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ABSTRACT
In artificial vision applications, such as tracking, a large
amount of data captured by sensors is transferred to pro-
cessors to extract information relevant for the task at hand.
Smart vision sensors offer a means to reduce the computa-
tional burden of visual processing pipelines by placing more
processing capabilities next to the sensor. In this work, we
use a vision-chip in which a small processor with memory is
located next to each photosensitive element. The architec-
ture of this device is optimized to perform local operations.
To perform a task like tracking, we implement a neuromor-
phic approach using a Dynamic Neural Field, which allows
to segregate, memorize, and track objects. Our system, con-
sisting of the vision-chip running the DNF, outputs only the
activity that corresponds to the tracked objects. These out-
puts reduce the bandwidth needed to transfer information as
well as further post-processing, since computation happens
at the pixel level.

CCS Concepts
•Computing methodologies→Object detection; Track-
ing; Massively parallel and high-performance simulations;
•Computer systems organization → Embedded sys-
tems; Cellular architectures; •Hardware → Cellular
neural networks; Sensors and actuators; •Mathematics of
computing → Differential equations;

Keywords
Dynamic Neural Fields; Vision chip; Tracking; Cellular Pro-
cessor Array; Cellular Neural Network; Artificial vision; Lo-
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1. INTRODUCTION
Video and imaging systems are ubiquitous and applica-

tions, in which visual sensing devices are employed, are di-
verse: imaging and recognizing defects in industrial prod-
ucts or pathologies in medical images; visual navigation sys-
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Figure 1: An illustration of the system implemented
in this work: A vision-chip is directed at a scene
and captures a stream of images processed on-chip
in a saliency map. This map is fed as an input to a
Dynamic Neural Field (DNF), also run on-chip and
used for tracking objects. The system either outputs
frames of the 2D activation of the DNF or the sole
(x, y) centers of the bumps of activity on the DNF.

tems for mobile platforms; 3D object scanning or environ-
ment mapping; as well as surveillance scenarios. In many
of these applications, tracking of objects or features holds
a prominent place. Such applications require systems to
extract relevant information and to deal with the collec-
tion and processing of a massive amount of data coming
from, in some cases, a large number of sensors. A way to
address this challenge is to equip these sensors with more
processing capabilities, thus avoiding a communication and
processing bottleneck. This can be done either in the form
of smart sensors featuring one or more processing units sit-
ting next to the sensing chip, or in a more radical approach
with architectures which integrate sensing and processing
even tighter, directly on-chip in Application Specific Inte-
grated Circuit (ASIC). Such a system must then realize a
difficult trade-off between several contradicting constraints:
be low-power, present a small form-factor, feature interest-
ing computational properties, and run at a low latency.

In this work we propose an approach using an algorithm
running on such a vision-chip that embeds an array of pro-
cessors [2]. The vision-chip consists of processing elements
with memory organized on a grid; each of them is placed



next to a photosensitive element. Each pixel is thus able to
perform local simple ”arithmetic” operations. In this vision-
chip, all processors can operate simultaneously on their own
local piece of data captured at each pixel. This fine-grained
massively parallel processing substrate can therefore achieve
array computation very efficiently without having to incur a
cost for transferring data from and to an external memory.
Such array computations are common in image processing
and computer vision tasks, where the same operation is re-
peated on all the pixels.

Tracking objects based on visual input is a computation-
ally challenging task that might require processing at high
frame rate and thus rely on a substantial bandwidth between
the sensor and the unit processing the data. Deporting part
of the tracking to the sensor avoids this bottleneck by of-
floading the computation to the periphery.

To profit from the many advantages of this device, specif-
ically its intrinsic ability to perform local computation, we
propose a local approach to tracking that makes use of a
neuromorphic algorithm in the form of a dynamical system
known as a Dynamic Neural Field (DNF) [25]. Even though
tracking might not appear as a problem that can be solved
with simple local computations, we demonstrate that the
DNF behaviours allow us to do so. Furthermore, we show
that DNFs can be naturally mapped on the device and that
the hardware features present on-chip provide an efficient
way to simulate their dynamics.

DNFs originate as a mathematical description of activity
patterns in neuronal populations in both visual and motor
brain cortices [22, 24]. Conceptually, a DNF is an attractor
dynamics of a continuous activation function spanned over a
behavioural dimension, e.g. the visual space. As a dynami-
cal system, DNFs have a peculiar stable solution–a localised
bump of increased activity. These localised activity bumps
transform the continuous representation of the behavioural
space (e.g. space of visual locations) to a discrete, cate-
gorical, and sparse representation of, e.g., perceived objects
in space. The DNFs have been used in the past both to
account for psychophysical data [25, 7] and to control cog-
nitive robots, in particular realising object recognition with
fast, one-shot learning [8], scene representation for human-
robot interaction [1], organisation of robotic behaviour [18],
or action recognition [11].

