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Abstract 
Sequences are ubiquitous in any kind of behaviour from communication (syllables, words, sentences) 

to movements. Zebra finches learn a song consisting of several syllables at young age from a tutor 
and replay it later in a stereotyped manner. I present a spiking neural network model for learning 

sound sequences in a closed sensorimotor loop, inspired by bird song learning. The main building 
block of the model are dynamic neural fields (DNFs) implemented as spike-based winner-take-all 

networks (WTA). 
On the sensory side of the model, a feature-based DNF representation of the sound is mapped to a 

2D perceptual space using a spiking self-organizing map. On the motor side, sound is represented in 
a 2D field and generated using a model of the bird’s vocal organ (Syrinx).  

A mapping between the perceptual and the motor space is learned using STDP synapses. Sequences 
of sounds are acquired on two hierarchical levels: 

(1) Each syllable in a song is represented as a trajectory in the sensory space that is mapped to an 
ordered population of chain neurons that creates a representation of time. Using auditory feedback, 

neurons of the chain are then mapped to their corresponding motor representation; 
(2) A sequence of syllables is learned in a DNF-based serial order model. 
Overall, the model can learn to produce sounds and to reproduce the presented tutor sequences. I 

have tested my system on artificial stimuli so far and envision a neuromorphic closed-loop 
implementation. 
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Introduction 
Motivation for this project 
I started this project, because I wanted to know more about dynamic neural fields (DNF), as they 

possess an intriguing power to propose potential mechanisms for simple and complex cognitive 
functions. I also realized that they, what is even more intriguing, allow a modular structure and 
therefore an intuitive understanding of the working principles for even large and complex 

architectures. Which is something that probably comes with costs, but is also something I miss in 
state-of-the-art machine learning approaches: although, in my previous short project, I found some 

interpretable cells (like direction cells) in a maze solving LSTM-based recurrent neural network, it 
remains, like our brains, an “opaque box”. 

As almost all cognitive functions involve time and therefore sequential activity, it seemed natural to 

me, to deal with sequence representations in the scope of dynamic field theory (DFT), especially as 
my supervisor recently extended the theory by introducing a serial order model capable of learning 

sequences and autonomously switching through a series of attractor states in a dynamic field 
architecture (Sandamirskaya and Schöner 2010).  

As I am not only interested in the theoretical model of sequence learning, but also in applying it to a 

neurobiological problem, I chose to develop a simple model of vocal learning inspired by the 
commonly used model animal of vocal learning, the zebra finch. Inspired by previous models of 

birdsong learning (Doya and Sejnowski 1995, Leonardo and Fee 2005, Hanuschkin, Ganguli et al. 
2013) (see Fig. 2) and a DNF-based model for learning of sensorimotor transformations (Rudolph, 

Storck et al. 2015). I designed a model combining sequence learning with the learning of a 
sensorimotor map which is necessary to produce a song. 

I realized that the commonly used elements of dynamic field theory (commonly used for cognitive 

functions and not for lower level motor processes) are in fact not “dynamic” enough to tackle fast 
continuous trajectories through a dynamic field as required to produce a song syllable. Therefore, 

having the sequential bursting of the songbird nucleus HVC (Hahnloser, Kozhevnikov et al. 2002) and 
also internally generated cell assembly sequences in mammal hippocampus (Pastalkova, Itskov et al. 

2008) in mind, I introduced a synfire chain into the model that is able to almost continuously drive a 
peak through a dynamic field allowing for sensorimotor trajectories. This synfire chain could be 

integrated into DFT as a one dimensional dynamic field with an asymmetric connectivity kernel which 
leads to a drift in one direction. It potentially provides the lowest level of the DFT-based sequence 

learning hierarchy, that has a flexible behavioural organisation (Richter, Sandamirskaya et al. 2012) 
on top and the more rigid but controllable serial order model (Sandamirskaya and Schöner 2010) on 

an intermediate level (see Fig. 1). 

Although DFT provides the way of thinking about the model, for simulations, I use an implementation 
in spiking neural networks. From a theoretical point of view, this does not provide a clear advantage, 

on the contrary, it poses a challenge as spiking networks are not easy to handle and ready to use 
modules were lacking. Nevertheless, convinced by the idea that dynamic field theory can provide a 
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powerful framework for the implementation of cognitive functions into spiking neuromorphic 

hardware (Sandamirskaya 2013) and willing to advance and test this idea, I was ready to take the 
challenge.  

In the following I will introduce dynamic field theory as dynamic fields are the basic building block of 

the model and the theory provides the framework of the model presented in this thesis. 
Subsequently, I will review findings in birdsong learning that have inspired the current form of the 

model. 

 

 

Fig. 1 Proposed hierarchy of DNF-based behavioural sequence representations. On the lowest level trajectories in 

sensorimotor fields are driven by sensory input and internally generated sequences and drive muscle output. On a higher 

level, a sequence of such elementary behaviours is represented in a serial order model. On an even higher level more complex 

behavioural sequences are represented in a behavioural organization that implements certain constraints but still remains 

more flexible and can be learned with reinforcement learning. The different hierarchies act on different time scales and have 

different levels of control. While the lowest level drives short elementary movement sequences in the second or sub-second 

range behavioural organization sets the schedule for behavioural sequences in the range of minutes or hours. On the highest 

level, I put “conscious decisions”, as it seems to be the highest level of behavioural control, although, at the moment, it is 

unclear what that even means, therefore the question mark… 

 

conscious
decisions?

Behavioural organization 
(Richter, Sandamirskaya et al. 

2012)

Serial order representation (Sandamirskaya 
and Schöner 2010)

Elementary behaviour represented as trajectories on a 
dynamic field (proposed here)
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Fig. 2 Schematic of a simple model of birdsong learning in a sensorimotor loop. An inverse model of sound production that 
maps sensory states to their causing motor commands is learned using auditory feedback. Figure from Hanuschkin, Ganguli 
et al. (2013). 
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Dynamic neural fields  
Dynamic Field Theory (DFT) is a powerful framework for modelling cognitive functions based on 

dynamical systems theory. Its main idea is that computation is performed in coupled low dimensional 
continuous activation fields in which activation moves towards attractors that are dynamically 

changing with input. 

Apart from having universal computational power (Maass 2000), and substantial potential to propose 
plausible mechanisms for complex cognitive functions, the theory makes the idea of computation in 

dynamical systems more tractable as it uses the dynamic neural field (DNF) as its basic computational 
unit. This modular structure allows for an intuitive understanding of the ongoing computation and 

the construction of large and complex architectures for cognitive problems. This said, it could be 
viewed as the basis for a “neural programming language” especially for neuromorphic systems. As 

DNFs are computationally equivalent to a soft winner-take-all (WTA) network, which allows a 
biologically plausible implementation in spiking neural networks and also in neuromorphic hardware 

(Sandamirskaya 2013), the theory has the potential to unlock unused capabilities of neuromorphic 
spiking networks and might stimulate their scaling up. 

A DNF is a continuous field of activation with excitatory interaction between close field locations and 

inhibitory interactions between remote locations. But let us start from the beginning: In the following 
short introduction to DFT, which is mainly based on the book from Schöner and Spencer (2015), I first 

show the dynamics of a single one dimensional self-excitatory unit. Based on this, dynamic fields are 
introduced and how they can implement elementary cognitive functions, such as working memory 

and attention. Finally, I will briefly present a DFT based model for sequence learning. 

One dimensional dynamic system 

A single self-excitatory activation variable already shows basic features of a dynamic field and is 

therefore ideal for an introduction. The following differential equation governs the activity of such a 
unit:  

𝜏 𝑑𝑢
𝑑𝑡

= −𝑢 + ℎ + 𝑠(𝑡) + 𝑐 ∗ 𝑔(𝑢)        (1) 

with 

𝑔(𝑢) = 1
1+exp⁡(−𝛽𝑢)

          (2) 

u is the activation variable whose rate of change depends on the activation u itself, and an input that 
changes with time (s(t)). The first term -u leads to an exponential decay of the activation. The second 

term h is the resting level of the activation, which means the level to which the activation decays. 
Typically, h is negative. The fourth term, 𝑐 ∗ 𝑔(𝑢), is a self-excitatory term. Self-excitation is 

sigmoidal, which means that it does only take strong effect above a threshold, which is by convention 
0. 

