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Abstract: Parsing of action sequences is the process of
segmenting observed behavior into individual actions.
In robotics, this process is critical for imitation learn-
ing from observation and for representing an observed
behavior in a form that may be communicated to a
human. In this paper, we develop a model for action
parsing, based on our understanding of principles of
grounded cognitive processes, such as perceptual deci-
sion making, behavioral organization, and memory for-
mation. We present a neural-dynamic architecture, in
which action sequences are parsed using a mathemati-
cal and conceptual framework for embodied cognition—
the Dynamic Field Theory. In this framework, we in-
troduce a novel mechanism, which allows us to detect
and memorize actions that are extended in time and are
parametrized by the target object of an action. The core
properties of the architecture are demonstrated in a set
of simple, proof-of-concept experiments.
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1 Introduction
When artificial cognitive systems are meant to inter-
act with humans, they require an ability to interpret
human behavior based on their own observations. This
may enable such systems to report back to a human
about its observations, to assist a human operator in a
joint task by selecting a complementary or supportive

action, and also to learn new behaviors [1–3]. In natural
language processing, parsing is the process of analyzing
a stream of spoken or written language according to the
rules of grammar. Here, we will use this term to refer to
the decomposition of a visually observed behavior into
a sequence of individual actions. The range of possible
actions is constrained to a known set.

Action parsing entails detecting individual actions
by determining their beginning and termination in time,
and storing their serial order. Some actions are ‘simply’
movements, which amount to a transition from one state
of the motor system to another, as in “move the left arm
up”. Parsing sequences of such actions requires the seg-
mentation of movements into individual components as
well as the categorization of each component [4]. Other
actions are oriented toward objects in the environment,
as in “grasp the green cup”. For such actions, it is not
su�cient to merely extract and categorize the move-
ment from the visual stream, but it is also necessary to
segment and recognize the target object and to repre-
sent the relationship between the action and the object.

In this paper, we are interested in this second type
of actions, those directed at objects in the environment.
In this setting, the system needs to perform segmen-
tation of objects in the visual array, while simultane-
ously detecting action boundaries in time and determin-
ing the underlying action intentions. Several di�culties
arise when the parsing of such goal-directed action se-
quences is conducted in real-time, along with the ob-
served behavior. First, di�erent cues to object-oriented
actions may become available at di�erent moments in
time. For instance, a reaching movement may be reg-
istered when the hand starts to move, but the object
of this action may become apparent only later during
the hand’s movement. Second, the interpretation of the
visual stream may be ambiguous at times. For instance,
an observer may need to distinguish the action “move
hand forward” from the action “move hand toward the
red object”, whereas the two actions look identical part
of the time. Thus, the temporal organization of di�er-
ent action detectors and object detectors as well as the
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process of making decisions based on these detectors be-
come a crucial part of the sequence parsing architecture.

To cope with these challenges, we first introduce a
model that entertains ‘hypotheses’—di�erent possible
interpretations of an observed action—which are subse-
quently confirmed or rejected. This amounts to a struc-
tured representation of actions consisting of three parts:
(1) a condition of initiation at which a hypothesis is
put forward once the first characteristics of a particu-
lar action are detected, (2) a condition of satisfaction,
signaling the confirmation of a hypothesis at the end of
an action when all its characteristics are detected, and
(3) a condition of failure that signals the rejection of a
hypothesis.

Second, we address the detection of goal-directed ac-
tions, in which an object plays the role that roughly cor-
responds to a slot in the representation of the grammat-
ical structure of a phrase. For instance, a reach action
corresponds to a verb-object phrase with a representa-
tion of the reaching motor act (a verb in the language
analogy) and the object to which the reach is oriented
(the object in language). In some cases, the e�ector that
generates the action (the subject), may also need to be
specified. For actions of the hand, which we show in
our examples, action concepts are often e�ector specific
(reaching refers to the hand, for instance), obviating the
need to explicitly represent the e�ector system.

We address these challenges of online parsing of the
object oriented action sequences in a neural-dynamic
architecture that is based on Dynamic Field The-
ory (DFT) [5, 6]. DFT is a mathematical and concep-
tual framework, in which perceptual, motor, and cogni-
tive processes are modeled with Dynamic Fields (DFs).
DFs represent continuous feature spaces by fields of ac-
tivation variables that evolve continuously in time as
described by an integro-di�erential equation. Units of
representations within these feature spaces are provided
by peaks of activation that are dynamically stable states
of DFs. Instabilities within the neural dynamics enable
the emergence of discrete events from continuous time,
such as the detection of salient information, selection
among alternatives, as well as the formation of working
memory. Within DFT, categorical states may be repre-
sented by discrete activation variables that may emerge
from inhomogeneities in DFs.

The neural dynamics framework is attractive for on-
line parsing of action sequences because it casts cogni-
tive processes in the same terms as perceptual processes.
Thus, continuous visual features that are driven by time
varying sensory input may couple directly into the neu-
ral dynamics, which then imposes event and category

structure on the perceptual flow. Grounding perceptual
decisions in the form of the underlying continuous time
and feature spaces enables online updating when sen-
sory input changes on the fly.

