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Abstract—The Lobula Giant Movement Detector (LGMD) is
an identified neuron of the locust that detects looming objects
and triggers the insect’s escape responses. Understanding the
neural principles and network structure that lead to these fast
and robust responses can facilitate the design of efficient obstacle
avoidance strategies for robotic applications. Here we present
a neuromorphic spiking neural network model of the LGMD
driven by the output of a neuromorphic Dynamic Vision Sensor
(DVS), which incorporates spiking frequency adaptation and
synaptic plasticity mechanisms, and which can be mapped onto
existing neuromorphic processor chips. However, as the model
has a wide range of parameters, and the mixed signal analogue-
digital circuits used to implement the model are affected by
variability and noise, it is necessary to optimise the parameters
to produce robust and reliable responses. Here we propose to
use Differential Evolution (DE) and Bayesian Optimisation (BO)
techniques to optimise the parameter space and investigate the
use of Self-Adaptive Differential Evolution (SADE) to ameliorate
the difficulties of finding appropriate input parameters for the DE
technique. We quantify the performance of the methods proposed
with a comprehensive comparison of different optimisers applied
to the model, and demonstrate the validity of the approach
proposed using recordings made from a DVS sensor mounted
on a UAV.

Index Terms—Differential Evolution, Bayesian Optimisation,
Self-adaptation, STDP, Neuromorphic Engineering

I. INTRODUCTION

State-of-the-art robotic unmanned aerial vehicle (UAV)
systems are achieving impressive results for compact and
agile flight and manoeuvring [1]. However these systems are
typically less power efficient and robust than their natural
counterparts (e.g., bees are capable of robust flight, obstacle
avoidance, and cognitive capabilities with a neural processing
technology that consumes approximately 10µW of power, and
that occupies a volume of less than 1 mm3). Using nature as
inspiration, neuromorphic engineers have attempted to bridge
the power-consumption gap through hardware solutions [2].
Recently, a range of different neuromorphic processors has
been proposed to allow for the hardware implementation of
spiking neural networks (SNNs) [3]–[8]. These mixed-signal
analog/digital chips are ultra low power (on the order of mW)
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and provide an attractive alternative to current digital hardware
used in mobile applications such as robotics.

Another successful neuromorphic example is the recent
development of silicon retinas and event-based sensors such as
the Dynamic Vision Sensor (DVS) [9], [10]. The DVS operates
differently compared to conventional video cameras: instead
of integrating light in a pixel array for a period of time and
then converting it to an image, it detects local changes in
luminance at each pixel and transmits these change events
asynchronously as they are detected and with microsecond
latency [11]. Compared to standard frame-based cameras, a
DVS offers (i) faster response times through asynchronous
transmission, (ii) much lower bandwidth, and (iii) no motion
blur [12].

A system with sensors and image processing in-situ on
the UAV is an essential step for autonomous UAV systems.
Typically, high-speed agile manoeuvres such as juggling,
pole acrobatics, or flying through thrown hoops, use exter-
nal motion sensors and high powered CPUs to control the
UAVs [13]–[15]; a combination of DVS and Neuromorphic
spiking networks provides low-power and high response rates
together with the potential for adaptation from the SNNs, and
as such are promising technologies for autonomous UAVs.

A model that has shown promise for fast and robust collision
avoidance in UAV robotics applications is the locust Lobula
Giant Motion Detector (LGMD) [16]–[21]. The LGMD in a
locust is capable of responding to an object looming at speeds
ranging from 0.3 m/s to 10 m/s [22]; our model was tested
on stimuli that loomed at rates of 266 pixels per second to
1478 pixels per second. The locust uses the LGMD to escape
from predators by detecting whether a stimulus is looming
(increasing in size in the field of view) or not [23]. This
neuronal looming detection mechanism is robust to translation,
which is why it is an ideal candidate for obstacle avoidance.
Previous implementations of this model used frame based
cameras and simplified neural models for embedded robotic
applications [23]–[25]. Salt et al. [26] modified the LGMD
model from [16] first mentioned in [27] to use Adaptive
Exponential Integrate and Fire (AEIF) neuron equations [28]
which model faithfully the behavior of silicon neurons present
in hardware neuromorphic processors [3]. The LGMD Neural
Network (LGMDNN) was, in particular, modified to make it
compatible with the Reconfigurable On-Line Learning Spiking
(ROLLS) neuromorphic processor [29]. In this previous work
we have presented a proof of concept demonstration that a
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LGMDNN network can be used for obstacles avoidance on a
UAV. Coupling the LGMDNN with the AEIF neural equations
yields 11 user-defined parameters after making simplifying
assumptions based on the constraints of the neuromorphic
processor. Optimising this parameter space is challenging as
it contains complex inter-dependencies. Moreover, these pa-
rameters are shared by neurons and synapses in different parts
of the structured neuronal network and thus have influence
on the overall performance of the network that does not lend
itself to any simple description of the role of each parameter.
Here we demonstrate the method by which the appropriate
parameters were found in [26] and show the extension of
this work to incorporate synaptic plasticity and neural spike-
frequency adaptation mechanisms.