When there is no or weak input, the system has a stable fixed point at the resting level h (h+s, when 

there is input) as it decays to this level. When there is intermediate input, the system shows bistability 
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as it has two stable and one instable fixed point. The instable fixed point marks the threshold at which 

the unit can be brought from resting level to the excited state. When the input gets even stronger, 
and h+s is above the self-excitation threshold the system becomes monostable again with a fixed 

point at a positive activation. This is explained graphically in Fig. 3. 

The transformation from bistability to monostability is interpreted as a decision: The system decides 
in favour of one of the two fixed points. When a decision has happened the activation remains at the 

fixed point, even if the input changes slightly and the system goes back to bistability. Only when the 
it bifurcates again to the other monostable regime, the activation switches to the other fixed point, 

so the system shows a hysteresis, called decision hysteresis. The activation levels at which the switch 
happens are called detection instability as there, the detection of significant input takes places. 

 

 

Fig. 3 Dynamics of a self-excitatory one dimensional system without (a) and with (b) external input. The form of the curve 

arises from the sum given in Eq. 1. Without input, the system has one fixed point at the resting level. With constant input, 

there are three fixed points and the system becomes bistable at the resting level and the excited level. The instable fixed 

point in between marks the threshold above which the system goes up to the excited state. When the input increases further 

the lower two fixed point disappear and only the excited state is stable. This leads to an effect called decision hysteresis (c): 

when the external input gets stronger, 𝑢̇ is shifted upwards and only when the resting state fixed point vanishes, the system 

moves to the excited state. Even when external input goes down again, it stays there until the input is so low, that the system 

undergoes bifurcation again and the excited fixed point vanishes. Figures from Schöner and Spencer (2015) 

Dynamic neural fields 

DNF work very similar to the single activation variable. A DNF is a continuous field (analogous to fields 
in mathematics and physics) of activation. Dynamics of this activation are specified by a differential 

equation that links the rate of activation change of every field location to the current activation level 
of the whole field and input to the field.  

𝜏 𝑑𝑢(𝑥,𝑡)
𝑑𝑡

= ⁡−𝑢(𝑥, 𝑡) + ℎ + 𝑠(𝑥, 𝑡) + ∫𝑘(𝑥 − 𝑥′)𝑔(𝑢(𝑥′, 𝑡))⁡𝑑𝑥′     (3) 

The first 3 terms of the equation are equivalent to the ones in the single activation case above, apart 

from dependence of the terms on the location in the field x. The fourth term defines interactions 
between the activations at the different locations in the field. The rate of change at every location x 

depends on the activation at every other location x’ (therefore the integral) dependent on the 
distance of the two locations. Interaction is excitatory for short distances and inhibitory for long 

distances. Due to this, simulation of a field is possible with a Mexican hat shaped convolution kernel. 

a      b        c 
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Analogous to the single activation case, the dynamic field shows mono or bistability dependent on 

the input (see Fig. 5).  But the attractor is now not just a fixed point, but a curve with peaks at 
locations of input. These peaks of activation can be interpreted as objects. Depending on what a field 

stands for, the location of peaks codes for the value of a parameter or feature (like e.g. physical 
location). The broadness of a peak can specify precision of a perceptual state or belief. 

 

 

Fig. 4 In an activation field, there is local excitation and global inhibition. Peaks are stabilized from decay by excitation of 

near regions and from diffusion by inhibition of more remote regions around the peak. Smaller peaks and noise are 

suppressed by global inhibition. This behaviour is characteristic for a soft-winner-take-all computation. Figure from Schöner 

and Spencer (2015). 

 

 

 

Fig. 5 Attractor states of a dynamic field. Inputs are grey and attractor states of field activation are black (dashed or solid). 

(a)a small localized input leads to a small hill that goes away, when input goes away as it exactly mirrors the input to the 

field (minus the resting level). (b) when the input becomes larger, self-excitation kicks in and a second attractor state, the 

self-excited peak, emerges. However, the system remains close to the bifurcation that lets the self-excited peak vanish again 

when input goes down. (c) With an even stronger input the self-excited peak becomes stable against input variations (d) For 

very strong input, the system is again monostable with only the self-excited peak as an attractor. These attractors can be 

seen in analogy to the ones presented in the one dimensional system in Fig. 3. Figure from Schöner and Spencer (2015). 

a 

 

b 

 
c 

 
d 
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Already with a single field, elementary cognitive functions like working memory can be modelled: 

When self-excitation is so strong, that even without external input, there are 3 fixed points, the 
system is able to “store” it’s activation once excited even when the input goes away. A reset is 
possible by inhibitory input (e.g. when a peak at another location is formed). This mechanism can be 

used to store a working memory of previous activations (see Fig. 6).  

Another kind of short term memory in DNFs with normal self-excitation emerges due to the fact that 

when the input peak moves, the activation field peak naturally lags behind, so the trajectory is low 
pass filtered.  

 

Fig. 6 Strong self-excitation leads to self-sustained peaks serving as working memory. Here, as a simplification, a single 

activation variable is shown. The self-excitation is so strong, that the system has three fixed points even when there is no 

input (compare Fig. 3a). So once in the excited state, the activation does not go back to the resting state even if the input 

vanishes. Figure from Schöner and Spencer (2015) 

With two bidirectionally connected fields, with different self-excitation parameters, categorization 
can be modelled (see Fig. 7). The strongly self-excitatory memory field remembers past above-

threshold peaks from the activation field as self-sustained peaks. Through the bidirectional 
connections, the activation field is constantly weakly activated by the peaks in the memory field. This 

sub-threshold activation is called preshaping, as it preshapes the activation field even without 
external input and makes it more easily excitable at those locations. If there is now a localized input 

in close proximity of one of the preshaped regions, the system responds with a peak at the preshaped 
region instead of the exact location of the input. This can be interpreted as categorization, as all 

inputs close to one of the preshaped locations are put in the respective category.   

 

Fig. 7 Preshape and boost leading to a decision for a learned category. The activation is pre-activated (preshaped) by an 

input (e.g. by a memory field) at specific locations which makes it more excitable at those locations. A localized input close 

to one of the preshaped regions, elicits a decision for one of the preshaped peaks when the system is “asked” for a decision 

by a boost, which means a homogenous input that shifts the whole activation up, lifting subthreshold activations above 

threshold. Figure from Schöner and Spencer (2015) 
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Apart from constrains on the time scale of the dynamics, DNFs can be implemented as spiking soft 

winner-take-all (WTA) networks. Fields are no longer continuous, but an ordered population of 
neurons that has excitatory lateral synapses and global inhibitory synapses. Global inhibition is often 

modelled with an additional population of inhibitory neurons in order to satisfy the biological 
constraint that neurons are either excitatory or inhibitory but not both. 

This implementation in spiking networks also provides the link from dynamic field theory to the brain. 

DNFs can be interpreted as populations of neurons organized in cortical feature maps that might 
have emerged through self-organization (see methods) (Schöner and Spencer 2015). Soft winner-

take-all computations are not only considered as a crucial part of cortical processing (Riesenhuber 
and Poggio 1999, Douglas and Martin 2004), but are also part of virtually every state of the art deep 

and recurrent network used in machine learning (there called softmax). WTA networks are also used 
as core components of neuromorphic electronic circuits (Indiveri, Murer et al. 2001, Indiveri, Chicca 

et al. 2009). 

 

Fig. 8 Proposed neuronal implementation of dynamic neural field with rate-based population coding. (a) Each neuron has a 

Gaussian receptive field over the encoded feature dimension (tuning curve). (b) a single neuron does not uniquely code for 

a value in the feature dimension, as two values can elicit the same activity in the neuron. (c) If we look on all neurons 

however, the stimulus value is uniquely encoded (population coding). Looking at the whole population in an ordered way 

(as a field), there is a peak around the neuron that responds most strongly to the stimulus value. Figure from Schöner and 

Spencer (2015) 

 

DFT can be used to construct complex architectures and solve problems as obstacle avoidance, 
reference frame transformations and space-feature and feature-feature binding (Schöner and 

Spencer 2015). It can also be used to model and learn sequences (Sandamirskaya and Schöner 2010), 
which is described in the next part.  
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Sequence learning with DNF 

The DFT based sequence model presented by Sandamirskaya and Schöner (2010) represents a fixed 
sequence that can be linked to arbitrary content. The model consists mainly of two sets of 

interconnected nodes. Ordinal nodes represent an ordinal position in a sequence. Each ordinal node 
is associated with a memory node that stores, together with the other memory nodes the current 

state of the sequence (see Fig. 9). Ordinal nodes have self-excitatory and mutual inhibitory 
connections, so an activation of a node is stabilized and only one ordinal node can be active at the 

same time. When it is active, an ordinal node excites its own memory node which in turn inhibits its 
ordinal node a bit and excites the next ordinal node. Also memory nodes have self-excitatory 

connections and remain active once activated until the whole sequence is reset that is why they are 
called memory nodes.  