The price to pay for the ease with which DFs link
to low-level online sensory input is the relative com-
plexity of creating sequential transitions. To transition
to a new state, the previous state must be rendered
unstable, while the next state is selected. The sequen-
tial activation of serially ordered action states can be
organized through the concatenation of dynamical in-
stabilities. This was established in earlier work on serial

order in DFT [7, 8], which demonstrated the genera-
tion of simple action sequences that were acquired semi-
autonomously by observation during a learning session.
More complex behaviors may be organized in a neural-
dynamic architecture for behavioral organization, intro-
duced recently in DFT [9]. In this architecture, actions
may be activated in parallel and selected flexibly, based
on the current situation, rather than according to a fixed
serial order.

The main goal of this paper is to combine the mech-
anisms for sequence representation, developed in the
work on serial order, with the concept of elementary
behavior, developed in the work on behavioral organi-
zation, and extend the resulting architecture toward a
fully autonomous acquisition of action sequences, which
consist of di�erent goal-directed actions. We thus move
beyond previous demonstrations of sequence generation
in DFT by building a system that autonomously gener-
ates, confirms, or rejects di�erent hypotheses about the
observed actions and their objects as evidence for their
identities arrives from the perceptual decisions. Di�er-
ent factors that contribute to the evaluation of the hy-
potheses arise at di�erent times but are integrated by
the neural dynamics through processes of memory for-
mation and decision making.

In this paper we start the research program in a
simple scenario that involves three action detectors, for
reaching, grasping, and dropping, each associated with
a representation of the object at which the action is di-
rected. The cognitive architecture detects objects and
actions, builds up hypotheses about the observed ac-
tions, confirms or rejects them, and learns sequences
of successfully accomplished actions—all autonomously
organized by the time continuous neural dynamics. In
particular, we show how the system copes with abrupt
changes in the perceived action sequence both in terms
of the perceived action and in terms of the object at
which the action is directed. Only those actions are com-
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mitted to memory that were successfully accomplished
during a demonstration.

The paper is organized as follows. We begin in Sec-
tion 2 with a brief description of the methods used
throughout the system. The architecture is presented
in Section 3. In Section 4 we present result of exper-
iments that demonstrate the robustness and flexibility
of the model. The discussion in Section 5 emphasizes the
novelty of this work in the context of imitation learning.

2 Methods

2.1 Dynamic Field Theory

Dynamic Field Theory (DFT) [5, 6, 10] is a mathe-
matical framework for modeling embodied cognition.
The core element of a DFT architecture is a dynamic
field (DF), an activation function u(x, t) ∈ R defined
over continuous feature dimension(s), x, (e.g., color
or space). DFs are a mathematical idealization of the
distributions of population activation prevalent in the
higher nervous system [11–13]. A DF evolves in contin-
uous time, t, based on an integro-di�erential equation:

· u̇(x, t) = −u(x, t) + h + S(x, t)
+� f(u(x′, t))w(x − x

′)dx

′
, (1)

where u̇(x, t) is the rate of change of the activa-
tion u(x, t) at location x and time t. · is a time con-
stant, h < 0 a negative resting level, and S(x, t) is time-
varying external input. The last term of the equation
formalizes neural interactions with field locations rep-
resenting other feature values, x

′. The interaction term
integrates the output, f(u(x′, t)), of the DF at every lo-
cation x

′ along the feature dimension, weighted with an
interaction kernel, w(x − x

′). The output is determined
from activation levels by a sigmoid function, f(⋅), that
translates negative activation values to zero and posi-
tive values to one, with a smooth transition for activa-
tion values near zero. The kernel is positive (excitatory
interaction) for nearby locations x and x

′ and negative
(inhibitory interaction) for locations at larger distances.

This pattern of lateral interaction together with the
output nonlinearity lead to the formation of localized
peaks of activation. Such peaks are attractors of the neu-
ral dynamics and represent detection decisions about an
instance of the feature representation. The detected fea-
ture is indicated by the location of the peak along the
dimension of the DF. A subthreshold pattern of activa-
tion near the resting level is another attractor that exists

for su�ciently weak input S(x, t). When localized input
is gradually increased to a critical strength, the sub-
threshold activation pattern becomes unstable and the
system switches to a peak attractor that had co-existed
bistably with the subthreshold solution up to this point.
This detection instability [5] is the core mechanism for
detecting discrete events from time-continuous graded
changes in input. At these abrupt changes, activation
patterns may switch on the macroscopic scale that has
an impact in a DFT architecture.

The stability of peak attractors makes it easy to
build cognitive architectures out of multiple DFs [10,
14]. As DFs within such architectures are coupled, each
component DF retains its attractor solutions, which are
structurally robust and resist the change of the dynam-
ics that coupling brings about. This is true until an in-
stability switches the field’s regime. DF architectures
require that these instabilities be carefully designed and
compared to empirical evidence for transitions.