Identifying acceptable parameter sets for robust functional
operation of this model is the focus of this work. Due to
the computational resources and time requirements involved
(approximately 30 seconds to 4 minutes per evaluation), a
brute force exhaustive search is unfeasible. Using granularity
of 1 for parameters with an upper bound greater than 100,
0.1 for an upper bound greater than 2 but less than 100,
0.01 otherwise, and the optimistic estimate of 30 seconds for
each evaluation on an eight core computer yields an expected
1.87×1020 years to evaluate. We set the goal to investigate the
use of efficient stochastic optimisation algorithms. Differential
Evolution (DE) [30] is particularly suited to our application.
DE is a simple and efficient stochastic vector-based real-value
parameter optimisation algorithm with performance (at least)
comparable to other leading optimisation algorithms [31], [32].
DE has only two user-defined rates [30], [33], [34], however
their optimal values are problem specific and can drastically
affect algorithmic performance [35]. This has prompted re-
search into Self-Adaptation (SA), which allows the rates to
vary autonomously in a context-sensitive manner throughout
an optimisation run. Self-Adaptive DE (SADE) has been
shown to perform at least as well as DE on benchmarking
problems [35], [36]. Importantly, SA has been shown to
reduce the number of evaluations required per optimisation
in resource-constrained scenarios with protracted evaluation
times [37], compared to non-adaptive solutions. Additionally,
we implemented Bayesian optimisation (BO) which models
the optimisation space as a Gaussian process and uses a utility
function to determine which points to select for optimisation
[38]. We compare these optimisers to a uniform random search
as a baseline as it has been shown to outperform grid search
in some problems [39].

Spiking networks are particularly amenable to a form of
unsupervised learning called Spike-Timing Dependent Plas-
ticity (STDP) [40], which allows synaptic weights to change
autonomously in response to environmental inputs. STDP has
been shown to provide faster responses compared to non-
plastic networks in dynamic environments [41], which mo-
tivates our investigations into its use in our LGMD networks.

The combination of Evolutionary optimisation with learn-
ing, e.g., the Baldwin Effect, is known to be beneficial
in artificial and natural systems [42]. In our case off-line
optimization (DE or BO) sets up network parametrizations for
STDP (learning) to exploit on-line.

Specific use of STDP with meta-optimization is a promising
and entirely new area for LGMD networks, which motivates
our work in this area. Our hypothesis is that these adaptivity
mechanisms are beneficial to the performance of the LGMD
network. To test this hypothesis, we evaluate the performance
of our optimizers (DE, SADE, and BO, with and without
STDP) when optimising looming responses in LGMD net-
works which are stimulated by (i) simple and (ii) complex
DVS recordings on the UAV. Our finding is, however, that the
STDP can be both beneficial and destructive for performance
of the network.

The original contributions of this work are (i) the de-
velopment of an objective function that accurately describes
the desired LGMD behaviour, (ii) a comprehensive statistical
comparisons of three leading algorithms in optimising LGMD
networks, and (iii) the first optimisation-based study on the
effect of STDP and spike-frequency adaptation in LGMD
networks.

II. THE MODEL

This section describes the background for the model set-up,
and the specific equations that were used in the experiment.

A. LGMD

We implement the model as described by Salt et al. [26].
The LGMD model consists of a photoreceptor layer (P),
a summing layer (S), an intermediate photoreceptor layer
(IP), an intermediate summing layer (IS), and an LGMD
neuron layer. The intermediate layers can be seen as anal-
ogous to sum-pooling layers in deep convolutional neural
networks [43]–[45]. These layers are modelled as populations
of AEIF neurons, connected by excitatory (E), slow inhibitory
(SI), and fast inhibitory (FI) connections. Fig. 1 shows the
topology of the network.

The P to IP to LGMD connection inhibits the spiking
response of the LGMD to translational motion across the field
of vision, and the inhibitory connections (SI and FI) from
the photoreceptor to the summing layer inhibit the output
neuron from spiking in response to non-looming stimuli. The
weights of the inhibitory connections are assigned based on
their distance from the central excitatory neuron similarly to
that described in [16]. This connection configuration spans the
P layer like a kernel.

The intermediate layers were added to make the model com-
patible with the dynap-se neuromorphic processor described
in [4], [6]. However, Salt et al. [26] found that the addition of
the intermediate (sum-pooling) layer before the LGMD neuron
also increased the performance of the network on all but slow
circular stimuli.

1) Adaptive Exponential Integrate and Fire Spiking Net-
works: We use Adaptive Exponential Integrate and Fire
(AEIF) model neurons in the network; the respective neuron
equations follow (1) and (2):

dV

dt
=
−gL(V − EL) + gL∆T exp(V−VT

∆T
) + I

C
, (1)
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Fig. 1: The neuromorphic LGMD model, which consists of a
photoreceptor layer (P), a summing layer (S), an intermediate
photoreceptor layer (IP), an intermediate summing layer (IS),
and an LGMD neuron layer. Edges show connections that are
either Excitatory (E), Slow Inhibitory (SI), or Fast Inhibitory
(FI).