The actual sequence learning happens, when the ordinal nodes are connected to specific locations 

of a content field using e.g. Hebbian learning. Locations in the content field can e.g. stand for 
elementary behaviours and link to the motor system. The motor system is assumed to be outside of 

the model and receives e.g. a goal state of the movement. In this thesis, an elementary behaviour is 
a trajectory in motor space (see methods section). 

The switch of activity from one ordinal node to the next happens when the CoS-node (condition of 

satisfaction) inhibits the ordinal nodes so that the mutual inhibition vanishes and the last activated 
memory node can activate the next ordinal node. The CoS-node becomes active whenever an 

elementary behaviour that was elicited by the content field is finished and the system is ready to 
perform the next.  

 

 

Fig. 9 DFT based serial order model. The left part shows the implementation of the model in DNFs, the right part with 

populations of neurons, like in a spiking network simulation or in neuromorphic hardware. Nodes are realized as small 

populations of neurons. This is especially important for neuromorphic implementations due to noise and mismatch. Ordinal 

nodes represent an ordinal position in a sequence. Each ordinal node is associated with a memory node. Both memory and 

ordinal nodes have self-excitatory connections. An active ordinal node excites and activates its memory node that inhibits it 

in turn and excites the next ordinal node, so that when the CoS node inhibits the ordinal population the next ordinal node in 

the row gets activated. Figure from Sandamirskaya (in preparation) 
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Song learning in zebra finches 
Zebra finches (Taeniopygia guttata) are Australian birds that are studied intensively for decades in 

order to investigate vocal learning and sensorimotor integration as their male individuals have a very 
stereotyped short song that they learn from a tutor during a distinct learning period (critical period). 

Like in humans, there are different developmental phases of vocal learning and production (see Fig. 
11): At first, the bird begins to babble (similar to human babies) i.e. utter highly variable sequences 

of tones. This so called subsong gradually develops, in the adult, to a crystallized song that is a 
stereotyped sequence of distinct syllables very similar to the tutor song (Doupe and Kuhl 1999).  

The most prominent song related brain regions of the zebra finch are HVC (formerly known as high 

vocal centre, now used as a proper name), RA (robust nucleus of the archistriatum) and the anterior 
forebrain pathway (AFP) consisting of striatal Area X, DLM (medial nucleus of the dorsolateral 

thalamus) and the cortical structure LMAN (lateral magnocellular nucleus of the anterior 
nidoapallium) (see Fig. 10). 

HVC receives auditory input and projects to RA and Area X. Neurons in HVC fire both during vocal 

activity and during listening to a song (Prather, Nowicki et al. 2009). RA drives the motor areas in the 
brainstem. By lesion experiments it has been established, that HVC and RA are necessary for song 

production. The AFP is seen as analogue to the cortico-basal ganglia pathway in mammals (Farries 
and Perkel 2002). Lesion studies show that it is necessary for song learning and song plasticity, but 

not for production of the crystallized song (Scharff and Nottebohm 1991). When auditory feedback 
is removed by deafening of an adult bird, vocal production slowly deteriorates, however, when LMAN 

is lesioned, this effect is prevented (Brainard and Doupe 2000). It was therefore hypothesized that 
LMAN produces exploratory variability that allows learning in juveniles and adaptive changes of the 
song in adults using auditory feedback. 

 

Fig. 10 Schematic of the zebra finch song system. HVC receives auditory input and neurons from HVC project to RA and Area 

X. RA drives muscle controlling motor regions of the brain. Area X, DLM and LMAN constitute the anterior forebrain pathway 

that is necessary for variability in the song. Figure from Dave, Yu et al. (1998) 
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Recent studies suggest, that there is a transition from LMAN driven variable subsong to HVC driven 

crystallized song (Aronov, Andalman et al. 2008) during development of young birds that might 
happen through a relative spike timing dependent competition between HVC and LMAN (Mehaffey 

and Doupe 2015). LMAN does not just randomly drive RA but can bias song production towards a 
certain rewarded goal (Andalman and Fee 2009) or away from a punished pitch (Tumer and Brainard 

2007). 

 

There is evidence for both hierarchical and non-hierarchical song structure (Glaze and Troyer 2006). 
Non-hierarchical models assume that the song is driven by clock like bursting in HVC. 

A song consists of a couple of different motifs. Each motif (about 1 s long) consists of syllables and 
gaps. A syllable is a short (around 50-200 ms) tone or combination of tones and usually corresponds 

to an air sack pressure pulse (Franz and Goller 2002).  

It was thought, that song hierarchy is also represented in the bird’s brain: HVC might be responsible 
for the syllable sequence and RA for the representation of individual syllables, as electrophysiological 

disturbance of RA causes disturbance of syllables, but not of the song structure. Unlike disturbance 
of HVC that causes instabilities in both syllables and song structure (Vu, Mazurek et al. 1994).  

However, this hierarchical view was challenged by Hahnloser, Kozhevnikov et al. (2002) by showing 

that HVC neurons projecting to RA burst sparsely and reliably at a single time in a motif, presumably 
driving more complex sequences of firing patterns in RA (see Fig. 13) and representing a “state” in 

the sequence instead of inducing a whole syllable. They suggest that HVCRA Neurons fire sequentially 
and form an explicit representation of time. Existence of such a chain in HVC has been shown by 

Long, Jin et al. (2010). Internally generated neuron sequences have also been found e.g. in (rodents’) 
hippocampus (Pastalkova, Itskov et al. 2008) and (primates’) premotor cortex (Crowe, Zarco et al. 
2014). Markowitz, Liberti III et al. (2015) showed that this temporal sequence of HVC projection 

neurons is also represented in the spatial organization of HVC neurons by temporal clusters. 

RA generates a highly stereotyped and precise pattern of about 10 ms bursts which drives vocal 

(syringeal) motor neurons and respiratory areas (Wild 1993). As they are hard to record, there is 
basically not data about the dynamics of those motor neurons.  

In this model, presented by Leonardo and Fee (2005), that has been called “music box model” 

synapses from HVC to RA supposedly contain the “melody” of the song in an abstract motor space 
and synapses from RA to the motor areas contain the mapping from this space to the actuators. 

There is no structure that determines the beginning of a sequence or discriminates syllables and gaps. 
This model is further supported by cooling experiments. When HVC (functioning as the clock) is 
cooled down and thereby slowed down, song speed is slowed down accordingly while maintaining 

the acoustic structure, cooling down RA has no such effect (Long and Fee 2008). 

However, Glaze and Troyer (2006), using the fact that song length varies systematically over the 

course of the day, made measurements of syllable timing and found that song length changes are 
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not due to accumulation of independent shifts during the song but are present across the whole 

song. Furthermore, there is evidence that gaps and syllables are represented distinctly in the song 
system, as gaps are able to change their length stronger than syllables. Syllable onset seems to be 

triggered/synchronized externally as syllable length has a stronger trade-off with the length of the 
subsequent than with the preceding gap (Glaze and Troyer 2006). 

This indicates, that gaps might just be the left over from the end of the syllable to the trigger of the 

next one and have no separate representation. 

To reconcile these two views Glaze and Troyer (2006) suggest that there might be input (from 
thalamus or midbrain) to HVC that drives temporal grouping. The suggestion is supported by results 

of Schmidt (2003) who found synchronization of the two not interconnected HVC hemispheres to be 
especially high at the onset of syllables. However, probably this input region would need to have an 

independent clock. Alternatively, interneurons of HVC/RA or also LMAN, in analogy to the role of 
basal ganglia in sequence generation (Aldridge, Berridge et al. 2004), might be involved in structuring 

the sequence and lead to the temporal grouping. Also a recurrent activation from respiratory 
brainstem areas can provide timing information to the song control nuclei (Ashmore, Wild et al. 