However, application of the DNFs in real-world techno-
logical systems, e.g. to solve problems in artificial vision,
is limited by the computational complexity associated with
solving the high-dimensional (in theory, continuous) dynam-
ical system equation in real time. Our implementation of the
DNF dynamics in vision-chip is fast and scalable, potentially
allowing to implement large DNF architectures that can run
in real time and be used in real-world applications.

In this paper, we present the first implementation of a
DNF in the computing array of a vision-chip and demon-
strate its efficiency in a tracking task. We start with a brief
overview of the theory and functional properties of Dynamic
Neural Fields that enable their application in vision tasks,
in particular, tracking (Sec. 2). Then, we present the details
of the vision-chip hardware used in this work and explain
how the DNF equation can be efficiently implemented in
this hardware (Sec. 3). Finally, we present results of ex-
periments that demonstrate functionality of the developed
system (Sec. 4) and conclude with an analysis of directions
for future research (Sec. 5).
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Figure 2: Activation of a simulated 2-dimensional
dynamic neural field. Bottom: input to the DNF is a
noisy activity pattern with four regions of increased
activity (S(x, t)). Middle: in the activation of the
DNF, u(x, t), two of the locations with higher activity
are above activation threshold and are strengthen by
the lateral interactions. Top: the output of the DNF
(f(x, t)) contains only two bumps that represent the
locations of the most salient objects.

2. TRACKING WITH DYNAMIC NEURAL
FIELDS

The Dynamic Neural Fields theory
The activation of a Dynamic Neural Field (DNF) follows the
dynamical system equation, Eq. (1):

τ u̇(x, t) = −u(x, t) + h

+

∫
f
(
u(x′, t)

)
ω(x, x′)dx′ + S(x, t).

(1)

Here, u(x, t) is the activation function at time t of a DNF,
defined over a parameter space x that describes the state
of the system (in this work, x is the image space, u(x, t)
corresponds to the saliency, observed for each position in
the image). −h is a negative resting level that sets values of
u(x, t) to be below zero (the output threshold) in absence of
an external input. S(x, t) is the external input (e.g., from
the sensor). f(u) is a sigmoidal non-linearity (Eq. (2)) that
shapes the output of the DNF: the output is zero for values
of u(x, t) that are negative and the output is positive for
positive u(x, t), saturating for larger values of u(x, t):

f
(
u(x, t)

)
= (1 + e−βu(x,t))−1. (2)

ω(x, x′) is the interaction kernel that determines connec-
tivity between positions x and x′ on the DNF (i.e., lateral in-
teractions). Typically, the interaction kernel has a “Mexican
hat”shape with a short-range excitation and a long-range in-
hibition (Eq. (3)), leading to segregation of localised bumps
in the DNF.

ω(x, x′) = cexce
− (x−x′)2

2σ2exc − cinhe
− (x−x′)2

2σ2
inh . (3)

Fig. 2 shows a simulated 2-dimensional DNF. The DNF re-
ceives a noisy input with four regions of higher input strength.
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Figure 3: A block diagram that illustrates how the
computational scheme of a DNF equation can be
cast in the framework of Cellular Neural Networks:
Ni,j is a neighbourhood of the cell (i, j), τ−1 is mul-
tiplication with the time-constant factor, f is a sig-
moid non-linearity, z−1 stands for a delay of a unit
of time.

The DNF dynamics and in particular the lateral interac-
tions lead to strengthening of two of the input bumps, which
reach the activation threshold and suppress the other bumps
and the noise–the DNF “selects” the stronger of the inputs
and stabilises their representation. Output of the DNF,
f(u(x, t)), thus contains two stabilised activity peaks that
correspond to locations of the two more salient objects.

Functional properties of DNFs
From a functional perspective, the DNF dynamics has the
following properties that may be exploited in vision appli-
cations: (1) the low-pass filter characteristics of the DNF
dynamics suppresses noise of the sensory input; (2) the lo-
cal lateral excitation leads to stabilisation of a localised-
peak attractor of the DNF, leading to a “detection instabil-
ity” which marks detection of a sensory object in the input
and stabilising a place-coded representation of this object
or its attributes; (3) the lateral inhibition suppresses input
from other locations in the DNF and stabilizes the “selec-
tion decision”, thus avoiding oscillations between competing
strong inputs; (4) at sufficiently strong lateral interactions,
the DNF can sustained a memory: the DNF activity at the
location of a strong input is kept positive even if input dis-
appears or goes below activation threshold.

