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Abstract—A core requirement for autonomous
robotic agents is that they be able to initiate actions to
achieve a particular goal and to recognize the resulting
conditions once that goal has been achieved. Moreover,
if the agent is to operate autonomously in complex
and changing environments, the mappings between in-
tended actions and their resulting conditions must be
learned, rather than pre-programmed. In the present
work, we introduce a method in which such mappings
can be learned within the framework of Dynamic Field
Theory. We not only show how the learning process
can be implemented using dynamic neural fields, but
show how the adaptive architecture can operate on
real-world inputs while controlling the outgoing motor
commands. The proposed method extends a recently
proposed neural-dynamic framework for behavioral
organization in cognitive robotics.

I. INTRODUCTION

Complex behaviors performed by cognitive
robotic agents may be segregated in a number of
elementary behaviors (EBs), performed simultane-
ously and/or sequentially. Each EB links the agent’s
perceptual system to its motor system in a behavior-
specific manner [3]. Complex actions require the
coordination between a number of simpler EBs,
such that each EB is activated in the appropriate
order, persists as long as necessary in order to
achieve its behavioral subgoal, and is ultimately
deactivated when this goal is achieved. We have
recently introduced a neural-dynamic framework, in
which such an organization of the robot’s behaviors,
composed of structurally simpler EBs, was realized
[8]. In this framework, each EB consists of two
coupled dynamical structures, which determine an
elementary behavior’s intention and its condition

of satisfaction (CoS). The intention comprises be-
havioral parameters, which eventually bring about
either an overt or an internal action, whereas the
condition of satisfaction is a perceptual indicator,
by which the agent recognizes the completion of
the EB. We have previously demonstrated how
sequences of goal-directed actions may be gener-
ated in this framework by linking a neural-dynamic
architecture for behavioral organization to sensors
and motors of a Nao robot [9, 8]. We have also
demonstrated how sequences of EBs may be learned
from delayed rewards by combining the neural-
dynamic architecture with reinforcement learning
and making use of eligibility traces [7]. However,
the structure of an EB, i.e. the coupling structure
between the intention and the CoS of a behavior in
these prior models was hand-designed as part of the
architecture. In the present work, we demonstrate
how this coupling may emerge autonomously in
the framework of Dynamic Field Theory, using an
associative learning rule, along with a set of built-
in internal drives, or needs, and a scalar rewarding
input when the need is satisfied.

II. METHODOLOGICAL BACKGROUND

A. Dynamic Field Theory

Dynamic Field Theory (DFT; [12]) is a mathe-
matical framework, which has been used to model
neural-dynamic processes that underly behavior.
DFT architectures are well suited for robotic control
systems due to their ability to form and stabilize
robust categorical outputs from noisy, dynamical,
and continuous real-world input. DFT has been



applied in robotics at different levels, from low-level
navigation dynamics with target acquisition based
on vision [2] to object representation, dynamic
scene memory, and spatial language [11], as well
as sequence generation [10].

The basic computational unit in DFT is a dy-
namic neural field (DNF). DNFs represent activa-
tion distributions of neural populations, as opposed
to classical neural network architectures whose
computational units are at the level of individual
neurons. A DNF’s activation is defined over con-
tinuous dimensions (e.g., color or space), which
characterize sensorimotor systems and task space
of the agent. This activation develops in continuous
time based on a dynamical equation analyzed by
Amari [1]. As a result of non-linearities in the
DNF’s dynamics and lateral interactions within
neural fields, stable localized peaks of activation
emerge from distributed, noisy, and transient input.
These activation peaks represent perceptual objects
or motor goals in the DFT framework. Multiple
coupled DNFs spanning different perceptual and
motor modalities can be composed into complex
DFT architectures.

B. Elementary behaviors (EBs)

A generic structure of EBs (Fig. 1) has been
proposed recently in the framework of Dynamic
Field Theory [9]. Each EB consists of an intention
and a condition of satisfaction (CoS) DNFs. An
active intention DNF either modifies the percep-
tual system of the agent or impacts on the motor
dynamics of the agent directly. The CoS DNF
detects and stabilizes a perceptual signal that the EB
has successfully achieved its intention. To enable
this, two inputs converge on the CoS DNF: one
from the intention DNF and the second one from
the perceptual system. If the two inputs match in
the dimension of the CoS DNF, an activity peak
emerges in this field, inhibiting the intention DNF
of the EB.