Within DF architectures, fields of di�erent dimen-
sionality may be combined [14]. The extreme limit case
are zero dimensional fields, that is, activation nodes that
have the following dynamics

· v̇(t) = −v(t) + h + S(t) + c

vv

f(v(t)), (2)

where v(t) is a discrete (in feature space) acti-
vation variable that has self-excitatory coupling of
strength, c

vv

. Such discrete ‘nodes’ may be thought to
arise from inhomogeneous fields, which tend to generate
peaks only in particular locations that have become sen-
sitized by learning. Systems of coupled discrete dynamic
activation variables essentially form dynamic recurrent
neural networks that go through analogous dynamic in-
stabilities as do DFs.

In e�ect, DF architectures are high-dimensional dy-
namical systems. Their time evolution flows from solv-
ing the dynamics, typically numerically in real time.
Discrete events emerge from the continuous dynamics
through the detection instability. They are not imposed
by an outside algorithm.

2.2 Overview of the model

In the parsing architecture, DFs are used to represent
the perceptual features detected in the visual array,
which characterize the parsed actions and the objects
at which they are oriented. The fields provide the per-
ceptual grounding by receiving direct input from the vi-
sual system. Peaks of activation in these DFs represent
objects in visual and feature spaces.
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Fig. 1. The parsing model. Lines with arrow heads denote excitatory connections. Lines ending in circles denote inhibitory connections.
Red lines are learned memory traces, black lines are shunting terms controlling learning. See text for details.

Discrete dynamic activation nodes are used to rep-
resent a number of categories of actions. In particular,
each category detector consists of three dynamical nodes
(Fig. 1): the condition of initiation node, the condi-
tion of satisfaction node, and the condition of failure
(or withdrawal) node.

Finally, a set of interconnected dynamical nodes
represents the serial order of the detected actions. These
nodes are interconnected in a way, which ensures their
sequential activation [7]. Each of these ordinal nodes
are connected to the action detector and the represen-
tation of the respective object, at which the detected
action is directed. These connections are realized by a
set of adaptive weights, which are modified at a success-
ful detection of an action (signaled by activation of the
condition of satisfaction node). We now present these
processing elements and the couplings between them in
detail.

2.3 Sequential organization of actions

Our approach to the representations of actions in a se-
quence builds on earlier work on serially ordered se-
quences [7] and behavioral organization [9] in DFT. The
core element of the sequence generation mechanism, de-
veloped in these previous works, is the structure of an
elementary behavior, which consists of a representation
of the action intention and of its condition of satisfac-
tion (CoS), each implemented as a dynamical node. The
intention node drives the motor system of the agent and
pre-activates the CoS node, which becomes in this case
sensitive to the sensory input that corresponds to the
accomplished action. The CoS node is activated through
a detection instability when it detects a successful ac-

complishment of the intended action. The activated CoS
node inhibits the respective intention node. This gives
way to the activation of the next action intention within
the network of activation nodes.

In this paper, we extend this structure of an inten-
tional action (elementary behavior) to enable its use in
the perceptual mode, i.e., when an action sequence is
observed. First, we connect the intention node to the
perceptual system in such a way that a given intention
is activated when the respective action is observed. We
call this extended intention representation a condition
of initiation (CoI) node. This CoI represents the hy-
pothesis that a given action is now being performed.
The hypothesis is confirmed when the action is success-
fully terminated as reflected by the activation of the
corresponding CoS node. The CoI and CoS nodes are
connected to the intention and CoS nodes of the action
generation system (which resembles the mirror neurons
discourse in neuroscience of action perception), however
this coupling will not be investigated here. Second, in
order to reject a hypothesis, which did not lead to detec-
tion of a successfully accomplished observed action, we
introduce a new element into the structure of an elemen-
tary behavior—the condition of failure (CoF), which de-
activates the CoI that was not confirmed. Section 3.2.3
describes the resulting action detectors, implemented in
this work.

2.4 Serial order memory

To store a parsed sequence of actions in memory, we
use a neural-dynamic model for serial order [7]. In this
model, the order of items in a sequence is represented
by a set of interconnected ordinal nodes (Equation (3)).
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The ordinal nodes represent ordinal positions in a se-
quence (i.e., first, second, third). Each ordinal node
has an excitatory connection to the respective memory
node, which keeps the position in the sequence in the
transition phase, when all ordinal nodes are inhibited.
The memory node in turn has an excitatory connec-
tion to the next ordinal node, thus biasing activation
transfer toward the node encoding the next position in
a sequence during the transition phase. At any time,
only one ordinal node may be active and represents the
current ordinal position in the observed sequence. A se-
quential transition is triggered by a CoS node that in-
hibits all ordinal nodes including the currently active
one. As a result, input is removed from the CoS node
itself, which is thus deactivated. That in turn releases
the ordinal set from inhibition. The next ordinal node
in the serially ordered array goes through the activation
threshold first, because it receives additional activation
from the memory node of the previously active position.
In this way, the ordinal nodes are activated in a sequence
by CoS signals from the action detection system.