I = Ie − IiA − IiB − Iadapt, (2)

where C is the membrane capacitance, gL is the leak con-
ductance, EL is the leak reversal potential, VT is the spike
threshold, ∆T is the slope factor, V is the membrane potential,
Ie is an excitatory current, Iadapt is the adaptation current,
and IiA and IiB describe fast and slow inhibitory current,
respectively [28]. When a spike is detected (V > VT ) the
voltage resets (V = Vr), and the post-synaptic neuron receives
a current injection from the pre-neuron firing given by:

Ie/i,l = Ie/i,l + qe/i,l, (3)
Iadapt = Iadapt + b, (4)

where the subscript l corresponds to the post-synaptic layer,
qe/i,l is the injected current, b is the spike-triggered contri-
bution to adaptation, and the subscript e/i refers to either
excitation or inhibition. To simplify the model for embedded
implementation, inhibitory currents were set as a ratio of the
excitatory current:

qi,l = inhl · qe,l, (5)

where inhl is a constant parameter. This equation holds for
both types of inhibition (slow and fast). The decay of the

excitatory or inhibitory currents is described by:

dIe/i

dt
= −

Ie/i

τe/i
, (6)

where Ie/i is the current and τe/i is the time constant for the
decay. The subscript e/i refers to either excitation or inhibition
respectively. Finally, the decay of the adaptation current is
described by:

dIadapt
dt

=
a(V − EL)− Iadapt

τadapt
, (7)

where a is the sub-threshold adaptation and τadapt is the time
constant for the decay.

Section IV-B explains how these were implemented and the
bounds of all of the values.

B. Spike Timing Dependent Plasticity

Spike Timing Dependent Plasticity (STDP) is a realisation
of Hebbian learning based on the temporal correlations be-
tween pre- and post-synaptic spikes. This synaptic plasticity
is thought to be fundamental to adaptation, learning, and
information storage in the brain [46], [47].

Arrival of a pre-synaptic spike closely before a post-synaptic
spike increases the efficacy of the synapse, while if a post-
synaptic spike is received in close proximity to and before a
pre-synaptic spike, the efficacy of the synapse is decreased.
Long term potentiating (LTP, synaptic weight increase) of the
synapse occurs in the former case, long term depression (LTD,
synaptic weight decrease) occurs in the latter case. Fig. 2
shows a typical dependence of the synaptic weight change on
the difference in arrival times of the post- and pre- synaptic
spikes.

Fig. 2: The impact of STDP on the synaptic weights. If the pre-
synaptic spike arrives before the post synaptic spike, then the
strength of the weights is increased. If the post synaptic spike
arrives first, then the strength of the synapse is weakened.

STDP modifies the synaptic current injection given in (3) by
multiplying it by a weight w, which is modified according to
the plasticity rule. In particular, if a pre-synaptic spike occurs,
then:

Ie/i,l = Ie/i,l + wqe/i,l, (8)
Apre = Apre + ∆pre, (9)
w = w +Apre. (10)
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If a post-synaptic spike occurs then:

Apost = Apost + ∆post, (11)
w = w −Apost. (12)

Apre|post are the amount by which the weight w is strength-
ened or weakened, and ∆pre|post is a user-defined value for
increasing Apre|post each time a spike occurs. At each spike
event, the variables Apre|post decay:

dApre|post

dt
= −

Apre|post

τpre|post
. (13)

This learning rule leads to potentiation of synapses that are
supported by temporal sequence of pre- and post-synaptic
spikes and depression of synapses that connect neurons that
fire in a reverse order. In other words, the connection strengths
vary depending on the activity of the neurons they are con-
nected to.

III. OPTIMISATION TECHNIQUES

In this Section, we describe the three optimisation tech-
niques that we compare: DE, SADE, and BO, and how they
are applied to optimising the LGMDNN parameter space. Each
individual, xi, is a parametrisation of the LGMDNN, given
by: xi =[τe, τiA, τiB, qeP, qeS, qeIP, qeIS, qeL, inhAS,
inhBS, inhAL, [a, b, τwadapt

], (τpre, τpost, ∆pre, ∆post)].
The bounds for each element of xi can be found in Table I in
Section IV-B, as well as a brief explanation of the meaning of
each parameter.

A. Differential Evolution

DE is an efficient and high performing optimiser for real-
valued parameters [30], [33]. As it is based on evolutionary
computing, it performs well on multi-modal, discontinuous
optimisation landscapes. Storn and Price [30] showed that
their original DE outperformed several other stochastic op-
timization techniques in benchmarking tests whilst requiring
the setting of only two parameters, crossover probability CR
and differential weight F . It also requires a mutation function,
which determines how individuals in the population are mixed.
Many variants of the mutation function have been suggested,
these follow the naming convention DE/x/y/z. Here we use
DE rand/1/bin where x denotes the vector to be mutated (in
this case a random vector), y denotes the number of vectors
used, and z denotes the crossover method (bin corresponds to
binomial).

The initial population, X1 = {x1,1,x2,1, ...,xNP,1}, where
NP is the size of the population and xi,1 ∈ RD is an
individual that contains the D parameters to be optimised,
is generated from random samples drawn from a uniform
probability distribution of the parameter space, bounded to
the range of the respective variable. These bounds are shown
in Section IV-B3. The fitness of each vector in the popula-
tion is calculated by the objective function, as described in
Section IV-A.

