green flashlight as the referent. With the reference object

specified, the spatial semantic templates become aligned

with the reference location and increase the resting activation

level of the relevant sites of the spatial semantic fields (see

elevated activation after six seconds, Fig. 14d and e). The

target object location overlaps with the activity in the ‘‘right’’

spatial semantic field, leading to a positive activation in this

field (Fig. 14e) and triggering selection of the ‘‘right’’ spa-

tial-term node. Furthermore, as an additional test of repre-

sentational stability we also continued to move the target

object slightly after the generation of the spatial term

response (see slight variations in the peak’s location in

Fig. 14e after 6 seconds). The dynamic states were none-

theless stable in the face of this additional movement.

This demonstration highlights two behaviorally signifi-

cant aspects of our model. First, in tracking the target item,

the robot again stably represented the target object location
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Color-space field ("Blue")

0 2 4 6 8 10 12
0
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Spatial semantic field ("Left")

0 2 4 6 8 10 12
0
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Spatial semantic field ("Right")

b

d

e

time [s]

a

c

Fig. 14 Demonstration 5 time course for a moving target object. The

robot’s task is to track the blue target object and provide a spatial

description at the final position. a Shows the workspace at the

beginning of the task. b Shows the final position of the target object

when the robot selects right. In (c–e), the horizontal axis represents

time; activation is projected onto the horizontal axis as in previous

figures; the lower region of these fields corresponds with the leftmost
portion of the image, the upper region with the rightmost portion.

c Shows blue color space field activation. At the beginning of the trial,

the blue target object is in the bottom region of the field (leftmost
region of the workspace image). As the object is moved through the

space, the activation profile shifts accordingly, moving eventually to

the region to the right of the reference object. d and e Show the shift

of the target object position through the respective left and right
spatial semantic fields. When the reference object information is

provided (at approximately 6 seconds), activation increases in the

spatial semantic fields. The overlap between the target object location

and the right spatial semantic region leads to an activation peak in the

spatial semantic field (e) and a peak in the blue color space field. The

additional peak movements visible in the latter portions of (c) and (e)

arise from shaking the object and further highlight the representa-

tional robustness of the target location
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despite the substantial change in visual input and even

tolerated the potentially disruptive presence of the hand in

the scene. This further extends the behavioral flexibility of

the system because it provides another instance of suc-

cessful operation in an unstable, variable environment.

Second, by tolerating an object movement in the period

between the linguistic inputs specifying the task, the robot

also again displayed the ability to successfully integrate

linguistic and visual input over time. This complements the

sensor movement demonstrations and further substantiates

our model’s ability to dynamically structure behavior in the

presence of non-static visual input.

Discussion

Summary

Language behaviors are generated by real bodies in real

time. To facilitate the development of a formalized theo-

retical framework for embodied language processes, we

implemented a multi-component neural dynamic model

emphasizing behavioral flexibility and representational

integration in spatial language. Tests of our architecture

implemented on a robotics platform across five different

demonstration sets using real visual input support the via-

bility of this approach.

In Demonstration 1a we first tested the ‘‘where’’ path-

way by asking ‘‘Where is the blue object relative to the

green one?’’ in the context of a three-item visual scene. The

system autonomously selected the correct spatial term

‘‘right’’ using only this input. This task captures two of our

three key spatial language characteristics. First, in correctly

applying the color-based descriptions to the visual scene

and generating a spatial term, the system necessarily inte-

grated spatial and non-spatial (color) representations.

Second, in combining the localist node activation with the

color-specific visual input, our model also demonstrated

the capacity to integrate symbolic functionality with

continuous, graded spatial representations. The subse-

quent probe of the ‘‘what’’ pathway in Demonstration 1b

(‘‘Which object is the right of the blue?’’) produces a

similar verification, again showing how a graded, neurally-

grounded approach to scene representations can produce

integrated representations across feature dimensions and

between the symbolic and the continuous.

These two demonstrations also represent two qualita-

tively different behaviors, one generating a spatial term

(‘‘right’’) from descriptions of the target and the referent,

the other extracting a target object color (‘‘red’’) from a

description of the referent and a spatial relation. This

represents the first evidence of behavioral flexibility in our

model. As such, it is important to emphasize that only the

contextually-specific input differed between these cases.