2005). 

 

Fig. 11 Vocal sensorimotor learning in humans and songbirds. In both species, learning happens in distinct developmental 

phases. Figure from Doupe and Kuhl (1999). 
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Fig. 12 HVC activity during singing. (a) spectrogram of a repeated song motif during which activity of HVC neurons was 

extracellularly recorded. 4 Syllables that constitute the motif are shown. (b) Raster plot of 10 HVCRA neurons recorded for 

about 10 renditions of the motif. Although only a small subset of all HVCRA neurons could be recorded, it looks like a sequence 

of about 10 ms bursts. Each neuron generates a single burst during each rendition of the motif. (c) Densely firing HVC 

interneurons. Figure from Hahnloser, Kozhevnikov et al. (2002)  

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 13 Visualization of the “music box model”. HVC produces a sparse temporal sequence of bursts that drives denser firing 

in RA that in turn activates motor regions. The melody and rhythm is stored in the plastic synapses from HVC to RA. End to 

end alignment of onsets and offsets is only for graphical clarity. Figure from Leonardo and Fee (2005) 

  

a 

 

 

 

b 

 

 

 

c 
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Aim of the thesis 
My goal for this thesis is to explore dynamic neural field theory in the domain of sequence learning. 

Due to the available experience at the institute of neuroinformatics, the songbird suggested itself as 
a model animal that performs sequence learning on different levels. 

As I envisioned to implement the model on neuromorphic hardware I imposed the hardware’s 

constraints on any possible model: The model should use spiking neurons and Fusi synapses and it 
should not be too large. 

Inspired by previous simple models of birdsong learning  (Doya and Sejnowski 1995, Leonardo and 

Fee 2005, Hanuschkin, Ganguli et al. 2013), I developed a WTA-based spiking neural network model 
that is able to learn a song template and map it to the motor space using auditory feedback (see Fig. 

14).  

 I explicitly use a modular code architecture in order to allow extensions to the model and reusability 
of the building blocks of the model in other projects.  

 

Fig. 14 The task, that is performed by the model is basically a form of sequence to sequence mapping. A trajectory through 

a perceptual feature space is mapped to a trajectory in a motor space. Here, a 2 dimensional motor representation based 

on air pressure and muscle tension is used. Right part of the figure from (Amador, Perl et al. 2013). 
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Methods 
Before I present the whole model architecture for birdsong learning, I will describe the different 

building blocks of the model starting from neuronal level, going up to small circuits and finally more 
complex structures that might correspond to brain regions.  

Building Blocks 

Neuron Equation 

For the project, I use the exponential adaptive integrate and fire model introduced by Brette and 
Gerstner (2005), as it is a simple but powerful neuron model and it is equivalent to the equation 

implemented in current neuromorphic AVLSI circuits (Livi and Indiveri 2009, Chicca, Stefanini et al. 
2014). However, the model presented in this thesis is not dependent on the properties of the neuron 
equation and should work too with a simple integrate and fire model.  

The membrane potential V of the exponential adaptive integrate and fire model is modelled with the 
following differential equation: 

𝐶 𝑑𝑉
𝑑𝑡

= ⁡−𝑔𝐿(𝑉 − 𝐸𝐿) + 𝑔𝐿Δ𝑇 exp (
𝑉−𝑉𝑇
Δ𝑇

) − 𝑤 + 𝐼𝑠𝑦𝑛      (4) 

w is the adaptation current, described by 

𝜏𝑤
𝑑𝑤
𝑑𝑡

= 𝑎(𝑉 − 𝐸𝐿) − 𝑤⁡         (5) 

Isyn is the sum of excitatory and inhibitory synaptic currents given by 

𝐼𝑠𝑦𝑛 = −𝑔𝑒(𝑡)(𝑉 − 𝐸𝑒) − 𝑔𝑖(𝑡)(𝑉 − 𝐸𝑖)       (6) 

At spike time, when V reaches the threshold VT, V gets reset to EL and a constant b is added to the 

adaptation current: 

𝑊ℎ𝑒𝑛⁡𝑉 > 𝑉𝑡ℎ𝑟:⁡⁡⁡𝑉 → 𝐸𝐿; ⁡⁡⁡⁡𝑤 → 𝑤 + 𝑏       (7) 

The parameters are given in Table 1. 

Table 1 default parameters for the neuron equation 

Parameter Value 

C (membrane capacitance) 281 pF 
gL (leak conductance)  30 nS 

EL (leak reversal potential)  -70.6 mV 
VT (spike threshold) -50.4 mV 

τT (slope factor)  2 mV 
τw (adaptation time constant)  144 ms 

a (subthreshold adaptation) 4 nS 
b (spike-triggered adaptation) 0.0805 nA 
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Fusi synapse 

The Fusi synapse, introduced by Brader, Senn et al. (2007) used for all plastic synapses in this project 
is a bistable synapse implementing a form of spike timing dependent plasticity (STDP). It is 

implementable in neuromorphic AVLSI circuits as information is processed locally in space and time, 
so no explicit memory of spike timing has to be retained and as bistability allows efficient weight 

memory retention without using floating gates or memristors. 

Each synapse has a weight variable X that is restricted to values between 0 and 1 and is scaled by a 
constant in order to obtain the synaptic weight. X is bistable, as there is a drift towards 0 or 1 

depending on whether X is above or below ϴx. 

𝑑𝑋
𝑑𝑡

= 𝛼⁡⁡⁡𝑖𝑓⁡⁡⁡𝑋 > Θ𝑥          (8) 
𝑑𝑋
𝑑𝑡

= −𝛽⁡⁡⁡𝑖𝑓⁡⁡⁡𝑋 ≤ Θ𝑥          (9) 

When a presynaptic spike happens at tpre, and postsynaptic membrane potential V as well as a 

postsynaptic Calcium variable are in a predefined band, X is either increased or decreased by a 
constant a or b. 

𝑋 → 𝑋 + 𝑎⁡⁡⁡𝑖𝑓⁡𝑉(𝑡𝑝𝑟𝑒) > Θ𝑉⁡⁡⁡𝑎𝑛𝑑⁡⁡⁡⁡Θ𝑢𝑝,𝑙 < 𝐶(𝑡𝑝𝑟𝑒) < Θ𝑢𝑝,ℎ     (10) 

𝑋 → 𝑋 − 𝑎⁡⁡⁡𝑖𝑓⁡𝑉(𝑡𝑝𝑟𝑒) ≤ Θ𝑉⁡⁡⁡𝑎𝑛𝑑⁡⁡⁡⁡Θ𝑑𝑜𝑤𝑛,𝑙 < 𝐶(𝑡𝑝𝑟𝑒) < Θ𝑑𝑜𝑤𝑛,ℎ    (11) 

The postsynaptic Calcium variable is a function of postsynaptic activity with a long time constant: 

  
𝑑𝐶(𝑡)
𝑑𝑡

= − 1
𝜏𝐶
𝐶(𝑡) + 𝐽𝐶 ⁡∑ 𝛿(𝑡 − 𝑡𝑖)𝑖         (12) 

JC is a constant value that is added to the Calcium variable at every postsynaptic spike. 

See Fig. 15 for a visualization of the synapse working principle. Please find the parameter values used 
for the different Fusi synapses in the code. 

Other, non-plastic synapses are simple synapses with an instantaneous rise, exponential decay kernel 

and as described e.g. by Roth and van Rossum (2009). 
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Fig. 15 The internal synaptic weight variable X increases, when both the Calcium variable c and post-synaptic depolarisation 

are above a threshold. Below ϴx, there is a drift towards 0 and above towards 1.  

Syrinx model 

In order to generate motor output of the model that can be used as feedback for sensorimotor 
learning, we use a simplified model of the zebra finch vocal organ, the syrinx. The syrinx is located in 

the trachea of the birds. When air flows through, tissues called labia vibrate and generate a sound. 
By changing the tension of membranes with muscles, the sound can be changed. Based on seminal 

work by Titze (1988), who introduced a model of air flow induced oscillations in the human voice 
system, Perl, Arneodo et al. (2011) presented a simplified model of the bird’s syrinx. The following 

two differential equations describe the oscillation of the labia: 

𝑑𝑥
𝑑𝑡

= ⁡𝑦            (13) 

𝑑𝑦
𝑑𝑡

= 𝛼𝛾2 + 𝛽𝛾2 − 𝛾2𝑥3 − 𝛾𝑥2𝑦 + 𝛾2𝑥2 − 𝛾𝑥𝑦       (14) 

There are 2 parameters α and β that are able to change the sound. They can be interpreted as muscle 
activity and air pressure. 