Exploiting these properties, DNF architectures have been
used in robotic applications [18, 1]. Tracking with DNFs has
been demonstrated in a robotic table-top scenario [8] along
with object recognition and object pose estimation. How-
ever, application of the DNFs in robotic or computer vision
tasks has been demonstrated in simplified lab settings. Dis-
cretization of the DNF dynamics both in time and in space
on a conventional computer is a computationally demanding
task. For instance, a two-dimensional DNF, discretized to
an 100x100 array with a truncated 5x5 kernel, one iteration
of the Eq. (1) takes several milliseconds on an average work-
station. Parallellisation of the DNF dynamics on, e.g., a
GPU is possible, but does not lead to computational break-
through, since DNF dynamics relies on continual integration
of new sensory input and exchange between field locations.

From a computational perspective, DNFs can be cast in
the framework of Cellular Neural Networks (CNNs) [6, 5].
We represent a block diagram of the operation of a cell of
our DNF in Fig. 3, whose similarities with block diagrams
in the CNN literature [16] can be trivially established. This
interpretation of the DNF is useful to realise it in hardware
in this work, as it will become clear in the following section.

3. HARDWARE IMPLEMENTATION OF A
DNF ARCHITECTURE FOR TRACKING

Cellular processor arrays and vision-chips
We consider smart vision sensor that combines both sensing
and processing on the same substrate. It consists of an array
of cells–that we also refer to as Processing Elements (PEs),–
each comprising an Arithmetic Logic Unit (ALU) with some
memory (registers) and including a photosensitive element
to capture light. The architecture we consider also provides
a way to communicate data from adjacent cells and is re-
ferred to as a Cellular Processor Array (CPA) [17, 9, 10].
Such a vision-chip architecture presents several advantages:
first, by collocating a sensor with a processor array one ben-
efits from very low latencies to access information. Data to
be processed lies where it is collected, contrary to more con-
ventional massively parallel processor array architectures in
which tremendous amounts of data transfers between mem-
ory and processing units constitute a classical bottleneck.
This principle consisting in processing luminance data where
it is integrated is commonly referred to as near focal-plane
processing [23]. Secondly, sensing and processing can be
performed in parallel; in other words, it is possible to carry
out computation as light is being integrated, thus “masking”
the computation time of the ALU. Since the photosensitive
element is accessible directly from the ALU, it can be con-
sidered to act as a light-sensitive register, whose value in
time varies depending on the amount of light falling onto the
pixel. This allows us to write algorithms in which sensing
can affect the computation in a tight sense-compute loop.

This approach has been successfully demonstrated to ad-
dress computationally expensive problems such as in High
Dynamic Range imaging [12, 13], in message passing algo-
rithms for visual inference [14] or as in the case of DNFs: for
the simulation and resolution of Partial Differential Equa-
tions [15].

Architecture of the SCAMP-5 vision-chip
In this work we use a SCAMP-5 vision-chip [3] for the im-
plementation of the DNFs. A peculiarity of this device is
the design of its PEs featuring a mixed-signal circuitry [2]:
each cell includes seven analog registers and thirteen single-
bit digital registers. This design allows a reasonable trade-off
between the silicon area required to implement the ALU and
its registers, its power consumption, and the “computational
primitives” it provides. Precisely, SCAMP-5 features an ar-
ray of 256× 256 PEs achieving up to 655 Gop/s (operations
per second) for a power consumption of less than 1.2W.

Using current-mode computation, the analog part of the
ALU can efficiently implement addition, negation (and there-
fore subtraction), and multiplication by constants at almost
no silicon cost. An analog squarer allows us to compute
the normalized square value of an analog register and can
therefore be used as an analog multiplier to modulate two
quantities. Finally a comparator allows to check the sign of
a quantity. The digital part of the ALU incorporates cir-
cuitries to “OR” and negate the digital registers.

PEs can be masked using an activity flag. Program in-
structions received by the set of masked processing elements
are not executed. This mechanism realizes conditional branch-
ing. The activity flag can be loaded from the analog com-
parator or from the digital logic.
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Figure 4: An illustration of SCAMP-5 showing a
Processing Element and the features it includes.

In line with other CPA designs, a communication network
enables each PE to write in a local register that can be read
by the four adjacent neighbours hence allowing to shift data
from one PE to another. In addition, a resistive network
between the analog buses of the PEs can be used to diffuse
the value of an analog quantity between PEs, practically
allowing us to carry out operation of convolution with a
Gaussian kernel.