These behaviors did not require different parameter values

nor did they require an external controlling input. This

behavioral structuring instead inheres in the underlying

autonomous processes and their continuous coupling to

sensory inputs.

The behaviors in Demonstrations 1a and 1b depend

fundamentally on the neural dynamic concepts of auton-

omy, gradedness, and stability. In building on these same

neural concepts, Demonstrations 2a and 2b also made

contact with metric spatial language effects. Specifically,

we showed that shifting a target away from a prototypical

spatial relation (e.g. right) to a non-prototypical one

increased the degree of competition within the system and

the response generation time. This result is generally

consistent with empirical spatial language research (e.g.

Carlson and Logan 2001) and is generic within the neural

dynamics and thus captures a general principle.

Although these initial tests alone show that a neurally

grounded approach can address core aspects of spatial lan-

guage, our subsequent results show that these basic functions

in fact enable a far greater behavioral breadth. Consider

Demonstrations 3a and 3b, the four-item scenarios. Correctly

identifying the target object in these tasks required both color

and spatial term information. However, this information was

provided sequentially (as it would be with natural speech),

not simultaneously. Providing the symbolic information

sequentially as we did in the four item scenarios thus tested

the model’s ability to continuously integrate information as it

becomes available yet still arrive at the correct answer.

The results suggest that our framework is indeed sub-

stantially tolerant of such timing variability. Demonstration

3a, for example, provided the spatial term first before the

disambiguating color term, thus leading an early, but

incorrect, target selection. When the target-specific color

information was later provided, however, this new infor-

mation was then incorporated and the correct target peak

was established. In Demonstration 3b, on the other hand,

we reversed the order by specifying the target object color

first which again lead to the generation of an incorrect

target peak. Despite this radically different time course, the

system nevertheless again eliminated the incorrect peak

and created a peak for the correct target object once pro-

vided with the disambiguating spatial term.

This is a particularly strong test of linguistic input

timing tolerance for two reasons. First, across the demon-

strations, we reversed the order of the color and spatial

term information, not simply the timing interval within

some fixed linguistic input sequence. Second, within each

demonstration, the dynamic interplay between the currently

available linguistic input and the slight activation advan-

tage for the larger of the two possible targets led to an

initial, incorrect answer. Nevertheless, despite the
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inhibition created by such peaks, the system still ultimately

created the correct target object peak. This draws attention

to a new dimension of behavioral flexibility, namely con-

sistent cognitive decision processes in the face of highly

variable linguistic input. Importantly, this tolerance to

linguistic input variability is not the product of an

‘‘insensitive’’ dynamic system. That is, instead of pre-

venting the emergence of peaks in all but the most fully

specified scenarios, our system instead maintains the ability

to flexibly build peaks based on partial information along

with the ability to build new, competing peaks as infor-

mation unfolds. As we previously noted, this accords well

with empirical research demonstrating the continuous

integration of the visual and linguistic inputs (Chambers

et al. 2002, Spivey et al. 2001, Tanenhaus et al. 1995).

This empirical evidence of continuously integrative

language processing, namely eye-tracking research, draws

attention to another challenge for our system. A core pre-

mise of these and other eye-tracking studies is that motor

behaviors (e.g. eye-movements) reflect underlying cogni-

tive states. The ability to adaptively structure motor

behaviors, specifically camera movements, according to

the model’s internal neural dynamic states is thus a sig-

nificant test for our framework. In initiating such sensor

movements, however, our implementation must also pro-

vide for the representational stability; in the absence of

such stability the shifting spatial relations between the

sensor and the objects in the world could perturb the scene

representations that support adaptive, flexible behavior.

Demonstrations 4a and 4b addressed both these chal-

lenges by again presenting sequentially varying linguistic

inputs but now driving camera movement from the neu-

ronal dynamics. Results from these two scenarios showed

that camera movements changed according to the internal

dynamic states of the system. Moreover, in eventually

shifting from the incorrect target to the fully specified

correct target, we also demonstrated a robust tolerance for

changes in the visual stimuli. Furthermore, in integrating

spatial and non-spatial features as well as symbolic and

continuous representations, our system generated another,

wholly embodied behavior—movement. This capacity

emerges directly from our neurally-based approach to

symbol grounding and our attention to the core neural

concepts of autonomy, gradedness, and stability.