The intention and CoS DNFs are associated
with intention and CoS dynamic nodes respectively,
which facilitate the sequential organization of EBs.
While the DNFs are relevant for intra-behavior
dynamics, such as in selecting the appropriate per-

Fig. 1: Schematic representation of a generic ele-
mentary behavior.

ceptual inputs for the behavior, the dynamic nodes
play a role on the level of inter-behavior dynamics
(i.e., switching between behaviors). In our previous
work, we have shown how EBs may be chained
according to rules of behavioral organization [8, 9],
serial order [10, 5, 4], or the value-function of a
goal-directed representation [7].

C. Condition of satisfaction

The condition of satisfaction DNF generates a
signal, which denotes that the intention of its EB
is successfully achieved. For instance, the CoS
DNF for the behavior ‘go to the red object’ could
detect when a large red object is present in the
visual field, or when the robot is below a distance
threshold to the target object. In our neural-dynamic
framework, the CoS is specified by the choice of the
dimension(s) of the CoS field and by the synaptic
connection weights from the intention field to the
CoS field. While the dimensions of the field reflect
which sensory dimensions the robot is sensitive to,
the weights shape the pre-activation in the CoS field
and make specific regions of the field sensitive to
perceptual input.

In our previous work, the perceptual input, which
activated the CoS of all behaviors, was ‘hardcoded’
into the architecture. We designed both the dimen-
sions of the CoS field and the synaptic weights
converging on the field to produce a CoS signal (i.e.,



a peak in the CoS field) only in environmental situ-
ations that we, the designers, felt appropriate. With
architectures built in this way we have successfully
shown autonomous behavior of robotic agents (see,
e.g., [8]). Here, we address the question of how
such architectures could come about by autonomous
learning.

III. LEARNING THE CONDITION OF
SATISFACTION

Here, we present a straightforward but effective
mechanism for learning the CoS, using a variant
of associative learning, gated by reward. To enable
CoS learning, the basic structure of an EB is aug-
mented by two components. First, the connection
weights between the intention and the CoS DNF
are made plastic, with a learning rule that combines
associative and reinforcement learning. In particu-
lar, when a rewarding signal is received, learning
between the intention and CoS fields is enabled,
i.e. the connection weights between these DNFs
are modified according to a simple Hebbian-like
learning rule (section III-A). The rewarding signal,
in its turn, comes from the second new element
– a number of internal drives, which motivate the
agent’s behavior. These drives can most closely be
compared to the prototypical drives suggested by
Woodworth, e.g. hunger and thirst [13]. Drives
such as these serve as internal forces that initiate
behaviors and agents are rewarded when the drives
are satisfied [6].

Fig. 2 shows an exemplar mapping between one-
dimensional intention and CoS DNFs. In the case
of one-dimensional DNFs, the coupling between
them is a 2D mapping. Here, only two locations
of the intention DNF are associated with respective
two locations in the CoS DNF. More complex and
high-dimensional mappings may be realized in DFT
in an analogous way [11]. Such associations are
dynamically encoded as memory traces, or localized
preshapes, in the dynamics of the mapping.

A. Reward-gated associative learning
The learning process in our architecture leads to for-

mation of the memory traces in the dynamical mapping
between the intention and the CoS DNFs. Let u(x, t) be
the intention DNF, which evolves in time according to Eq.
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Fig. 2: A simple mapping between one-dimensional
intention and CoS dynamic neural fields. Here,
the two pre-shape bumps indicate the two learned
mappings from intention to CoS.

1 [1] and v(y, t) be the CoS DNF (Eq. 2). x is the motor
parameter, which spans the dimension, over which the
intention DNF is defined, y is the respective perceptual
parameter of the CoS DNF:

τ u̇(x, t) = − u(x, t) + hu +

+

∫
f(u(x′, t))ω(x′ − x)dx′ −

− c

∫
f(v(y, t))dy + It(x, t), (1)

τ v̇(y, t) = − v(y, t) + hv +

+

∫
f(v(y′, t))ω(y′ − y)dy′ −

+

∫
W (x, y, t)f(u(x, t))dx+

+ Isens(y, t). (2)

Here, hu, hv are resting levels of the DNF dynamics,
f(·) is the sigmoidal non-linearity shaping the output
of the DNFs, ω(·) is the lateral interaction kernels, c
is the constant regulating strength of the homogeneous
inhibition from the CoS DNF to the intention DNF, It
is the task (motivational) input, Isens is the sensory in-
put, W (x, y, t) is the two-dimensional weights function,
which maps output of the intention DNF onto CoS DNF
(see Fig. 2).



Fig. 3: CoS learning architecture. See main text for details.