· v̇

ord

i
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The first three terms in Equations (3-4) are the generic
neural node equations for the ordinal nodes, v

ord

i

(t), and
the memory nodes, v

mem

i

(t), respectively, with the rest-
ing level h and a self-excitatory term. i numbers the
nodes in a sequence. The fourth term in both equations
is the mutual inhibition between nodes that belong to
the same sequence. The fourth term in Equation 3 is a
pre-activating excitatory input from the previous mem-
ory node, v

mem

i−1

(t), and the last term is the strong neg-
ative input from the CoS node. In Equation 4, the last
term is an excitatory input from the ordinal node that
activates the respective memory node.

Memory for a particular sequence is stored in con-
nection weights from the ordinal nodes to the DFs that
represent the actions. Section 3.3 specifies how these
connections are realized in the action parsing architec-
ture.

3 Architecture
We exemplify the DFT architecture of object oriented
action parsing around a scenario in which a human op-
erator reaches for colored objects on a table top, may
grasp these objects, transport them to another location,
and drop them there (left panel of Fig. 2). The parsing
architecture continuously evaluates sensory information
about the scene, which is obtained from a Kinect sen-
sor. The goal of the system is to interpret the observed
behavior by detecting and classifying actions performed
by the operator, identifying the object toward which the
action is oriented and memorizing the parsed action se-
quence in a way that the respective actions and their
object representations may be activated in the same or-
der.

The architecture consists of three modules (Fig. 2):
a) The sensory acquisition module segments and classi-
fies objects, detects motion of the hand, and estimates
the motion direction. Although all of these sensory pro-
cessing components have previously been established in
neural dynamics architectures, here we used a simpli-
fied version of this sensory preprocessing stage that em-
ploys standard computer vision techniques. b) The ac-

tion parsing module is the central component of the ar-
chitecture that detects actions and stabilizes their repre-
sentation along with the related target objects. Dynamic
Fields process perceptual inputs obtained from the sen-
sory acquisition module, generating a representation of
the object-oriented actions in terms of peaks of activa-
tion and activation of discrete dynamical nodes. c) The
action memory stores the sequence of detected actions
and the objects involved in a neural dynamic representa-
tion of serial order. Next, we step through the structure
and function of each of the three modules.

3.1 Sensory acquisition

The sensory acquisition module is a forward stream of
sensory data processing and analysis, currently imple-
mented through fast computer vision algorithms that
provide inputs to the action parsing module in real time.
In the overview Fig. 2, it is illustrated as the leftmost
box. The pipeline of processing steps is shown in more
detail in Fig. 3. Following along the steps in this figure
from left to right, we now briefly explain the sensory
preprocessing.

The data pipeline shown in Fig. 3 continuously
grabs a frame of raw data, an RGB image and a depth
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Fig. 2. Overview of the architecture. The architecture receives sensory input about the scene from a Kinect (left). This input is fed to
the algorithmic sensory acquisition module (left box). The core of the architecture, the DFT based action parsing system, is illustrated
in the middle box. The right box shows the DFT based action memory system.
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Fig. 3. Sensory acquisition module

image, from the Kinect camera. Using the three coor-
dinates of this image, we construct a point cloud that
represents the 3D scene in front of the Kinect sensor in
world-based (allocentric) coordinates. To perform this
transformation from image-based to world-based coor-
dinates (anchored on a point on the table), the Kinect
sensor is calibrated using two coloured markers on the
surface of the table. In the current implementation, the
Kinect sensor is stationary, requiring only an initial such
calibration and no further recomputation of the trans-
formation over the course of experiments. For a moving
sensor, the transformation has to be recomputed, tak-
ing into account the sensor movement relative to the
calibrated position. A neural-dynamic architecture for
calculating such transformations in real-time has been
introduced recently [15].

For subsequent steps of the analysis we use the open
source ‘Point Cloud Library’ (PCL) [16].

3.1.1 Object detection

We segment the point cloud into points that belong to
the table plane and clusters of points that lie above
that plane that represent objects. The table-top plane
is found using random sample consensus [17] based on
the assumption that the table-top plane is the largest
plane in the scene. We segment the space above the
plane using Euclidean clustering, which yields a cluster
of points for each object in the scene. This clustering
is noisy and will be refined and stabilized by the per-
ceptual DFs of the neural-dynamic architecture. Each
cluster that contains more than a threshold number of
points (here equal to 100) is classified as either an ob-
ject or a hand. The binary classification hand/object
derives from a color filter in the hue-saturation-value
(HSV) color space. Clusters, in which skin-like colors
predominate, are classified as a hand. Skin-like colors
are defined by predefined ranges in HSV color space (H:[2, 15], S: [50, 100], V: [50, 180]). Clusters containing
other colors are classified as objects.
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3.1.2 Motion detection

Motion analysis for attentional blobs of activation can
be performed in neural dynamics [18]. To simplify com-
putation and the overall architecture, we track the 3D
position of each cluster (each segmented object or hand)
and estimate their velocities using a standard Kalman
filter [19].

Two clusters in subsequent frames are classified as
belonging to the same object when a Euclidean distance
cost function remains below a threshold. This assumes
that the position of an object does not change much
from one frame to the next. Other possible cost func-
tions could use a combination of other object features,
such as class match or color distance. To solve the as-
signment problem, we use the Hungarian algorithm, also
known as the Kuhn-Munkres algorithm [20, 21].