In Demonstration 5, our final test, we further examined

our system’s robustness to movement, this time by shifting

the object before providing the reference object color. As a

consequence, the system needed to track the specified

target object through space and time before receiving the

reference object color and selecting the correct spatial

term. Nevertheless, our model again accurately integrated

the sequential linguistic input and stably maintained the

scene-symbol link required to answer correctly. This result

further substantiates the model’s capacity for representa-

tional stability and the behavioral flexibility conferred by a

neurally-based approach to scene representations.

Neural foundations

The theoretical language we used is grounded in the fol-

lowing neural principles which play a central role in our

account. (1) All representation is based on graded activa-

tion variables. (2) Space, perceptual features, and move-

ment parameters are captured by continuous dimensions

along which activation fields are defined. The principle of

neural fields reflects the encoding of such information by

populations of neurons, whose feedforward path from the

sensory surface or to the motor surface determines how

they contribute to the activation fields. (3) The neural

dynamics that characterize the temporal evolution of the

activation fields consist of (a) external inputs, which

mediate both feedforward connectivity from sensory input

and the coupling among different fields, and (b) intra-field

interaction, which reflects the generic cortical pattern of

local excitation and global inhibition. The stability of local

activation peaks, which are the units of representation,

emerges from this pattern of interaction. (4) When peak

locations are not specified by inputs but by learned patterns

of excitability, neural fields act like categorical neural

representations described by individual dynamic neurons.

Adopting these neural principles as constraints for the

theoretical modeling of spatial language is a necessary, but

not yet sufficient, condition for a comprehensive neural

account of spatial language behaviors. One may envisage a

further step, however, in which specific populations in

particular parts of the higher nervous systems are assigned

particular functions. Because we know much about the

early visual system, particularly its representation of retinal

space and perceptual features, it is easy to envision broad

qualitative assignments. Neural correlates of object per-

ception and recognition, for example, have been found in

the ventral stream (Suzuki et al. 2006). In addition, an

initial understanding of how parietal structures in the dorsal

stream, in particular, LIP, may enable more abstract,

object-centered spatial representations (Xing and Anderson

2000) is also emerging. The neurophysiological founda-

tions of goal-directed reaching movements have also been

extensively studied (Georgopoulos 2000). The neural

mechanisms of language and speech are known at a much

more macroscopic level, however (Pulvermuller 2002).

While promising, we believe that this next step is still

outside the range of current neurophysiological research.

This belief is partly driven by practical considerations. In

particular, the broad diversity of neural functions invoked

in spatial language has not been studied at a consistent

level of resolution across the many potentially involved
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brain areas. This belief is also driven in part by theoretical

and conceptual considerations. Specifically, the neural

dynamics that provide the requisite stability and coupling

are strongly interactive. Such interaction makes assignment

of neural function to particular substructures particularly

difficult. When a subpopulation of the neural dynamic

system is removed, for instance, a particular cognitive

function may fail to emerge. Such failure need not, how-

ever, imply that the subpopulation in question ‘‘is respon-

sible for’’ that particular function. The failure may instead

come about because input from the removed subpopulation

to another subpopulation is now missing. This missing

input might then prevent that other subpopulation from

reaching the dynamic regime needed to stabilize the neural

representations critical for the relevant function. At the

same time, the input needed may also be quite non-specific

to the neural function. It could, for example, be something

as generic as a constant or a broad input that enables peak

generation.

Connections with established spatial language research

Our framework adopts a qualitative neural dynamic approach

to spatial language, emphasizing the continuous integration of

sensory-motor processes and linguistic input. In doing so, it

aims to address a host of issues typically overlooked in spatial

language theories to date, including representational integra-

tion and behavioral time courses. For this reason, we believe

that our process-based approach is uniquely well placed to

address flexible spatial language behavior.

While theoretically distinct, our work does nevertheless

have a strong connection with the established spatial lan-

guage literature. Our spatial semantics, for example, are

implemented with a separate set of connection weights which

are dynamically aligned with a reference object and applied

to a visual scene. This is conceptually similar to the notion of

spatial templates developed by Logan and Sadler (1996),

Carlson-Radvansky and Logan (1997), Carlson and Logan

(2001) in which spatial regions are divided according to

good, acceptable, and bad instances of a spatial relation term.