Winner-take-all networks 

Dynamic neural fields, as described above, can be discretized and implemented as winner-take-all 
networks. Winner-take-all networks can be implemented as spiking neural networks.  

A winner-take-all network is modelled as two groups of neurons: An excitatory population that is 
ordered into a field, so every neuron has an x position and for 2 dimensional fields also a y position. 

And an inhibitory population that receives synapses from all excitatory neurons and also inhibits the 
whole excitatory population. 

Additional to the global inhibitory connections, there are local excitatory connections. Every 

excitatory neuron is connected to its neighbours with a strength dependent on its distance to the 
respective neighbour. No synapses are created above a certain cut-off distance, that was chosen to 

be 8. The strength of every connection in the 1 dimensional field is a simple Gaussian, in the 2 
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dimensional field, it is given by the following kernel function multiplied by an independent parameter 

gex:  

𝑠𝑦𝑛𝑎𝑝𝑠𝑒⁡𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = (1 − 𝑥2+𝑦2

2∗⁡𝜎2
) ∗ 𝐸𝑥𝑝 (− 𝑥2+𝑦2

2∗⁡𝜎2
⁡) ∗ 𝑔𝑒𝑥      (15) 

This is negative Laplacian of Gaussian kernel; the shape is also called a Mexican hat. Sigma is the 
parameter that determines the broadness of the kernel. Due to the global inhibition, a Mexican hat 

shaped kernel does not seem necessary but it turned out that fields are much more stable and easier 
to tune than with a Gaussian kernel, as strong activation peaks are less prone to explode and take 

over the whole field irrespective of global inhibition, which cannot be mad arbitrarily large in order 
to still allow self-excited peaks.  

In the simulations shown in the results section, 2 dimensional fields are of squared size with 16x16 

neurons.  

Synfire Chain 

It has been shown that chains can emerge using STDP or similar learning rules in a biologically 
plausible way (Li and Greenside 2006, Jin, Ramazanoğlu et al. 2007, Gibb, Gentner et al. 2009, Fiete, 
Senn et al. 2010, Long, Jin et al. 2010, Brea, Senn et al. 2013). I do not model the formation of a 

synfire chain, but use group of neurons with a predefined sequential connectivity. 

Sequence model 

As the higher level sequence model, representing the syllable sequence, the DNF-based sequence 
model described in the introduction is used. As CoS, either a special silence detector is used in order 
to recognize the silence between syllables or a certain location in the sensory field that stands for 

silence (without dimensionality reduction: low amplitude) activates the CoS node. Given a teacher 
signal, CoS can also be plastically connected to the last chain neuron of a syllable (which would 

include the silence). 

Self-organizing map 

Inspired by topology preserving feature maps in the brain, Kohonen (1982) introduced a self-

organizing map (SOM) algorithm. Using competitive learning, the algorithm reduces dimensionality 
of a high dimensional input vector while preserving topological properties of the input space.  

The classical implementation of an SOM model consists of a one or two dimensional field of neurons 
and an associated, usually randomly initialized, weight vector with the dimensionality of the input 
vectors. Classically the algorithm has the following steps: 

1. Select input vector randomly from the set of inputs. 
2. By calculating the Euclidean distance from the input vector to all the weight vectors, find unit 

in the field that matches input vector best (best matching unit, BMU) 
3. Adjust weights in a certain radius (decreasing with time) around the BMU to fit the input 

vector better. 

4. Repeat from 1. 
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The algorithm has been implemented in spiking networks by Ruf and Schmitt (1997) using spike 

timing instead of rate based coding, allowing a fast and local competition. In this implementation, 
every neuron, modelled as integrate and fire neuron, receives a weighted sum of the input vector. 

Assuming that both input and weight vectors are normalized, this weighted sum is the angle between 
the two vectors, so a neuron fires earlier, the closer its weight vector is to the current input vector. 

Competitive learning is implemented by lateral excitation and global inhibition in the field of neurons 
(a winner-takes-all network). Ruf and Schmitt (1997) suggest an instar learning rule where the 

weights are updated proportional to the difference between input and current weight value and 
stronger if the neuron spikes earlier: 

Δ𝑤𝑖𝑗 = 𝜂 𝑇𝑜𝑢𝑡−⁡𝑡𝑗
𝑇𝑜𝑢𝑡

(𝑠𝑖 − 𝑤𝑖𝑗)          (16) 

s is the current input vector, w the weight vector, t the spike time, i is the index for the input and j 
for the neurons, η the learning rate and Tout is the time after which no learning happens. This latter 

global reference time makes the model unsuitable for implementation in biological or silicon 
hardware. Furthermore, the network has to be reset after every learning step and continuous input 

is not possible. Rumbell, Denham et al. (2014) address those issues by a spiking SOM model that only 
uses an STDP learning rule and structures its input automatically via oscillations of the input 

population. 

The spiking SOM that was implemented in this project is based on the model of Rumbell, Denham et 
al. (2014). The map is a 2 dimensional winner-take-all field as described before. Input to the field is 

provided as 1 dimensional fields, on which feature values are encoded as a local peak of activation 
on the field. Feature values are scaled to the interval between 0 and 1 and are then fed as Gaussian 

input peak into the 1 dimensional field (e.g. the centre of a peak coding for a value scaled to 0.5 
would be exactly in the middle of the field), which results in early and strong firing at the centre of 

the peak and late and weak firing in more remote regions. All input fields share a common inhibitory 
population that is tuned so that it strongly inhibits activity in the input fields but takes some time to 
be activated leading to an oscillatory behaviour in the input fields automatically structuring the input 

into samples. Input and self-organizing map are connected with randomly initialized all-to-all plastic 
synapses. When input spikes arrive, the synapses to the early firing neurons to the responding 

neurons in the map are strengthened by STDP. The first neuron that responds in the map is the BMU, 
as it is most strongly activated and therefor reaches its firing threshold first. The BMU activates 

neurons in its close neighbourhood through lateral excitation allowing them to form synapses to the 
input too and at the same time inhibits other regions in the map that might also be close to the input. 

The lateral connectivity kernel of the map shrinks with time.  



23 
 

Neural dynamic architecture for sensorimotor learning 
The spiking dynamic neural field architecture developed in this thesis consists of six parts (see Fig. 

16): A self-organizing map that receives feature values as an input, perceptual motor fields, a serial 
order sequence model, a synfire chain and a syrinx model as motor output. The building blocks have 

been introduced on the previous pages. 

A tutor song motif, that is the input to the model consists of a couple of syllables. From such a motif, 
features, like amplitude and mean frequency are extracted. Features are extracted from small 

overlapping bins of the spectrogram in order to obtain a trajectory of features without large jumps. 
In a first phase of learning, the extracted feature values are fed into the SOM that maps the feature 

space into 2 dimensions, so a song motif is represented as a trajectory in the 2 dimensional 
perceptual space. In the second phase of learning, the memory of the tutor song template is acquired. 