In each generation, each parent generates one offspring by
way of a ‘donor’ vector, created following Eq. (14):

vi,G+1 = xr1,G + F · (xr2,G − xr3,G), (14)

where r1 6= r2 6= r3 6= i ∈ [1, NP ] index random
unique population members, the subscript G indicates the
current generation, and differential weight F ∈ [0, 2] de-
termines the magnitude of the mutation. The final offspring
is generated by probabilistically merging elements of the
parent with elements of the donor vector. The new vector
ui,G+1 = (u1i,G+1, . . . , uDi,G+1) is found by:

uji,G+1 =

{
vji,G+1, if rand(j) ≤ CR or j = R,

xji,G, otherwise,
(15)

where j ∈ (1, . . . , D), CR ∈ [0, 1] is the crossover rate,
rand(j) ∈ [0, 1] is a uniform random number generator, and
R ∈ (1, . . . , D) is a randomly chosen index to ensure that
at least one parameter changes. The value of offspring with
index i is then calculated as:

xi,G+1 =

{
ui,G+1, if f(uji,G+1) > f(xi,G),

xi,G, otherwise,
(16)

where f(·) is the fitness function. Once all offspring are
generated, they are evaluated on the fitness function, and
selected into the next generation if they score better than their
parent. Otherwise, the parent remains in the population.

B. Self-Adaptive DE
Brest et al. [35] present the first widely-used self-adaptive

rate-varying DE, which is expanded by Qin et al., to allow
the mutation scheme to be selected (from four predetermined
schemes) alongside the rates [36], based on previously suc-
cessful settings. Different rates/schemes are shown to work
better on different problems, or in different stages of a single
optimisation run. The strategy for a given candidate is selected
based on a probability distribution determined by the success
rate of a given strategy over a learning period LP . A strategy is
considered successful when it improves the individual’s value.
In the interest of brevity, we refer the interested reader to [36]
for a full algorithmic description.

Rates are adapted as follows. Before G > LP (where G
is number of generations, and LP is the number of gener-
ations needed before the learned CR values are used), CR
is calculated by randomly selecting a number from a normal
distribution, N(0.5, 0.3), with a mean of 0.5 and a standard
deviation of 0.3. Afterwards it is calculated by a random
number from N(CRmk, 0.1) where CRmk is the median value
of the successful CR values for each strategy K. F is simply
selected from a normal distribution N(0.5, 0.3), which will
cause it fall on the interval [−0.4, 1.4] with a probability of
0.997 [36].

C. Bayesian Optimisation
Bayesian optimisation (BO), e.g. [38], is a probabilistic

optimisation process that typically requires relatively few
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evaluations [48]–[50], although the evaluations themselves are
computationally expensive. When parallelised, BO is shown to
locate hyper-parameters within set error bounds significantly
faster than other state-of-the-art methods on four challenging
ML problems [51], in one case displaying 3% improved
performance over state-of-the-art expert results. As such, BO
can be considered a competitive optimiser to which we can
compare DE and SADE.

BO assumes the network hyper-parameters are sampled
from a Gaussian process (GP), and updates a prior distribution
of the parameterisation based on observations. For LGMDNN,
observations are the measure of generalization performance
under different settings of the hyper-parameters we wish to
optimise. BO exploits the prior model to decide the next set
of hyper-parameters to sample.

BO comprises three parts: (i) a prior distribution, (ii) an
acquisition function, and (iii) a covariance function.

1) Prior: We use a Gaussian Process (GP) prior, as it
is particularly suited to optimisation tasks [48]. A GP is
a distribution over functions specified by its mean, m, and
covariance, k, which are updated as hyper-parameter sets are
evaluated. The GP returns m and k in place of the standard
function f :

f(x) ∼ GP (m(x), k(x, x′)). (17)

2) Covariance Function: The covariance function deter-
mines the distribution of samples drawn from the GP [38],
[51]. Following [51], we select the 5/2 ARD Matérn kernel
(18), where θ is the covariance amplitude.

km52(xi, xj) = ηexp(−
√

5r2(xi, xj)), (18)

where:

η = θ(1 +
√

5r2(xi, xj) +
5

3
r2(xi, xj)), (19)

where:
r2(xi, xj) =

xi − xj
θ2

. (20)

3) Acquisition Function: An acquisition function is a func-
tion that selects which point in the optimisation space to
evaluate next. We evaluate the three acquisition functions,
which select the hyper-parameters for the next experiment:
Probability of Improvement (PI), Expected Improvement (EI)
[48], and Upper Confidence Bound (UCB) [52] — see [38]
for full implementation details. µ(·) and σ(·) refer to the mean
and standard deviation functions.

Briefly, the PI can be calculated, given our current maxi-
mum observation of the GP, x+, by:

PI(x) = P (f(x) ≥ f(x+) + ζ)

= Φ(
µ(x)− f(x+)− ζ

σ(x)
). (21)

Where, Φ(.) is the normal cumulative distribution function.
Here, ζ ≥ 0 is a user-defined trade-off parameter that balances
exploration and exploitation [53].