Our spatial semantic approach may therefore be described as

a dynamic instantiation of this idea. Additionally, the partial

overlap of our semantic fields is also consistent with empir-

ical work showing that some spatial locations are best

described with a combination of spatial terms (e.g. above and

a little to the right) rather than a single, exclusive term

(Hayward and Tarr 1995, Franklin and Henkel 1995).

Our framework also captures some core elements of the

spatial apprehension sequence from Carlson-Radvansky and

Logan (1997), Carlson and Logan (2001), Logan (1994).

These elements conceptually outline the steps individuals

take to confirm the presence or absence of a described spatial

relation in a visual scene (e.g. ‘‘the dash is above the plus’’),

including indexing the arguments of the spatial relation (the

target and reference objects) onto the visual scene, estab-

lishing the reference frame within the scene, and applying the

specified semantics accordingly. Although our framework

does employ some simplifying assumptions, namely a single

reference frame at a fixed rotation, it does show how the

spatial indexing and semantic application steps may be

instantiated within a neural dynamic framework. It also

extends these basic steps to a broader range of tasks and

therefore shows how these functions may be accounted for

within a behaviorally flexible framework that can tolerate

sequence variation. The core elements described by Logan

and colleagues thus appear to be conceptually primary in

spatial language although our results reveal that their

dynamic details can vary considerably according to the

specific visual and linguistic context.

Limitations

In order to focus on representational integration and flex-

ibility in spatial language, we made some simplifications in

our model. Some resulting limitations bear noting. First, as

we alluded to earlier, we simplified our reference frame

alignment process. We assumed a single default viewpoint

and thus sidestepped the complexities of reference frame

rotation. As a result, our work cannot address evidence that

spatial language behaviors are sensitive to changes in the

rotation of reference objects with canonical orientations

(e.g. chair; Carlson 1999, 2008, Carlson-Radvansky and

Logan 1997).

Our object representations were also simplified. This is

tied to the reference frame rotation issue because alterna-

tive, object-based intrinsic reference frames require object

orientation information. In acknowledging this limit, how-

ever, we also note the recent development of a dynamic

field model of object recognition which can quickly learn to

recognize multi-feature objects (Faubel and Schöner 2008).

The inclusion of orientation information in these represen-

tations suggests that our approach is well suited to incor-

porating more complex object representations.

Parsing of the input stream is another element absent in

our framework. However, recent models show that neurally

grounded approaches can parse linguistic streams (Huyck

2009) and embed symbolic parsing processes within tem-

porally continuous neural dynamics (beim Graben et al.

2008b). The conceptual mapping from these dynamics onto

the DFT is therefore feasible.

Finally, although stability plays a central role in the

generation of behaviors across the tasks, particularly the

movement scenarios, there is one case in which stability is

a problem. Specifically, after generating a spatial or color

term response, the linguistic node stays at the same acti-

vation level. This stability prevents the generation of a new
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decision. This would be a problem if, for instance, the

system selected a descriptive term after which the target

was moved to a new spatial relation requiring a different

spatial term. In essence, the system fails to register the

generation of its own response and thus cannot shift to a

qualitatively different state as a result. This is inconsistent

with our emphasis on the continuously adaptive structuring

of behavior. One could address this with a form of con-

textually-dependent feedback that effectively recognizes

the generation of a linguistic response. This points to the

need for greater behavioral organization that generalizes

beyond the spatial language scenarios. Although no com-

prehensive approach to behavioral organization yet exists,

recent work does suggest that neural dynamic theories like

the DFT might also provide the grounds for developing this

capability (Sandamirskaya and Schöner 2008).

Conclusions

We began with the observation that theoretical treatments

of language are often dissociated from the unfolding of

behavior in real-time. In order to address this problem and

build on the growing empirical support for a real-time,

embodied foundation of language we adopted a systems-

level neural dynamic perspective. We brought these theo-

retical tools to bear on spatial language, a domain that

directly connects linguistic processes and the sensory-

motor surfaces embedded in the world. With this vantage

point we further proposed that addressing the neural

dynamic processes supporting scene representation could

provide the basis for a behaviorally flexible spatial lan-

guage system. To test this claim, we developed a neural

dynamic architecture grounded in the Dynamic Field

Theory and implemented it on a robotics platform linked to

a real-time camera image of a shared workspace.

Our results show that attending to the neural dynamic

details of scene representation can provide the foundation for

flexible, contextually-dependent spatial language behaviors.