The mapping W (x, y, t) is updated according to a
simple reward-driven learning rule, Eq. 3:

τlẆ (x, y, t) = λR(t)
(
−W (x, y, t) +

+ f
(
u(x, t)

)
× f
(
v(y, t)

))
·

· f
(
u(x, t)

)
× f
(
v(y, t)

)
, (3)

where f
(
u(x, t)

)
× f

(
v(y, t)

)
= f

(
fy(u(x, t)) +

fx(v(y, t))
)

is a sigmoided sum of the output of the
intention DNF, extended along y (the dimension of the
CoS DNF) and the output of the CoS DNF, extended
along x (the dimension of the intention DNF). The
weights W (x, y, t) are updated when a reward signal
R(t) is perceived and they are updated at locations, where
the overlap between the two projections (fx and fy) is
positive. When updated, the weights converge towards the
outputs of the DNFs.

Fig. 3 illustrates a sketch of the learning architecture.
In the following we present an implementation of this au-
tonomous neural-dynamic architecture in a simple robotic
scenario in a physical environment.

IV. IMPLEMENTATION AND RESULT

Here, we present an implementation of the learning
mechanism in a simple scenario in a physical environ-
ment. It is important to note that the mechanism we
described earlier is very general and works with different
types of EBs and perceptual inputs other than the ones

Fig. 4: CoS learner’s environment.

we describe here. The robotic system we used in our
experiments consisted of an ePuck, equipped with a color
camera (shown in Fig. 4). The robot was put in an
environment, which contained several object of different
colors. The robot needed to search its environment for
objects of certain colors in order to satisfy its internal
drives. The drives, provided to the robot, were loosely
called ‘hunger’ and ‘thirst’. The drives became active
at different times: With the hunger drive active, reward
occurred when a red object was in the image; when thirst
was active, reward was achieved with a yellow object.

The robot could move around the arena, guided by
simple search dynamics. The camera images provide
input to a two-dimensional perceptual field [10], with
one dimension as color hue (separated into 15 bins) and
the other as the image columns. Along each column of



the camera image, the hue of the pixels was summed
to provide input to a certain location in the perceptual
field. Activity peaks were formed in the perceptual field,
detecting color objects along the horizontal dimension of
the image. Positive activation in the perceptual field was
projected onto the hue dimension and provided input to
the CoS field. However, the CoS field could not achieve
a peak without either a reward signal, which uniformly
boosts the CoS field, or a targeted boost (preshape) from
the intention field. The goal of the learning process was
to learn the connection weights from the intention field.

The function of teacher-provided reward signal was to
provide a boost to the CoS field activation. This boost
allowed a peak to emerge in the output. Due to this peak,
the CoS field and intention field had nonzero output at
the same time. Under these conditions, the associative
learning rule adapted the weights between the particular
intention that is on (corresponding to which basic drive
is active) and the CoS field.

However, other colors besides the one causing the
reward were perceived and might be incorrectly asso-
ciated with the drive’s satisfaction. Thus, the robot has
to get the reward in different perceptual contexts, and,
since the true conditions of satisfaction have a low
variance, and the incorrect perceptual conditions have
high variance, the incorrect percepts will be averaged
out by the associative Hebbian learning dynamics. Fig. 5
shows a snapshot of the system in action. After about 5
minutes in this simple environment, where we moved the
objects around so many contexts could be experienced,
the correct mappings were learned.

Once the weight matrix is learned, the reward becomes
unnecessary to achieve satisfaction. The weights provide
a sufficient boost to activate the CoS. This boost is se-
lective for the perceptual conditions under which reward
was achieved.

V. CONCLUSION AND OUTLOOK

Learning CoS amounts to learning a coupling structure
between the intention of the EB and the respective
CoS. In this coupling structure, an anticipation is rep-
resented of the forthcoming state, which terminates the
action. To learn this coupling, the agent must be able
to perceive an elementary reward signal, which might
be driven by genetically encoded internal drives, such as
hunger, thirst, curiosity, or by the emotional system of the
agent. The learning mechanism presented in this paper
is closely related to classical conditioning, where the
internally generated reward corresponds to the reaction
to the unconditioned stimulus, and the learned CoS to
the conditioned reaction. This fundamental mechanism is
at the core of the cognitive processes, and has been shown
to be important for shaping the behavioral repertoire of
an intentional agent.

Fig. 5: Snapshot of the robot’s dynamic fields. The
peak in the Intention Field reflects the currently
active drive. In the Perceptual Field, the colored
objects (yellow, red, blue) provide inputs at different
locations. For this drive, the color yellow in the
center causes a reward, which gates adaptation in
the weights from intention to the CoS field. When
the robot experiences the reward in many different
contexts, the incorrect cues in the CoS weights are
diminished over time. The end result is that when
this drive is active and the robot sees the color
yellow in the center of the image, the CoS field
peaks (correctly), and the behavior leading to the
drive satisfaction will complete.
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