Similarly, EI is evaluated by [54]:

EI(x) =

{
ei+ σ(x)φ(Z), if σ(x) > 0,

0, otherwise;
(22)

ei = (µ(x)− f(x+)− ζ)Φ(Z); (23)

Z =

{
µ−f(x+)−ζ

σ(x) , if σ(x) > 0,

0, otherwise,

where φ and Φ correspond to the probability and cumulative
distribution functions of the normal distribution, respectively.

UCB maximises the upper confidence bound:

UCB(x) = µ(x) + κσ(x), (24)

where κ ≥ 0 balances exploration and exploitation [51], and
is calculated per evaluation as:

κ =
√
ντt , (25)

where ν is the user tunable variable and:

τt = 2 log(
t
d
2 +2π2

3δ
). (26)

δ ∈ {0, 1}, d is the number of dimensions in the function and
t is the iteration number.

IV. TEST PROBLEM

This section outlines the rationale of the objective function,
the experimental set-up, and assumptions. It is important to
note that the motivation behind the model simplifications and
objective function is for the work to be directly transferable to
the neuromorphic processors described in [29] once they are
readily available.

A. Objective Function

Initially the optimisation function was formulated as:

Finit(λ) = Acc− ||V ||2, (27)

where Acc is the accuracy given by Eq. (31), ||V ||2 is the
regularisation term, in particular the l2-norm of the voltage
signal, used to regularise the voltage signal, and λ is a
candidate solution. However, this objective function resulted in
all optimisers producing 50% accuracy with looming detected
at any time in the experiments.

To improve the accuracy, the function to optimise was
formulated as a weighted multi-objective function [55]. The
objective function has three distinct parts: accuracy (Eq. (31)),
sum squared error of the membrane voltage signal (Eq. (36)),
and the reward of the spiking trace (Eq. (34)). The accuracy
alone could not be used as there were only eight discrete
events in the input stimuli during the optimisation phase which
was not granular enough for optimisation. Eq. (36) acts as a
regularising term to prevent the voltage trace from becoming
too large. Eq. (34) is used to rate the spiking behaviour with
more granularity than is possible with accuracy. Combining
Eq. (36) and (34) resulted in spiking behaviour with a realistic
voltage trace. The accuracy was then used to account for sub-
optimal regions of (34) that still resulted in a high score.
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This resulted in the final formulation of the objective function
modified by accuracy, FAcc(λ), which is calculated by:

FAcc(λ) =


2 · F (λ), if F (λ) > 0 and Acc = 1,

Acc · F (λ), if F (λ) < 0,

0, if Acc = 1 and F (λ) < 0,

F (λ), otherwise.

(28)

Here, Acc is the accuracy of the LGMDNN output and F (λ)
is the fitness function. The LGMD network is said to have
detected a looming stimulus if the output neuron’s spike rate
exceeds a threshold SL. This can be formalised by:

Looming =

{
True, if SR > SL,

False, otherwise,
(29)

where SR can be calculated by:

SR =

t+∆T∑
i=t

Si, (30)

where ∆T is the time over which the rate is calculated and Si
is whether or not there is a spike at time i; a spike is defined
to occur if at time i the membrane potential exceeds VT (VT
has the same meaning as in Eq. (1)).

The looming outputs are categorised into true positives
(TP ), false positives (FP ), true negatives (TN ), and false
negatives (FN ). Output accuracy is then:

Acc =
TP + TN

TP + TN + FP + FN
. (31)

The fitness function without accuracy, F (λ), can be calcu-
lated by:

F (λ) =
Score(λ) + SSEOS(λ)

2
, (32)

where Score is a scoring function based on the timing of
spiking outputs and SSEOS is the sum squared error of the
output signal.

The score is calculated by difference of the penalties’ and
reward functions’ sums over the simulation:

Score(λ) =

N∑
i=1

Ri −
N∑
i=1

Pi. (33)

The reward at a given time can be calculated by:

R(t) =

{
k exp( t

∆t ) + 1, if looming and spike,
0, otherwise.

(34)

The punishment can be calculated by:

P (t) =



(l − c) t
∆t + c, if not looming and

spike and t < ∆t
2 ;

(l − c) 1−(t−∆t
2 )

∆t
2

+ c, if not looming

and spike and t > ∆t
2 ;

0, otherwise.
(35)

In these equations, t and ∆t remain consistent with the other
objective functions and k, l, and c are all adjustable constants

to change the level of punishment or reward.
To calculate SSEOS(λ), the signal was first processed so

that every spike had the same value. This was done so that the
ideal voltage and the actual voltage would match in looming
regions, as the voltage can vary for a given spike. Ultimately,
the only criterion is that the voltage has crossed the spiking
threshold. In the non-looming region the ideal signal was taken
to be the resting potential, which was negative for the AEIF
model equation. The signal error was calculated at every time
step as:

SSEOS(λ) = −
N∑
i=1

(V iactual − V iideal)2. (36)

Vactual could be obtained directly from the state monitor
object of the LGMD output neuron in the SNN simulator
(Brian2). N in this case is the length of the simulation and
i indicates each recorded data point at each time step of the
simulation. Videal was given by:

Videal =

{
Vspk, if looming,
Vr, otherwise,

(37)

where Vspk is the normalised value given to each spike and
Vr is the resting potential.