Across the demonstrations our model generated differing

responses based solely on the linguistic and visual input.

These outcomes reveal the system’s capacity for represen-

tational integration and the grounding of linguistic terms in

dynamic sensory-motor processes. They also verified the

ability to behave continuously and dynamically integrate

new linguistic information as it unfolds. Furthermore, these

demonstrations also shed light on how neural dynamic scene

representations and variability in the strength of the visual

input can shape the time course of these behaviors.

Our framework has important theoretical consequences

both within the spatial language domain and for language

research more generally. In the realm of spatial language,

this work is the first demonstration of behavioral flexibility

within a unified, neurally grounded theoretical framework.

Thus, while it is certainly not the first robotics platform

dealing with the complexities of real-world visual and

linguistic input (e.g. Moratz and Tenbrink 2006) it is to our

knowledge the first to do so in a manner aligned with the

neural dynamic foundations of embodied cognition.

Applied to the broader domain of language more generally,

this work therefore highlights the power of attending to the

fine-grained dynamic details of non-linguistic processes

supporting ‘‘higher’’ level language. Our demonstrated

satisfaction of several key constraints across several com-

plex and varied scenarios also suggests that systems-level

neural dynamic theories, such as the DFT, can provide the

conceptual foundation needed to unite real-time language

and the sensory-motor world.
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Appendix

Color-space fields

Conceptually, the three-dimensional color-space field

evolves according to the equation:

s _Ucolðc; x; y; tÞ ¼ � Ucolðc; x; y; tÞ þ hþ Iðc; x; y; tÞ

þ
Z

f ðUcolðc0; x0; y0; tÞÞ

� xðc� c0; x� x0; y� y0Þdc0dx0dy0

ð5Þ

In the implementation, however, we resolved the color

dimension sparsly, substituting the interactions in this

dimension through the global inhibition between the six

two-dimensional color-space fields:

s _Ucðx; y; tÞ ¼ � Ucðx; y; tÞ þ h

þ Iðc; x; y; tÞ þ
Z

f ðUcðx0; y0; tÞÞ

� xðx� x0; y� y0Þdx0dy0

�
X
c0 6¼c

Z
x0;y0

f ðUc0 ðx0; y0; tÞÞdx0dy0;

c ¼ 1. . .Ncol ¼ 6 ð6Þ

The spatial interaction kernel was the sum of a Gaussian

for the local excitation and a global inhibitory term:

xðx� x0; y� y0Þ ¼ cexc exp
ðx� x0Þ2 þ ðy� y0Þ2

r2
exc

" #
� cinh

ð7Þ

The sigmoidal non-linearity smoothing the output of the

fields was:
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f ðUcðx; y; tÞÞ ¼
1

1þ bjUcðx; y; tÞj
; b ¼ 80 ð8Þ

The parameters were:

s ¼ 10

h ¼ �2

cexc ¼ 0:3

rexc ¼ 3

cinh ¼ 1

The external input to the color-space field was formed

as:

Iðc; x; y; tÞ ¼ ccamIcamðc; x; y; tÞ þ cspIspðx; y; tÞ
þ cnodeInodeðc; tÞ

ccam ¼ 4

csp ¼ 2

cnode ¼ 3

Ispðx; y; tÞ ¼
XNsp

i¼1

f ðUspðx; y; tÞÞ

Inodeðc; tÞ ¼ f ðdcðtÞÞ ð9Þ

The input from the visual sensor Icam(c, x, y, t) was formed

as described in ‘‘Representing locations and colors’’.

The color-space fields were represented as 50 9 50

matrices for calculations.

Color-term nodes

The dynamical nodes’ activity evolved according to

equation

s _dcðtÞ ¼ �dcðtÞ þ hd þ cexcf ðdcðtÞÞ � cinh

X
c0 6¼c

f ðd0cðtÞÞ

þ Idðc; tÞ ð10Þ

The external input to a node was defined as:

Idðc; tÞ ¼ cGUIIGUIðc; tÞ þ cU

Z

norm

ðf ðUcðx; y; tÞÞÞdxdy

cGUI ¼ 7

cU ¼ 3 ð11Þ

Here, $norm denotes the summed activity in the

respective field normalized by the filed’s size (divided by

xmaxymax). IGUI(c, t) = 1, if c = color selected by the user;

IGUI(c, t) = 0 otherwise.