Based on the estimated velocities of the objects, we
analyze the motion of all objects in the scene. For each
object, we compute the norm of its velocity vector which
indicates if and how fast the object is moving.

For each possible pair of a hand, A, and an object,
B, in the scene, we determine whether the hand is ap-
proaching the object or moving away from it. We define
a Gaussian function over the angle between the veloc-
ity vector, v

A

, of the hand and the vector between the
locations of A and B: G

appr

AB

= ( ��vA����AB�� + ‘) exp− <vA,AB>2

2‡2 .
The strength of the Gaussian is inversely proportional
to the distance between the objects and proportional to
the norm of v

A

. The width, ‡ = 0.3, of the Gaussian
controls how accurately v

A

and AB need to be aligned
to signal an approach toward the object. An analogous
function is used to assess how strongly A is moving away
from B: G

away

AB

= ( ��vA����AB�� + ‘) exp− (fi−<vA,AB>)2
2‡2 , where the

angle is simply inverted to account for the opposite di-
rection.

3.1.3 Output of the detectors

The outputs of the sensory acquisition system are con-
tinuous streams of values that include the color and
height of all objects and of the hand, their degree of
motion, and a measure of the extent to which the hand
is approaching or moving away from each object (see
Fig. 3). All values in the stream are defined over and
bound by visual space. To reduce computational e�ort,
we represent that stream in two dimensions defined on
the table surface by projecting orthogonally from the
3D scene onto the tabletop. This projection is computed

using a prior calibration that has determined the orien-
tation of the tabletop plane relative to the camera.

3.2 The DF action parsing system

The neural dynamics of the parsing system has three
components: (1) A set of sensory DFs receive sensory
raw data from the sensory acquisition module and de-
tect and stabilize representations of objects and events.
(2) Attentional DFs selects the object that is the tar-
get of the currently hypothesized action. (3) The neu-
ral dynamics of activation nodes classifies sequences of
detected events and objects into one of three actions,
reach, grasp, or drop. We step through these three com-
ponents and their interactions.

3.2.1 Sensory DFs

The sensory DFs act as detection fields and are defined
over the 2D spatial dimensions of the tabletop plane.
In the overview Fig. 2, they are illustrated in the sec-
ond box from the left, on the left side. These fields filter
noisy input data and stabilize representations of loca-
tions with salient sensory information. Peaks of acti-
vation in these DFs signal the presence of information
about objects (target object or hand) or the detection
of events (motion, approach, or away signals). Lateral
inhibition in these fields is weak to enable multi-peak
solutions. Therefore, these fields do not select the single
most salient object or event but merely stabilize de-
tected candidates.

The object detection DF receives height as an input
from the sensory acquisition subsystem. Those locations
in the tabletop scene at which height readings exceed a
set threshold (2cm), induce peaks in the object detection
DF. The locations of those peaks mark detected objects
on the table.

The hand detection DF works in a similar fashion: It
receives raw input from the sensory acquisition system.
The detection instability in the field dynamics creates
stable peaks of activation at locations in which hand
color is perceived by su�ciently many samples in a clus-
ter. Fig. 4 shows the sigmoided activation pattern in the
object and hand detection fields.

The object movement DF, approach DF, and away
DF all receive as input the output of the motion analysis
process. In each of these fields, input is placed at the
location of each object that is perceived to move, to
be approached by the hand, or from which the hand
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Fig. 4. Detection of hand and objects. The top row shows the
camera image. The middle row shows the segmented objects
(left) as well as the hand (right). The bottom row shows the
activation of the object (left) and hand (right) detection DFs.

moves away. Again, inputs are e�ectively thresholded
through the detection instability and the resulting peaks
are stabilized by the DF interactions to filter out noise
and subthreshold values.

3.2.2 Object selection

The hypothesized target object of an action is selected
from all available objects by an attentional DF. This
mechanism is illustrated in the top right corner of the
middle box in Fig. 2. To enforce a selection in the atten-
tional DF, it is set in a dynamic regime in which only
one peak may be stable at any time (through global in-
hibition). The attentional DF receives input from the
object detection DF and a combination of inputs that
bias the selection of one of the available objects. Such
inputs include the hand detection field that biases the
selection decision toward objects close to the hand, and
the approach detection field that biases the selection de-
cision toward objects that are being approached by the
hand. Thus, if the hand is moving toward an object, this
object may be the target of the unfolding action. The
selection of the target object is continuously updated

while the human operator demonstrates actions in the
scene. The initial selection may thus occur before the de-
cision about the observed action is finalized. However,
the selection process may change the selection toward an
object that becomes more likely to be the target in the
further course of the action. Fig. 5 shows a sequence,
in which an actor moves his hand from one object to
another and thus induces a switch of the object that is
selected by the attention mechanism.

3.2.3 Action detectors

The DF action detectors are the central part of our ar-
chitecture. In this work, we have implemented three ac-
tion detectors: for the reach, grasp, and drop actions.
Fig. 1 illustrates how the dynamics of an exemplary ac-
tion detector is organized. At the core of each action
detector are three dynamical nodes: the condition of ini-
tiation (CoI) node, the condition of satisfaction (CoS)
node, and the condition of failure (CoF) node.