Overall, this gives an objective function that takes into
account the expected spiking behaviour, whilst penalising
the system for deviating from plausible voltage values and
rewarding it for accurately categorising looming and non-
looming stimuli. The voltage signal was kept to realistic
bounds as the model was designed to target neuromorphic
processors such as the ROLLS chip [4].

B. Experimental Set-up
The model was set-up using the Python Brian2 spiking

neural network simulator [56].
1) Data Collection: Data was collected using a DVS in-

situ mounted on a quadrotor UAV (QUAV). Two types of
data were collected: simple and real world. The simple data
was synthesised using PyGame to generate black shapes on a
white background that increased in area in the field of view
of the DVS. This included: a fast and slow circle, a fast and
slow square, and a circle that loomed then translated while
increasing in speed (composite). The laptop playing the stimuli
was placed in front of the hovering QUAV and the stimuli were
recorded. This was done to maintain any noise that might be
generated by the propellers of the QUAV.

To challenge the model, real stimuli were also recorded:
a white ball on a black slope was rolled towards the DVS
from 3 different directions; a cup was suspended in the air in
front of the hovering QUAV and moving towards and away
from the QUAV; and a hand was moved towards and away
from the DVS on the hovering QUAV. These are increasing in
complexity in terms of the shapes that are presented.

Four looming and non-looming events (∼ 25 s) from the
composite stimulus were used to optimise the model and then
the optimised model was evaluated on the other stimuli. The
stimuli were chosen to show that the model generated is both
shape and speed invariant.
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2) Experimental Constants: ∆T from Eq. (30) was set to
be 10 ms. A loom was said to be detected if SR from Eq. (30)
exceeded 13. This had to occur before the last 10% of the
looming sequence to allow enough time for the UAV to react.
The clock in Brian was set to have 0.1 ms granularity. This
meant that the model could react after 1.3 ms if the loom was
intense, at most it would take 10 ms.

3) Hyper-parameter constraints: The hyper-parameters
were all continuous and could range from zero to infinity.
There were many regions of the parameter space that were not
computable even when using a cluster with 368GB of RAM.
To mitigate some of the computational difficulties, Bayesian
optimisation using the expected improvement utility function
(BO-EI) was used over 20 eight hour runs to find feasible
regions of the hyper-parameter space allowing us to constrain
the optimisation space.
C, gL, EL, VT , and ∆T are parameters of the neuron

equation, not the model, and were set as constants; perfor-
mance was not impacted by setting these values and appro-
priately optimising the other parameters [57]: C = 124.2 pF ,
gL = 60.05nS, EL = −73.12mV , VT = −3.98mV , and
∆T = 6.71mV .

Table I shows the constraints found for the rest of the hyper-
parameters.

TABLE I: Parameters of the optimisation space and their
constraints.

Param. Min Max Description
τe 1 10 Decay time const, exc.
τiA 1 20 Decay time const, A inh.
τiB 1 25 Decay time const, B inh.
qeP 0 1363 Exc. current inj. to P
qeS 0 5000 Exc. current inj. to S
qeIP 0 230 Exc. current inj. to IP
qeIS 0 270 Exc. current inj. to IS
qeL 0 472 Exc. current inj. to L
inhAS 0.04 1.22 Inh.A/Exc. ratio for S
inhBS 0.24 1.5 Inh.B/Exc. ratio for S
inhAL 0.019 1.3 Inh.A/Exc. ratio for L
a 1 8 Sub-thresh. adaptation
b 40 141 Spike-contrib. to adapt.
τwadapt

1 150 Time const, adapt.
τpre 1 25 Time const of Apre

τpost 1 25 Time const of Apost

∆pre 1e-16 0.05 Current+ at pre-syn. spike
∆post 1e-16 0.05 Current+ at post-syn. spike

4) Comparing optimisers: SADE, DE, BO with EI(BEI),
BO with POI (BPOI), and BO with UCB (BUCB) were
evaluated thirty times on the same input stimulus, so that they
could be statistically compared using a Mann-Whitney U test.
A random search (RNG) was also ran in the same manner as
a benchmark for the algorithms, which has been shown to be
a natural baseline with which to compare other optimisation
algorithms as it can outperform grid searches in terms of
results and number of calculations [39]. The input stimulus
included a black circle on a white background performing a

eight looming and eight non-looming events. The non-looming
events contained a combination of a shrinking circle and a
translating circle from left to right or right to left. The values
of the user defined parameters were selected as:
• BEI and BPOI: ζ = 0.01;
• BUCB: κ = 2.576;
• DE: NP = 10dim

3 , F = 0.6607, CR = 0.9426;
• SADE: LP = 3, NP = 10dim

3 , where dim is the number
of hyper parameters;

• RNG: Individuals were selected from a uniform distribu-
tion.

Note, that we have chosen all user-defined parameters based
on values previously used in the literature.

The tests were run using the non-adaptive and non-plastic
model with the bounds from Table I. They were defined as
having converged if they had not improved for 10 × NP
evaluations. This meant ten generations for the DE algorithms
and the same number of BO or RNG evaluations evaluations.
The population size was two more than what is recommended
by [34] for the DE algorithm. This size was chosen as it is
relatively small and time was an issue. The short convergence
meant that the SADE algorithm needed to have a short LP.
The processor time was not included as a metric for this as
the tests were run on three different computers so the results
would not have been comparable.