The synapses between the perceptual field and the sequence and chain neurons are gated off, in 
order not to interfere with the learning, so they learn silently. At the start of each rendition of the 

tutor song, the sequence is triggered and perceptual song motif trajectory and chain sequence run 
simultaneously and get connected by plastic Fusi synapses.  When the song template is acquired, a 

random walk is induced on the motor field. The output of the motor field, basically the projection of 
its activity on its two axes, drives the syrinx model that produces a sound. This sound is fed back into 
the model and elicits, only if it hits the right note, after some delay, an activation in the chain neurons 

(whose chaining is gated off temporarily). Thanks to this feedback, chain neurons, that basically code 
for a time point in a syllable, can be paired with their correct motor counterparts. In the final 

production phase, the sequence model is triggered manually so that it replays the learned sequence. 
The chain neurons now drive the correct motor trajectory that reproduces the syllables of the song 

template. In Fig. 18, the model is explained in more detail. 
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Fig. 16 Schematic overview of the architecture presented in this thesis. Features are extracted and fed into the SOM which 
reduces dimensionality to two. The song is represented as a trajectory in the perceptual field. This trajectory is learned 
hierarchically. The song motif is made up of short syllables. The trajectory of the syllables is learned by linking locations in 
the perceptual space to a sequentially active chain of neurons and the order of the syllables is learned by a DNF based 
serial order working memory model. After learning by feedback, the chain can elicit a trajectory in the motor field that 
corresponds to the stored song motif. The motor field drives a model of the bird’s syrinx which closes the feedback loop as 
the output of this model is again feature extracted and fed into the SOM. 
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In Fig. 19, an alternative model architecture is described, in which the chain neurons do not play the 

role as intermediary between the perceptual and the motor field. The sensorimotor map is learned 
directly between the two fields. The chain neurons drive a trajectory in the perceptual field in this 

model which then gets translated in the motor space by the sensorimotor map. Apart from this, the 
models are identical. In the following results section, only the results of the first model are shown in 

order to avoid confusion as the results are very similar. 

 

Fig. 17 Different phases of learning in the architecture. In the first phase, the SOM is trained and the song template is stored. 

In the second phase the sensorimotor map is trained, which means that the model learns which motor state has to be 

activated in order to produce a certain sensory state. Finally, the complete learned song is replayed and not changed 

anymore. 

 

 

Fig. 18 Detailed schematic of the of the model architecture.  
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Fig. 19 Alternative model architecture. In this architecture, during the sensorimotor phase, a sensorimotor map from the 

perceptual to the motor field is built. Once the map is learned, a sequence that is driven in the perceptual field by the chain 

neurons, is directly mapped into the motor space. The song template is in this model stored in the synapses from the chain 

neurons to the perceptual map and not the other way round. The other parts of the architecture remain untouched. 

 

Software implementation 
All simulations were performed using the Python based framework Brian 2 as part of the anaconda 
distribution (4.2.12) with Python 3.5 on a win 64 platform with a 3.5 GHz Intel i3 processor and 16 
GB RAM.  

For feature extraction of the tutor song and of the feedback the Matlab toolkit Sound Analysis Tools 
(SAT) was used. It can be downloaded from http://soundanalysispro.com/matlab-sat. In order to use 

it with python based Brian 2, I made use of the MATLAB Engine API for Python that is part of Matlab’s 
default installation from MATLAB R2014b or later. 

All modules described were implemented as python functions made available in the groups GIT 

repository to allow a building-block like reusability and straightforward extensibility of the model. 
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Results 
Before presenting the results of the song learning model, I will show characterizations of some 

modules used to build the model as they are necessary for the understanding and especially for the 
tuning of the model. All those modules were implemented in python as modules that can be used by 

others to build similar models. 

Characterization of the different modules 

Neuron equation 

I start with the characterization of the neuron equation. In this model, most integrate and fire models 

would be suitable. As it is equivalent with the equation used in the chip, I used the equation described 
by Brette and Gerstner (2005). The basic behaviour of the equation is shown in Fig. 20. The form of 
a spike in the exponential integrate and fire model is characteristic as just before a spike is triggered 

the membrane potential increases exponentially. 

 

Fig. 20 Behaviour of the neuron equation. The neuron integrates a constant rate 500 Hz input. Resting potential (red) is at  
-70.6 mV. The distance between spikes increases despite constant input due to adaptation. When VT=-50.4 mV is reached, 
the membrane potential rises exponentially to the reset threshold. 

 

Synfire Chain 

The synfire chain is a simple chain of neurons that are connected serially. When the first neuron gets 

activated by a short burst, a wave of activity travels through the chain. In Fig. 21, I show the chain for 
different values of the parameter that determines chaining strength. When this strength is higher, 

the chain gets steeper. If this is done during song replay, it means that the song becomes faster. 
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Fig. 21 Raster plot of the synfire chain for different values of the excitatory parameter. The chain gets steeper for stronger 
excitation (right) and ceases to exist for too low excitation (left). Each chain consists of 15 neurons. 

Feature Extraction 

Fig. 22 shows features extracted from a whole song motif. 4 different syllables can be clearly seen.  

In Fig. 23, I show the single syllable that is used in the following simulations as an example for a real 
bird song syllable. 

 

Fig. 22 Feature extraction for one song motif with 4 syllables. 
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Self-organizing map 

I implemented a spiking self-organizing map based on dynamic neural fields and tested it on colour 

learning, before going on to birdsong learning, as colours are easier to handle. However, the map 
turned out to be rather hard to tune. I finally achieved differential activation of the map and therefore 

the calculation of a best matching unit. But before the map can be actually used, the learning needs 
to be validated, which means, one would have to check if the neighbourhood relations of the input 

are still there in the mapped locations.  

 

Fig. 24 Excerpt of the responses of a spiking self-organizing map trained on colours. We clearly observe differential activity 
of the map to different colours, so a BMU is successfully determined using the spiking mechanism. However, if the map is 
correctly learned and the neighbourhood relations are correctly retained, needs to be tested in a more in depth analysis. 

 

Sequence learning module 

The serial order model described earlier is part of the high level sequence learning in this project. In 
Fig. 25, I show a simulation of the model that acquires the order of 2 peaks in the content WTA in 

one shot and is able to replay that sequence later.  

Fig. 23 Features of the real song syllable used in the following experiments as an example syllable. Only the two 
features Amplitude and mean frequency are shown, as they are used as input to the perceptual field  
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Fig. 25 Raster plot of brian 2 simulation of the DNF-based serial order model. It contains 3 groups of ordinal and memory 

neurons. In the first round (left) the system learns the synapses between ordinal group and WTA content field that is 

activated by a teacher signal. In the next round, the content is replayed by the model. CoS and reset signals are hard coded 

and shown in green and red in this demo.     

  

Teacher input 

reset reset CoS CoS CoS CoS 

noise input 

Replay of learned sequence 
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Neural dynamic architecture for sensorimotor learning 
So far, I can only show simulation results of the model’s core. The SOM and the syrinx model are 

circumvented and feedback is fed directly into the perceptual field, so the sensorimotor mapping is 
a 1:1 mapping between the two fields. Any other linear mapping could of course be used too, but 

this was chosen so that one can immediately see in the resulting plots that the model is able to learn 
the trajectories (as they are basically the same). As a tutor song I used for illustration purposes an 

artificial trajectory of activations from the lower left corner to the upper right corner and a trajectory 
of song features extracted from a real song, as shown in Fig. 22. Only the 2 features amplitude and 

mean frequency were used. 

In order to make clear which plot refers to which phase of learning, the colours from Fig. 17 are used. 
Green for the sensory phase, in which the song template is acquired, orange for the sensorimotor 

phase, where the sensorimotor map is learned and blue for the crystallized phase, where the song is 
replayed. Furthermore, there is yellow for a phase, where the system only hears the tutor song again 

after it has already been learned. This is interesting, as mirror neurons fire there and syllables can be 
recognized in by the sequence model (see Fig. 26). 

  

Fig. 26 Syllable recognition. The system can not only play a song syllable, but is also able to recognize its own song when it 
hears it. The left part of the figure is the activity of the sequence neurons during song replay (blue) and the right part is the 
activity during listening to the own song (yellow). A single sequence neuron is shown. The song consists of 4 syllables of 
about 100 ms each. 
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Fig. 27 Raster plot of chain neurons during the whole experiment. Waves of activity are triggered in the sensory phase 
(green) and during replay of the song (blue). In the sensorimotor phase (here shorter than usual for easier plotting), chain 
neurons are activated by the feedback to the random walk. During hearing (yellow), when they are not gated off, chain 
neurons respond to the tutor song. Like mirror neurons they have both auditory and motor capabilities. The chain trigger 
input is depicted as small red bars. The song in this experiment consists of 4 syllables. For simplicity, only 2 of them are 
shown in later figures. 

 

In the following figures Fig. 28-Fig. 30, I show the activations of the sensory and the motor field 
throughout the experiment. Fig. 28 shows the spiking activity of the sensory field in the sensory 

phase, Fig. 29 the random walk activity of the motor field in the sensorimotor phase. In Fig. 30, I show 
the motor field during the replay of the song. In the complete model, this activity would be used to 

drive the syrinx model and reproduce the tutor song. Fig. 31 and Fig. 32 show the weight matrices of 
the incoming and outgoing synapses to and from the chain neurons. Each weight matrix is a snapshot 
of the activity in the respective field from the point in time at which the chain neuron is active. 