The instructions are fed into each PE by an Instruction
Processing Unit (IPU) implemented on a Field Programmable
Gate Array (FPGA) physically lying behind the vision-chip.
The same instruction is dispatched by the IPU to all the
vision-chip processing elements that execute it on their own
local piece of data. In this Single Instruction Multiple Data
(SIMD) paradigm, it is particularly easy to perform array
computations for which the same operation needs to be car-
ried out element-wise.

To output data from the device, both digital readouts
from the single-bit register planes as well as analog readouts
after an Analog-to-Digital Conversion (ADC) stage can be
achieved. Another interesting feature is the ability to pro-
duce Address Event Representations (AER), in which only a
very limited set of PEs can be read and output. We use this
representation to output only the centres of the detected and
tracked objects in this work. As a consequence of the dras-
tic bandwidth reduction it induces, it is possible to output
AER at a much faster rate, eventually as fast as [4].

The system is programmable in software using a Domain
Specific Language (DSL) and a toolchain including a pro-
gramming environment with a compiler, debugger, an inter-
face to harness the SCAMP-5 vision-chip, eventually post-
process and visualize multiple outputs from the device.

A match between DNFs and SCAMP-5
Because SCAMP-5 is a software-programmable device, we
can realise a DNF implementation and exploit the features
of the hardware such as its massive parallelism, its built-
in computational primitives–in particular, the diffusion–and
its low latency in sensing/processing for tracking.

Specifically, the numerical simulation of the differential
equation governing the behaviour of the DNF can be im-
plemented in discretized time-steps. According to Eq. (1)
and Fig. 3, every cell can update its state based on its state
in the previous iteration and other signals, some of which
vary through time. Since all cells obey the same differen-

Algorithm 1 Pseudocode illustrating the DNF tracking al-
gorithm run on the CPA vision-chip

Require: u0 = [0] and Rnow = Rpre = Rpix = [0]
Require: N : number of iterations for the relaxation of the

DNF for each incoming frame
1: V ← Rnow −Rpre . Compute temporal gradient

2: |~G| ← |shiftwest(Rnow)−Rnow|
3: + |shiftnorth(Rnow)−Rnow| . Spatial gradient

4: S ← |V |+ |~G| . Compute saliency map
5: Rpre ← Rnow . Save previous frame
6: Rnow ← Rtpix . Copy current frame
7: Rtpix ← [0] . Reset pixel integration
8: for i ∈ {1, ...,N} do . Start relaxing for the frame
9: ut ← updated according to Eq. (4)

10: t← t+ 1 . Keep ut across iterations and frames
11: end for . ut has relaxed N steps for the frame
12: (Post-process to extract the centers of activity bumps)
13: Send AER centers of activity bumps or Readout f(ut)

tial equation with their own local input and only depend on
neighbours at previous time steps, the DNF model naturally
benefits from the parallelism of the SIMD device.

Computations running on a neighbourhood present the
advantage to be easily implementable on a CPA like SCAMP-
5 exploiting the direct communication between adjacent neigh-
bours and a diffusion network. Also, the DNF does not
require computationally convoluted functions such as expo-
nential, trigonometric, or hyperbolic functions–not even for
the non-linearity, as we will describe in the following–but
rather simple arithmetic operations making it a natural can-
didate to use the analog ALUs.

The external input signals (h and S(x) in Eq. (1)) are
present on-chip, S(x) amounts to the visual data captured
and pre-processed on the array. An additional advantage is
the ability to let the photo-sensitive element integrate light
as the iterations of the DNF are being performed (realising
relaxation towards an attractor) and use the visual infor-
mation captured meanwhile for the next batch of iterations.
We summarize this process in the pseudocode in Alg. (1).

Finally, in a tracking setup, one can read out the whole
register containing f(ut), i.e the output of the DNF at the
current time point, and post-process the bumps of activation
it holds to extract their centres, sizes, etc. One might also
consider an AER mode, in which the chip directly extracts
the centres of the bumps as a post-processing step of the
DNF and solely outputs them.

Formalisation of the hardware implementation
The DNF equation can be cast in a CNN framework as il-
lustrated in Fig. 3. Particularly we show in the following
how we reformulate the equation such that it maps on the
device and exploit its intrinsic properties.

Let us consider a discretized version in time and space of
Eq.(1):

ut+1(i, j) = (1− 1

τ
) · ut(i, j)

+
1

τ
·
(
− h+ St+1(i, j) +

[
f(ut) ∗ ω

]
(i, j)

)
,

(4)

where (i, j) is the spatial position of a cell in the array and
t indexes time steps of the numerical update scheme.