5) Comparing Models: Once the best optimiser was found
(a comparison of optimisers can be found in Subsection V-A),
the best performing optimiser, SADE, was used to optimise
the following models:
LGMD: Neuromorphic LGMD;
A: LGMD with adaptation;
P: LGMD with plasticity;
AP: LGMD with adaptation and plasticity.

The SADE variables were set to: LP = 3 and NP = 10.
The optimisation process was run 10 times and the best
optimiser from these ten runs was selected. The model was
then tested on each input case for ten looming to non-looming
or non-looming to looming transitions. The performance of
each model is reported in Subsection V-C.

Plasticity was found to degrade the performance sometimes
so we experimented clamping it from 0% to 100% of the
original synaptic strength. This allowed the weights to range
from zero to double the original values when at 100% STDP
to no variation at 0% STDP.

V. RESULTS AND DISCUSSION

The results are split into two subsections. First, we will com-
pare the optimisers and then we will compare the addition of
adaptation, plasticity, and adaptation and plasticity combined
to the baseline model.

The models are evaluated on their accuracy (Acc), sensitiv-
ity (Sen), Precision (Pre), and Specificity (Spe). Acc is defined
in Subsection IV-A. The other metrics can be found in [58].

A. Optimiser comparison and statistical analysis

Table II shows that the SADE algorithm achieved the best
fitness. A good fitness value is one that is greater than 0, this
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means that it is either 100% accurate or exhibits a desirable
voltage trace The optimisers all achieved a negative fitness
values due to decreased population size and convergence
conditions to enable us to run enough experiments to be
able to perform statistical analysis. Section V-C shows the
results of SADE when run with a less restrictive convergence
condition. The DE algorithm converged on the worst solution
in the least number of objective function evaluations, and
achieved the best specificity but the worst fitness, precision,
and sensitivity. RNG achieved the highest average accuracy,
sensitivity, and precision. BPOI and SADE still had greater
fitness. As the fitness function is negative it is likely that it
was rarely modified by the accuracy as per Eq. (28). All of the
models were able to find locations in the optimisation space
with 100% accuracy/sensitivity given enough time, however as
evaluations are time-expensive, not all these algorithms may
be viable and a combination of performance metrics should
be considered.

TABLE II: Optimisation algorithm metrics.

Meth Fit Eva Acc Sen Pre Spe
DE -3779.96 440.40 0.52 0.06 0.18 0.98
BEI -2653.45 761.29 0.65 0.39 0.70 0.90
SADE -1749.83 1345.66 0.61 0.33 0.58 0.89
RNG -2328.15 754.80 0.67 0.47 0.75 0.86
BUCB -2433.38 832.40 0.60 0.43 0.63 0.77
BPOI -1968.19 794.27 0.63 0.40 0.71 0.86

Table III shows the statistical significance of the results from
Table II. The method in the comparison column is compared
to each method in the subsequent column. A + indicates
statistically significant values and a . indicates no statistical
significance. Statistical significance was defined as p ≤ 0.05.
The Mann-Whitney U test was used to determine statistical
significance because it does not require normally distributed
samples.

SADE’s fitness was significantly better compared to all
optimisers, but it also performed the most evaluations. This
difference is statistically significant. SADE had the second
best accuracy but this is only significantly different to RNG
and DE. Its sensitivity was significantly worse than BUCB
and RNG. It had significantly worse precision than RNG, but
significantly better specificity.

BPOI was significantly better than DE, BEI, and BUCB for
fitness. It also had significantly less evaluations than SADE.

BEI had significantly worse fitness and sensitivity when
compared to BOPI, RNG and SADE. Interestingly, even
though it had the second best accuracy the difference is only
significant between it and BUCB and SADE.

DE took significantly fewer evaluations to converge when
compared to all algorithms but also had significantly worse
fitness, accuracy, sensitivity, and precision. However it had
significantly better specificity than all other algorithms. DE
was statistically different to every algorithm for every metric.

BUCB had slightly worse fitness than RNG but it is not
statistically significant. Its accuracy was significantly worse
than BEI but significantly better than DE.

TABLE III: Comparison of the statistical significance of the
results.

Meth Fit Eva Acc Sen Pre Spe

BUCB

DE + + + + + +
BEI . . + . . +
SADE + + . + . +
RNG . + + . + +
BPOI + . . . . +

DE

BEI + + + + + +
SADE + + + + + +
RNG + + + + + +
BUCB + + + + + +
BPOI + + + + + +

BEI

DE + + + + + +
SADE + + . . . .
RNG + . . + . .
BUCB . . + . . +
BPOI + . . . . .

SADE

DE + + + + + +
BEI + + . . . .
RNG + + + + + .
BUCB + + . + . +
BPOI + + . . . .

BPOI

DE + + + + + +
BEI + . . . . .
SADE + + . . . .
RNG . . . + . .
BUCB + . . . . +

RNG

DE + + + + + +
BEI + . . + . .
SADE + + + + + .
BUCB . + + . + +
BPOI . . . + . .