 

 

Fig. 28 Sensory field in sensory phase, spike count over 5 ms per tile, two syllables are shown, one artificial trajectory and 
one trajectory of real sound features, as shown in Fig. 23. 
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Fig. 29 Motor field in sensorimotor phase, spike count over 5 ms per tile. Random walk activity of motor map during the 
sensorimotor phase. In order to sample the whole space, the random walk is much longer, here only 200 ms are shown.  

 

 

Fig. 30 Motor field during song replay, spike count over 10 ms per tile.  A 1:1 mapping is used as an example to show learning, 
instead of mapping with the syrinx model. Therefore, the trajectory in the motor field looks very similar to the trajectory in 
the sensory field.  

 

 

Fig. 31 Weight Matrices from sensory map to all chain neurons, one tile depicts one chain neuron and is therefore a snapshot 
of the field’s activity at the respective position in the chain.  

 

 

Fig. 32 Weight Matrices from all chain neurons to sensory map, one tile depicts one chain neuron. 
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Discussion 
In this thesis I present a songbird-inspired spiking neural network model for sensorimotor sequence 

learning based on dynamic neural fields that can be implemented as winner-take-all networks on a 
neuromorphic chip and I show in the results that the core of the model works and is able to learn a 

simple sensorimotor mapping and real song trajectories. The model allows very fast learning due to 
its simple structure. It also allows us to understand its working principle easily due to its modular 

structure and sparse activity. Although the model does not provide a plausible mechanism for song 
learning in zebra finches, I will discuss analogies of the model to biological systems and propose 

extensions to the model that capture song learning in a better way. Furthermore, I will discuss 
drawbacks and strengths of the model and the chosen modelling approach from different points of 

view. Finally, I suggest to implement the model into a neuromorphic system for vocal imitation 
learning. 

Biological analogies 
Although the model is not primarily designed to fit song learning, it can still offer some biological 

insights as it is designed with similar constraints in mind (e.g. local computations, spiking neurons). 
The mechanism, how the sensorimotor map is acquired by the bird is different from the “brute force” 

random walk sampling method I use, but still, the model offers a plausible mechanism how the song 
template is stored and how a chain, as found in HVC is able to drive a sequential motor behaviour in 

a spiking network.  

Time cells 

Such chains, also called “time cells” (Markowitz, Liberti III et al. 2015), cannot only be found in the 

bird’s HVC but also in other species mainly in hippocampus and cortex in various behavioural contexts 
(Pastalkova, Itskov et al. 2008, MacDonald, Lepage et al. 2011, Harvey, Coen et al. 2012, Markowitz, 

Liberti III et al. 2015). 

In this thesis I present to my knowledge the first simulation of a spiking neural network model that 
links sequential “time” cell activity to attractor dynamics in DFT. 

Mirror neurons 

The same chain neurons that form the “time cells” also function as mirror neurons in the presented 
model. In line with the definition by Rizzolatti and Craighero (2004), the neurons are triggered by 

auditory stimuli, whereas they are also able to elicit those exact sounds to which they respond with 
the vocal motor system. Those neurons and are therefore the essential units for imitation learning.  

The model can be seen as a minimal model of sequence imitation learning. In the songbird, the 

situation seems to be a little bit more complex, as HVCX-projecting neurons and not HVCRA mirror 
auditory activity, especially when they hear the bird’s own song (BOS) (Prather, Peters et al. 2008). 

Please note, that mirror neurons are easier to achieve in the auditory domain than in the visual, as 

the own song and a foreign song are already in the same space. A hand movement from someone 
else however has still to be mapped to the own coordinate system. This insight gives us an 
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information about a possible applicability of the presented model in the visual-motor domain: We 

would have to perform the necessary transformations first (which could be done using concepts of 
DFT), if we would like to apply this model.  

Imitation learning is also essential for human learning (speech, language, dancing, driving, etc.) and 

useful for robotics. 

HVC and RA 

If I would have to map the modules of the model to regions of the bird’s brain, I would say that the 

chain neurons are most similar to HVC and the motor field is analogous to RA. The perceptual field is 
outside the classical song system in an auditory region like NIf. As already discussed, the mechanism 

of learning of the connections between chain and motor field is not plausible, also because HVCRA-
neurons do not respond to auditory feedback. The learning paradigm that is currently most discussed 

for these synapses is reinforcement learning driven by variability in LMAN (Fee and Goldberg 2011). 
By taking the firing of the previously described mirror neurons (a.k.a. chain neurons) as a reward 
signal and by adding an additional field with self-sustained activity parallel to the motor field, that 

stores the rewarded regions, I could extend the model easily with a greedier sampling mechanism.    

In addition to the error/reward signal provided by the chain neurons, an error signal can easily be 

computed using the DNF based representations. By duplicating the auditory field and learning the 
synapses from chain to auditory field, we have a forward model that allows us to compute a 
difference between the two fields (a difference between forward model prediction and actual 

feedback input). 

Trajectory encoding in a neuron population 

From a computational point of view, the sequence learning core of the model can be compared with 
a state machine. The meaning of the states is bound to them by learning.  

This analogy is of course not a coincidence as from a computational point of view, there are basically 

only 2 different straightforward ways to encode temporal sequences in a population of neurons. 
Here, I discuss those and state why I decided to structure the model like I did after considering the 

alternative. 

Let us assume, there is a group of neurons that uses space coding for values on one or two 
dimensions, like e.g. the motor field described in the model. I we want to encode a sequence in those 

neurons, the first thing that comes to the mind is, to connect the neurons of the sequence. However, 
obviously, there is a problem, when one neuron appears twice in such a sequence as we can no longer 

know which way we should go on after this neuron as there are two outgoing connections. We would 
need an additional state to remember if we are at this neuron for the first or the second time (see 
Fig. 33).  
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Fig. 33 Illustration of the problem that additional states are needed for unambiguous sequence representations. On the left, 
a sequence with a loop in a 2 dimensional field is shown. If the field should be kept as it is, the only way to represent a 
sequence unambiguously is to add additional states, a solution to this is depicted on the right.  

 

Obviously, no model (not even the brain) can get around this well-known constraint. As, in a static 
population of neurons, we cannot just create a new state/ a new neuron whenever a loop of the 

sequence happens there are basically 2 ways to circumvent the problem: Either we add an additional 
system with a sufficient amount of states to remember which ways have already been taken or we 

avoid loops by design of the field. 

If we choose the former approach, it is obvious that in order to remember all possible ways, the 
system has to have the same number as states as the number of elements in the sequence, as in an 

extreme case the sequence could completely consist of one single neuron.  

If we choose the latter approach, we would have to find a way to incorporate the flow of time into 
the spatial field. The easiest way would be to just copy the whole field for every time step and create 

an additional time dimension like that. This seems however not very efficient, as we create much 
more states than actually necessary (as stated before, only one state per time step is necessary in 

the worst case). However, in order to avoid this (if we do not allow ad hoc neuron generation, which 
would be possible in the brain especially in hippocampus), we would have to use some prior 

information of what kind of sequences can be expected. We could e.g. save a lot of states if we knew 
the maximum number of repetitions of every neuron in the sequence or if we knew that only loops 

of less than 10 elements can happen (we would only have to keep track of those). The embedding of 
time information however, can also be learned. A SOM that uses the relative time as a feature could 

be used to learn such an embedding with perfect memory. Alternative SOM-algorithms like TSOM or 
RSOM with a restricted memory have been developed (Chappell and Taylor 1993, James and 

Miikkulainen 1995, Chappelier and Grumbach 1996, Euliano and Principe 1996, Varstal, Millán et al. 
1997). 

If we give up the constraint, that only one neuron is active at any given time point, the problem gets 

more complicated but now there are so many possible combinations that a repetition of the same 
combination is unlikely as long as they are randomly chosen. Unlike in DFT, where spatial or 

population coding is used, combinatorial coding would have to be used to assign a meaning to the 
states (like e.g. in the olfactory system (Malnic, Hirono et al. 1999)). However, note that when we 
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assign meaning to the nodes, the problem of loops arises again and we still would have to look for 

an embedding or external coding of temporal information. 