The CoI node receives input from one of the sen-
sory DFs that signals that an action is probably being
executed. An active CoI node thus represents a hypoth-
esis about the currently observed action. In particular,
a hand approaching an object (activation in the ap-
proach DF) activates CoIs of the detectors for ‘reach’
and ‘grasp’, whereas a hand moving away from an ob-
ject activates CoI of the ‘drop’ detector.

The CoI is kept active by self-excitation of the CoI
node until it is inhibited by either the CoS node, which
detects successful accomplishment of the action or the
CoF node, which signals that the hypothesis about the
current action should be withdrawn. Stopping on top of
the object activates the CoI for the ‘reach’ action and
touching the object activates the CoI for the ‘grasp’ ac-
tion. When that hand stops before reaching the object,
the CoF for the ‘reach’ detector is activated.

Each action detector receives inputs to its constitut-
ing nodes—CoI, CoS, and CoF—from di�erent sensory
DFs. The connectivity among these nodes is identical for
all detectors and defines the general processing structure
that autonomously parses observed actions. Activation
of the CoS node triggers a learning process in the serial
order system, in which the action class and the features
of the target object are stored. At the same time, the
CoS node triggers a transition to the next action in the
serial order system, enabling it to detect and store the
next upcoming action.
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Fig. 5. Object selection: Movement toward the green object (left column) triggers the selection of this object as the target. Movement
away from the green object (center column) also triggers the selection of this object. Movement toward the blue object (right column)
triggers selection of the blue object as target.

3.3 Action memory

As described in Section 2.4, we use a neural dynamic ar-
chitecture to represent serial order and to memorize an
observed sequence of actions. Each ordinal node within
the ordinal set may potentially be coupled to any of the
action or target object representations within DFs by
a set of adaptive weights. These weights are strength-
ened for the currently detected action (which CoI is ac-
tivated), but only when the CoS of this action is active
at the same time. This provides for a temporally lim-
ited learning window, when both nodes are activated
(remember that the active CoS node inhibits the re-
spective CoI node).

During the learning window, the connection weights
are strengthened from the active ordinal node to the
active CoI node as well as to the object DFs (color or
space). The learning rule is similar to the memory trace
formation equation used in DFT as an elementary form
of learning [6]:

·Ẇ
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(t) = f(v
CoS,a

(t)) f(v
i

(t)) (5)
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(x, t) + f(uo(x, t))�.
The weight W

i,a

(t) connects the i

th ordinal node to
the action detector a, where a ∈ {reach, grasp, drop}.
The weight grows (in a bounded way), if both the ordi-

nal node, v

i

(t), and the CoI node of the action detec-
tor, v

x

(t), have positive activation. The shunting term
f(v

CoS,a

(t)) limits learning to time intervals when the
CoS signal is emitted. The weights, W

o

i

(x, t), connect
the ordinal nodes with the object color field, u

o(x, t).
Those weights are strengthened that connect the active
ordinal node to an active region in this DF.

Once the whole sequence has been observed, the
weights from each ordinal node point to one of the ac-
tion detectors and a region in the object color field.
Each ordinal node together with the associated connec-
tion weights thereby represent the observed action and
the color of the object that action was directed at. The
ordinal set may be reactivated and will generate the
observed sequence of actions (not investigated in this
paper, but see [7]).

4 Results
The architecture is essentially a large structured dynam-
ical system that receives input from its Kinect sensor.
We realized the process of object-oriented action pars-
ing by solving the set of integro-di�erential equations on
a digital computer while feeding the real-time sensory
input into the equations. Here we first demonstrate the
overall functionality of the architecture in a commented
run of this kind. We then highlight a few of its core
properties in other demonstration runs.
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4.1 Autonomous parsing of an
object-oriented action sequence

In the demonstration shown in Figures 6 and 7, the
system observes an action sequence in which a human
operator performs each of the actions that are in the
architecture’s repertoire, that is, reaching, grasping, and
dropping.

As the scene unfolds, the architecture autonomously
parses the continuous stream of sensory inputs into dis-
crete actions and stores them in memory. Key events
that emerge from these processes are illustrated in Fig. 6
for the activation nodes and feature fields and in Fig. 7
for the memory nodes and fields. In Fig. 6, the column
on the left shows the evolution in time of the activa-
tion levels of the nodes associated with each action (first
three rows). Plotted are the activation values (dashed
lines) and sigmoided activation values (solid lines) for
the CoI (blue), CoF (red), and CoS (green) nodes. On
the bottom, the sigmoided activation level in the ob-
ject color field is shown using a color code (blue below
threshold, dark red above threshold). The center column
shows snapshots of the visible scene at the moments in
time marked by vertical bars numbered 1 through 7. The
rightmost column shows the two-dimensional object se-
lection field at these same points in time. In Fig. 7, the
column on the left shows the evolution of the action con-
dition of satisfaction nodes (CoS), the memory nodes
(top two panels), and the color memory field (bottom
panel) in time. The numbered moments in time and the
associated snapshots depicted on the right are the same
as in Fig. 6.