The parameters were:

s ¼ 10

hd ¼ �1

cexc ¼ 0:5

cinh ¼ 2:5

Reference field

The reference field evolved according to the dynamics

s _URðx; y; tÞ ¼ � URðx; y; tÞ þ hþ ccam2ref Icam2ðx; y; tÞ

þ
Z

f ðURðx0; y0; tÞÞxðx� x0; y� y0Þdx0dy0;

ð12Þ

The spatial interaction kernel and the sigmoidal non-

linearity were the same as for the color-space fields. The

parameters were:

h ¼ �1

ccam2 ¼ 2

cinh ¼ 0:5

cexc ¼ 0:3

rexc ¼ 3

Icam2(x, y, c = cref, t) was formed as described in the

main text (‘‘Reference field’’). cref is the specified color of

the reference object.

Semantic templates

The semantic template functions were:

Msp ¼ exp �ðq� q0Þ2

2r2
q

" #
exp �ðh� h0Þ2

2r2
h

" #
ð13Þ

where rq = 40 (at fields’ size 50 9 50), rh = 60 rad, q0

= 5, h0 = p,0, p/2, -p/2 for ‘‘left’’, ‘‘right’’, ‘‘above’’,

‘‘below’’ respectively.

To reduce the computational overload, the weight matri-

ces were represented centered on the edge of the matrix.

When convolving with the output of the reference field, the

weight matrices (used as kernel) were anchored accordingly.

Spatial semantic fields

Spatial semantic fields evolved according to equation

s _Uspðx; y; tÞ ¼ � Uspðx; y; tÞ þ hþ Ispðx; y; tÞ

þ
Z

f ðUspðx0; y0; tÞÞxðx� x0; y� y0Þdx0dy0;

sp ¼ 1. . .Nsp ¼ 4

ð14Þ

The spatial interaction kernel and the sigmoidal non-

linearity were the same as for the Color-space fields.
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The parameters were:

h ¼ �5

cinh ¼ 0:05

cexc ¼ 0:3

rexc ¼ 3

The external input

Ispðx; y; tÞ ¼ cc

XNcol

i¼1

f ðUcðx; y; tÞÞ

þ cshiftIshift;spðx; y; tÞ þ csnodef ðdspðtÞÞ;
cc ¼ 2:2

cshift ¼ 0:2

csnode ¼ 4:5

The Ishift,sp was the result of the ‘‘shift’’ operation,

aligning each of the spatial semantic templates with the

location of the reference object.

Shift

The shift was accomplished by convolution of the outcome

of the reference field with the spatial semantic templates:

Ishift;spðx; y; tÞ ¼
Z

x0;y0

f ðURðx0; y0; tÞÞ

�Mspðx� x0; y� y0; tÞdx0dy0

ð16Þ

For computational efficiency we approximated this

integral by summation over the points of positive

activation in the reference field.

Short introduction to the navigation dynamics

The camera head is mounted on a robotic pan-tilt unit, which

can be controlled via a PVM (parallel virtual machine)

interface directly from our software. A navigation module

implemented the dynamic navigation (proposed in Bicho

and Schöner 1997) but without the obstacle avoidance

component. The target contribution was calculated from the

summed output activation in the color-space fields (17).

Tðx; y; tÞ ¼
XNcol

i¼1

f ðUcðx; y; tÞÞ

FpanðtÞ ¼ RðxÞ � Txðx; y; tÞ
FtiltðtÞ ¼ RðyÞ � Tyðx; y; tÞ

s _PanðtÞ ¼ �PanðtÞ þ FpanðtÞ
s _TiltðtÞ ¼ �TiltðtÞ þ FtiltðtÞ

ð17Þ

Here, RðxÞ ¼ x� xmax

2
;RðyÞ ¼ y� ymax

2
were monotonic

functions defining the mapping between the distance from

the positive activation in the color-space field to the center

of the fields and the strength of the attractor associated with

the positive activation.

Thus, as soon as positive activation signaled the detec-

tion of the object of interest in the visual array, the head

moved smoothly to center that object. Because the repre-

sentation of objects in the color-space fields was updated,

the color-space fields effectively tracked the visual scene.

The dynamics of the whole framework was also autono-

mously updated.
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