An advantage of an embedding of temporal information into a population is that recurrent 
connectivity can be learned and used to generate sequences (as e.g. proposed by Nowotny, 

Rabinovich et al. 2003).  

If we add an external one dimensional representation of time, an important advantage is that the 

same real world state (as part of a sequence) activates the same perceptual state when it reoccurs 
in a sequence. Therefore, I decided to use this approach as it is most compatible with DFT and most 
interpretable (as already discussed, mirror neurons and “time” neurons emerge).  

Please note, that such a chain of neurons does not need be prewired and spatially coded as in this 
model but it might arise ad hoc from an unordered network and be activated by context.   

If the brain uses a such spatial coding scheme at all, it seems probable that both proposed 

mechanisms are used one way or another, as sequences are ubiquitous and happen in many regions 
and many levels of hierarchy. 

 

Discussion of the approach 
In this part of the discussion, I try to assess strengths and drawbacks of the project from different 
points of view. 

Advantages of the DFT approach 

The main advantage of the model, in my opinion, is its simplicity. The working principle is 
straightforward and all plastic synapses are trained with STDP, which means, that no complex 

learning rules or backpropagation are used. 

The reason why it can be so simple and intuitive is mainly because it uses dynamic neural fields, as 
they solve some problems intrinsically: In order to learn the sensorimotor map, the system has to 

keep a working memory of the past motor activity, as the feedback takes some time (in the range of 
a couple of milliseconds) to be processed. As dynamic fields work as a low pass filter of the activity, 

this might already be enough (for short delays, like 2 ms in the simulations, it was sufficient). If the 
delay gets longer, an additional memory field can be added to the motor field and store past activity. 

An implementation of this memory purely by an eligibility trace as proposed e.g. by Hanuschkin, 
Ganguli et al. (2013), is not possible, when only Fusi synapses are used as additional to the Calcium 

threshold there is a threshold for the postsynaptic membrane potential. 

Another strength of the WTA fields is that they can automatically find a good path through the motor 
field, even if the sensorimotor mapping is not unique i.e. if there are several locations in the motor 

field that produce the same sound. In such a case, due to global inhibition, the system will choose 
only one possibility and due to local excitation, it will choose the closer location. 
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There is however one potential caveat with a model-guided approach: Although DFT is very powerful 

it can probably not be used as a universal hammer to destroy all problems, so it is always important 
to carefully think about where the usage of a framework makes sense and where not. 

Drawbacks 

Notwithstanding, the model also has some drawbacks: Although the model is simple, the spiking 
model implementation make it hard to tune as there are many parameters and as there are no ready-

to-use modules or examples. This slows down the process of testing new ideas dramatically. This is 
why, during the thesis I developed python modules, based on Brian 2 that allow a modular structure 

on a higher level than offered by Brian 2 itself. Together with a documentation, and default 
parameters that I will provide in the code and with contributions from other group members, this 

allows to easily build larger WTA based architectures in the future.  

Another problem, that is still unsolved, is the fact that real songs might be too dissimilar to what the 
syrinx model can produce, therefore, I so far did not achieve a good sensorimotor mapping from a 

real song sensory field to the motor field connected with the syrinx model.   

Machine learning perspective 

When assessing a model, it is usually a good idea to look at what related fields offer. From the point 

of view of machine learning, the model seems not particularly interesting, as it solves a problem, that 
can easily be solved better by other methods. The state of the art machine learning technique for 

sequence to sequence mapping are recurrent neural networks (Sutskever, Vinyals et al. 2014) which 
since recently allow image captioning (Vinyals, Toshev et al. 2015), speech recognition (Graves, 

Mohamed et al. 2013) and  generation (Zen and Sak 2015) and language translation (Bahdanau, Cho 
et al. 2014). But as the sensorimotor mapping is not even a sequence, a simple perceptron 

(Rosenblatt 1958) would be able to learn it perfectly.  

However, the model I describe is not just one static mapping of locations, its aim is to describe 
behaviour and it can easily be interfaced with the larger framework of dynamic neural fields. In 

contrast to the machine learning approaches, in the presented model, the internal structure of the 
task is used to solve it in a very simple way that allows fast learning with very few repetitions of the 

data. Furthermore, the working principle is easily understandable due to clearly labelled modules 
and sparse activations, which is not the case for trained neural network models.  

Insights into neurobiological questions 

We do not understand enough about the details of connectivity and the working principle of the song 
system to create a really plausible model at the level of detail of spikes. So it might be more efficient 

to first come up with simple models on a higher level of abstraction, instead of simulation spiking 
models. In the end, however, we can only really say that we have understood a system, when we can 

describe it in its own language, which in this case might mean in spiking neurons. However, in spite 
of all the breakthroughs in rate based neural network models, we still are far from understanding the 

language of spikes. 
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Nevertheless, this should not discourage us to explore ideas both from a neuromorphic and from a 

neurobiological point of view. Although it is controversial, the “constrained forward engineering”-
approach might actually work in this context. Especially as long as computation power constraints of 

classical computers limit simulation speed of spiking networks severely. 

Outlook 
As the model so far does not provide a biologically plausible mechanism for bird song learning, but is 
straightforward to extend, it might be interesting to implement more advanced ideas of birdsong 

learning and include functions of the anterior forebrain pathway that are necessary for variability 
generation and learning. Once a model works, it might be interesting to look at memory consolidation 

during sleep or evolution of proto syllables. A model could also make testable predictions about 
gating of certain synapses during song production or listening.  

I plan to implement the presented model in neuromorphic hardware. Taking only the sequence 

learning core of the model and the two dynamic neural fields, a model for imitation learning in a 
neuromorphically controlled robot is possible. 

If I would like to solely rely on on-chip learning, the model could be implemented on the ROLLS chip 

(Qiao, Mostafa et al. 2015). 

As I already used a compatible neuron equation and the Fusi synapse in the simulation, only one 
mayor additional constraint has to be met for a neuromorphic implementation: The number of 

neurons has to be 256 if I use one or 512 if I use 2 connected chips. Furthermore, I have to take into 
account that due to noise and mismatch, some neurons might be unusable and ordinal, memory and 

chain nodes have to be implemented as small populations of 5-10 neurons. The number of synapses 
is not a constraint on the ROLLS chip.  

With the following equation, I try to estimate the number of neurons that are used by the model 

under these circumstances: 

𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑠 = 2 ∗ 𝑠2 + (2 + 𝑐) ∗ 𝑙 ∗ 𝑛 + 4*s                   (17) 

with 
l = number of elements in a sequence 
s = field size (1d) 
n = number of neurons per node 
c = length of chain 
 
With small fields of s = 8, only l=2 sequence elements, n=6 neurons per node and a chain of c=10, the 

implementation would require already at least 304 neurons and it is unclear if only 10 chain nodes 
are sufficient to generate a long enough sequence. So ideally, 2 chips are required. If there is one 

field per chip, if we use the first model variant and if the chain neurons are mirrored on both chips, 
there should be no need for off chip learning and the amount of data exchanged between the chips 

remains small. 
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I suggest, that the model could be used to learn a sequence of 2 short sine sweeps. As a spiking input 

to the chip I could try to use a simulated or ideally a real silicon cochlea (Liu, Van Schaik et al. 2010). 
As output a simple speaker would do. 

It might also be interesting to implement the first fully neuromorphic WTA-based spiking SOM with 

on-chip learning. However, before trying that, one would have to show using simulations, that the 
hardware constraints still allow a well-functioning SOM which I could not show so far.  

 

Conclusion 

In this thesis I present a songbird-inspired spiking neural network model for sensorimotor sequence 
learning based on dynamic neural fields implemented as winner-take-all networks. 

The core of the model extends dynamic field theory by adding a representation of time that is used 
to drive peaks through dynamic fields forming sensorimotor trajectories  

The model is applied to birdsong learning and I show in simulations that it is able to learn trajectories 

of peaks in a winner-take all field and that it can map a sensory to a motor trajectory. 

I envision an implementation on a neuromorphic chip. As in my simulations, the main constraints are 
already accounted for, I suggest to implement a closed loop neuromorphic system that is able to 

learn a short sequence of sine sweeps. 
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