We now go through these numbered moments in
time and explain what is shown in Figures 6 and 7.
(1) Initially, the hand is not moving. The green object
is still selected from a previous action. This can be seen
from the object selection field shown on the top right.
(2) When the hand starts a reaching action toward the
red object, the conditions of initiation of ‘reach’ and
‘grasp’ are activated (Fig. 6, top two panels on the left,
look for CoI, dashed blue). This activation pattern rep-
resents the hypotheses that the currently observed ac-
tion is either a reach or a grasp. Note that the object
selection field and the object color field switch to the
red object, toward which the hand is moving. (3) When
the hand has passed over the red object and then stops
above the green object, the system has switched back
to the green object as seen from the object selection
field on the right. The color field at the bottom shows
that the switch from red (low end of the scale near 0)
to green (near 13) occurs between the events 2 and 3,

just as the hand passes over the red and moves toward
the green. Once the hand stops above the green object,
the condition of satisfaction (CoS) for the reaching ac-
tion is fulfilled (green trace in the top panel) and the
system stores connections to the ‘reach’ action detector
in memory (middle panel in Fig. 7 at event number 3)
together with the connections to the green color value
in the object DF (bottom panel of Fig. 7). (4) The hand
touches the green object. As a result, the CoS for the
grasp action is activated (red lines in top panel of Fig. 7
at event number 4). The grasp action is then stored in
memory (green line in the middle panel of Fig. 7) to-
gether with the associated color value (bottom panel of
Fig. 7). Note that the condition of initiation for grasp is
deactivated as this happens (blue lines in middle panel
of Fig. 6). (5) The hand pulls the green object to a new
location. (6) When the hand lets go of the object, the
CoI for the drop action is activated (blue lines in third
panel of Fig. 6). (7) When the corresponding CoS of
drop is activated (green line in same panel), the hand
begins moving away from the green object. At this point
the drop action is stored in memory (red line in middle
panel of Fig. 7) together with the color value (bottom
panel of Fig. 7).

4.2 Successful detection of an action:
Condition of Satisfaction (CoS)

The hypothesis about the type of action that is cur-
rently being observed can either be true or false. We
now show in detail how the architecture confirms such
a hypothesis. We use a reaching action as an example.
Other actions are detected analogously. Fig. 8 shows
time courses (left column) of all dynamic elements that
make up an action detector together with a sequence of
snapshots (right column) taken from the camera stream
at key moments. Plotted are activation values (dashed
lines) and sigmoided activation values (solid lines) for
the CoI, CoF, and CoS nodes of the ‘reach’ detector.
(1) Initially, the hand is not yet moving and all nodes
are below the threshold. (2) As the hand is approaching
the green object, the condition of initiation (CoI) for
‘reach’ is activated. This represents the hypothesis that
the human operator is reaching for the green object.
(3) When the hand stops on top of the green object,
the condition of satisfaction (CoS) of the reach action
is activated. Thus, the hypothesis is confirmed and the
system signals that it has detected a reaching action for
the green object. This activates the reach node in the
memory subsystem as well as the associated features of
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Fig. 6. Time courses and activation snapshots of the architecture for a demonstration in which an actor moves its hand above a red
object, stops on a green object, and transports it away. The activation in the DF on the bottom left is color coded with blue denoting
subthreshold and red denoting suprathreshold activation. See text for details.

the object (i.e., the color green). The CoI is inhibited
by the CoS.

4.3 Failure to detect an action: Condition
of Failure (CoF)

How does the architecture reject a false hypothesis
about an observed action? Again, we use a reaching ac-
tion as an example. Fig. 9 shows time courses similar to
those before but now in a scenario in which the reaching
action is aborted halfway. (1-2) The first two events are

similar to the same events in the previous demonstra-
tion of Fig. 8: the hand moves toward the green object.
As before, this establishes the hypothesis that the ob-
served action is a reach toward that object. (3) As the
hand stops before actually reaching the green object,
the condition of failure (CoF) is activated. This inhibits
the CoI and resets it to its initial state. (4) Once all
nodes have relaxed, the system is ready to detect new
actions.

Fig. 10 shows time courses of a similar demonstra-
tion for a grasping action. (1-3) The reach for the green
object is successfully detected and the action stored
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Fig. 7. Time courses of the action detectors (top left) and contents of the action memory system (middle and bottom left) for the
same demonstration as shown in Fig. 6. See text for details.

across these first three events in time. At the third event,
the architecture establishes a hypothesis that it is ob-
serving a grasping action of the green object. (4) When,
however, the hand begins to move away from the object
instead and then stops far away from the object, the

condition of failure (CoF) of the grasp detector is acti-
vated, leading to the rejection of the grasp hypothesis.
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Fig. 8. Detection of a successful reaching action: condition of satisfaction (CoS).

Fig. 9. Detection of a failed reaching action: condition of failure (CoF).
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Fig. 10. Detection of a failed grasping action.