First, let us note that the update of the state ut+1 of a
cell results from an additive blending between its old state ut
and a term adding an offset, the input, and the interaction
with other cells.

The offset term −h is implemented in hardware filling the
registers with a constant analog input.

The input S(x) we consider for tracking is a basic“saliency

map”S = |~G|+V that combines a spatial gradient map

|~G| = |It(i+1, j)−It(i, j)|+ |It(i, j+1)−It(i, j)| and a
temporal gradient map V = It+1(i, j)− It(i, j), where
It is the light intensity captured during the previous
imaging loop of the algorithm as seen in the pseudo-
code of Alg. 1.

The cell interactions in the DNF (the kernel ω) is the
sum of a local (proximal) excitation and a broader (dis-
tal) inhibition: ω = ω+ − ω−. As a consequence, and
thanks to the linearity of the convolution operator, the
interaction with other cells can be rewritten as:[
f(ut)∗ω

]
(i, j) =

[
f(ut)∗ω+](i, j)− [f(ut)∗ω−

]
(i, j)

(5)
This decomposition shows that we can simply imple-
ment two convolutions passes with the positive kernels
ω+ and ω− – the last one having a broader span –
on f(ut) and subtract them to obtain the desired cell
interactions required for the DNF. These convolutions
can be performed in parallel on all pixels, in a very
few number of clock-cycles using the diffusion network
on-chip.

The non-linearity needs not be a sigmoid function such
as presented in Eq. (2); in fact, the desired DNF func-
tional properties as described in Sec. 2 can be obtained
with the function f : R −→ R+ satisfying the following
conditions:

f : x −→


f(x) > 0, for x ∈]−∞; 0[ : rectification

f(x) ∼ x, for x ∈ [0; Γ] : linearity

f(x) = Γ, for x ∈]Γ,+∞[ : saturation

(6)
In practice, operations on the registers we use on SCAMP-
5 saturate, therefore, a non-linear f can be imple-
mented by a simple rectifier.

Implementations on analog computing devices are usually
tricky due to various sources of “noise” degrading their per-
formance: first during computation, in which the outputs
of operations are not “exact” due to mismatch between the
components and secondly during handling in registers, par-
ticularly when storage exceeds long periods of time (analog
registers can be thought as capacitors whose values decay
through time due to leaks). However, DNFs from a dynami-
cal system point of view are robust to a certain level of noise
and thus they are excellent candidates to profit from analog
computation.

In addition, devices have a limited range: in the case of
SCAMP-5, analog registers are equivalent to holding 8-9 bits
values that are converted at the output stage at readout in
8-bits digital values. Consequently, a special care must be
taken with the operations performed on-chip. One can re-
mark that in the form of Eq. (4), the blending preserves
the range of the state ut since the update respectively scales

quantities by τ and 1− 1
τ

. In the term associated to the scal-

ing by 1− 1
τ

, in which several quantities are added, one can
remark by introducing Eq. (5) in (4), that operations with
signed quantities can be alternated. This helps to “condi-
tion” the computation in the 8-bit range on-chip by avoiding
the saturation of the registers when it is not desired.

4. EXPERIMENTAL SET-UP AND RESULTS
To demonstrate the performance of our system in tracking

moving objects, we presented video sequences on a computer
screen showing different road scenes as input to the vision-
chip. These videos were downloaded from a free online re-
source (https://pixabay.com), had a resolution of 360x460
pixel and duration of 60 seconds. The implemented DNF
was able to form localised activity bumps over moving ob-
jects in the videos (“detecting”them) and track these objects
until they disappeared from the image frame. This result is
illustrated in Fig. 5. In the figure, blue color shows nega-
tive levels of activation of a DNF (middle), red color shows
regions with positive activation. In the output of the DNF
(right), green regions have zero value, red regions have a
positive value. Note how the implemented DNF can seg-
ment and track moving objects at different speed, size, and
spatial gradient of sensed light intensity.

5. CONCLUSIONS
The system we presented is a very first implementation

of a dynamic neural field architecture on a vision-chip. We
have shown here that the system can perform tracking based
on local computation and with high efficiency in terms of
computing time and energy. The results look very promis-
ing and we will present the more detailed analysis of the
system’s performance and comparison with the state of the
art in an extended version of the paper. The main focus of
our future research will be on increasing robustness of the
system to perturbations and integration of a more sophisti-
cated saliency computation.
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