4.4 Updating the objects of the parsed
action

Finally, we highlight how the system selects an object
when it establishes a hypothesis about an observed ac-
tion (see Fig. 11). (1) Initially, the hand does not move
and the green object is selected from a previous action.
(2) When the hand starts to move toward the red ob-
ject, the CoI for ‘reach’ is triggered while the attention
switches to the red object (right panel, second row).
(3) When the hand begins to move away from the red
object and starts to move toward the green object, at-
tention switches back to the green object. (4) When the
hand stops on top of the green object, this triggers the
CoS of the reach action. The initial hypothesis ‘reaching
for the red object’ is updated to ‘reaching for the green
object’ before it is confirmed and stored in memory.

5 Discussion
In this paper, we have presented a proof-of-concept
neural-dynamic architecture for action parsing based on
dynamic fields (DFs). Our choice of the DFT frame-
work, on the one hand, allows us to use the principles
for building cognitive architectures coupled to a sensory
system, developed in this framework [5, 6, 10, 14]. On
the other hand, we have extended the principles of DFT
for detecting and representing events (actions), which
are extended in time.

In particular, the DFs in our architecture serve the
following functions. First, DFs create stabilized memory
representations of transient perceptual states or events.
This enables the higher-level action detectors to use in-
formation that is collected at di�erent points in time
and conserved until the final decision may be made
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Fig. 11. Continuous update and reselection of the hypothesized target object of an action.

about the identity of the observed action. Second, the
continuous dimensions of DFs allow to keep graded in-
formation about the features of the target object as well
as its location and spatial arrangement in memory. In
the demonstrations presented here, only the color of
the target object is used as the parameter of the ac-
tions. However, we are currently working on incorporat-
ing more complex features for object representation [22].

The parsing architecture presented here adds the
following functionality to DFT: first, we extend the in-
tentional structure, introduced in DFT in the context
of behavioral organization for action generation [9], to
account for autonomy of action perception. Here, it is
critical that actions perceived by the agent are not in-
stantaneous but have a temporal structure. This in-
cludes the moment when the action is perceived to be
initiated (CoI), is unfolding, and is perceived to be fin-
ished (CoS). In the parsing architecture, the pairs of CoI
and CoS nodes accomplish detection of such extended
events. Detection of the successful accomplishment of
the observed action triggers the learning process, which
stores the action and its parameters in memory. The

condition of failure node detects when the hypothe-
sized action is not perceived and thus is withdrawn. The
proof-of-concept architecture presented here can be ex-
tended to encompass a larger action repertoire, based
on our work on behavioral organization and hierarchi-
cal serial order [9, 23, 24]

Other approaches to action parsing often lack the
capability to autonomously detect and represent criti-
cal events from the sensory flow. For instance, Lee and
Demiris use low-level action detectors to analyze move-
ments of the hand relative to the object, as well as the
presence of objects, and the distance between the hand
and the object [25]. The output of these detectors is an-
alyzed with an HMM and context-free grammars, each
representing di�erent actions, known to the agent. Al-
though it is hard to compare our proof-of-concept ar-
chitecture with this elaborate system, our action pars-
ing architecture features stability of the representation
of the detected events and an online decision making
mechanism, which leads to increased autonomy. Indeed,
in order to construct an HMM, the system by Lee and
Demiris needs an external signal to decide which obser-
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vations are valid. The parsed actions may only be inter-
preted in the context of the whole sequence. In the archi-
tecture presented here, on the other hand, the outputs
of the detectors are stored in a neural-dynamic mem-
ory of the system and the hypotheses about the action
identities are confirmed or rejected on the fly as the be-
havior unfolds. In that regard, our architecture di�ers
from other action parsing architectures that focus on
movement segmentation and do not tackle the problem
of parsing actions in terms of their intentional structure
and target objects (e.g., [26]). Thus, not only the label
for the action is stored in our system in the serial or-
der memory, the features of the target object, at which
the action is directed, are also selected and stored au-
tonomously. The architecture is flexible and our demon-
strations show how an initial hypothesis about the cur-
rently observed action and its target object may be
changed.

This architecture is the first step toward a fully-
fledged action parsing architecture, which should in-
clude a much richer vocabulary of available actions [1].
For each new action in the agent’s repertoire, its action
detector needs to be coupled to the sensorimotor sys-
tem. Understanding how this coupling can be achieved
in a learning process and thus how action detectors may
be organized autonomously is part of our research pro-
gram [27]. We are currently also working on exchang-
ing the computer vision preprocessing stages of our ar-
chitecture with neural-dynamics versions, in particular,
incorporating a neural-dynamic model for the motion
analysis [18].

An obvious application of the action parsing archi-
tecture is imitation learning [28, 29]. In imitation learn-
ing, the representation of the parsed sequence needs to
be coupled to the agent’s own sensorimotor system so
that the observed sequence may be reproduced. In the
architecture presented here, the observed sequence is
stored in connections from the ordinal nodes to the in-
tention nodes of the action detectors and the DF, which
represents colors of the target object. During sequence
replay, the ordinal nodes may be activated in a sequence
and, through the learned connections, activate the in-
tention nodes and the target field. Linking both of these
structures to the sensorimotor system of the agent has
been demonstrated in our previous work [8, 9] and con-
sequently, the stored sequence may be replayed by the
agent, leading to action imitation based on visual ob-
servation.
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