A possible reason that DE underperformed is that the F val-
ues provided in [34] are not appropriate for this problem. The
population size may have also been too small, as populations
were truncated to one third of the size recommended in [34].
A smaller population was used for a fair comparison to the
Bayesian optimisation algorithms which have a higher com-
putational overhead than DE and SADE. SADE outperformed
DE with the same sized population and may have performed
better given a larger population. Increasing the population size
meant that BPOI and BUCB were not able to complete one
run in the time it took SADE, DE, and RNG to do thirty.
EI was only able to complete 25 of 30 runs with the larger
population. The Bayesian optimisers don’t have a population
size but the stopping condition was based on it.

SADE removes the need to find control parameters and has
been shown to perform as well or better than DE even when the
control parameters are well selected [36]. The generalisability
that comes with finding the right control parameters on-the-fly
is also appealing.

The addition of the various mutation functions to SADE
also seems to help it find better results. This is likely due to
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the desirable properties of each mutation function cancelling
out the undesirable properties of other mutation functions.

A surprising result was that of the BO algorithms BPOI
seemed to perform the best. This contrasts to previous stud-
ies [38] that ranked it last compared to BEI and BUCB. BPOI
tends to focus more on exploitation rather than exploration,
choosing regions in the GP with a higher mean rather than
variance.

Fig. 3 also shows that SADE’s CR and F values converged
on small values indicating that it also preferred exploitation to
exploration. We postulate that the surface has multiple sharp
peaks making it difficult for the optimisers to find good values,
but finding one of these peaks and climbing it yields better
results than being overly exploratory. For example, if BO
landed near a sharp peak using UCB or EI it would never be
inclined to evaluate nearby points, because the utility function
tends to prioritise regions of higher uncertainty and uncertainty
may be lower near evaluated points. RNG offers an unbiased
search through the space and performs worse, in terms of
fitness, than the exploitative algorithms but better than the
exploratory ones.

B. SADE Averages

The SADE algorithm performed the best, in terms of fitness,
out of all of the algorithms. Fig. 3a shows the average Facc
of the population over 19 generations. The average Facc
converged by five iterations. The maximum Facc starts off at
0. This indicates that a 100% accuracy candidate was found
in the initialisation period. The maximum Facc then rises to
400 which is not visible as the range of the average score is
-50000 to -1500.

The F average results in Fig. 3b are quite interesting. They
start off at 1 as they are selected from U([0, 2]) and then
drop down to 0.5 as they are selected from U([0, 1]) after
the first generation. Once the learning period has finished
all of the F values have converged to less than 0.1. This
indicates that the F values that are having the most success are
small and therefore taking advantage of exploration rather than
exploitation. It was unexpected that the algorithm would find
a min/max within so few generations. This could be why the
authors select initial F from N(0.5, 0.3) with range [-0.4,1.4].

Fig. 3c shows how the crossover probability CR for each
function changes over time. For the first nine generations,
the CR values are selected from U([0, 1]) and so the mean
stays at 0.5. However, as with the F mean values once the
learning period is over, all of the CR values go down to less
than 0.1. This means that less than 10% of the mutations will
generally take place. From a set of 11 hyper-parameters this
means that probabilistically one value will change in addition
to the random index that is chosen.

The probability of each function being chosen is shown
in Fig. 3d. The probabilities are fixed at 0.25 for the first 9
generations and then they vary based on their success. It is in-
teresting to see that in spite of the F and CR values suggesting
that the algorithm is converging on a solution, the DE/Rand-
to-Best/2/Bin algorithm is the least successful. The DE/Curr-
to-Rand/1 algorithm performs relatively well until about 12

(a)

(b)

(c)

(d)

Fig. 3: Averages Facc(λ), F , CR, and p for the SADE pop-
ulation over 19 generations. The dotted vertical line indicates
that the learning period has ended. Note description of the
SADE algorithm in Section III-B.
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TABLE IV: Parameters used by each model.

Parameter LGMD A P AP
τe(ms) 5.87 5.87 5.87 5.87
τiA(ms) 3.57 3.57 3.57 3.57
τiB(ms) 4.20 4.20 4.20 4.20
qeP(pA) 1014.00 1014.00 1014.00 1014.00
qeS(pA) 4635.30 4635.30 4635.30 4635.30
qeIP(pA) 84.26 84.26 84.26 84.26
qeIS(pA) 168.11 168.11 168.11 168.11
qeL(pA) 80.00 100.00 80.00 100.00
inhAS(1) 1.19 1.19 1.19 1.19
inhBS(1) 1.50 1.50 1.50 1.50
inhAL(1) 0.14 0.14 0.14 0.14
a(1) - 0.79 - 0.79
b(1) - 14.51 - 14.51
τwadapt

(ms) - 30.00 - 30.00
τpre(ms) - - 1.56 1.56
τpost(ms) - - 10.03 10.03
∆pre(1) - - 0.031 0.031
∆post(1) - - 0.027 0.027
c(1) - - 0.05 0.05

generations where it tapers off. The DE/Rand/2/bin algorithm
dips initially but then increases as DE/Curr-to-Rand/1 starts to
drop off. The DE/Rand/1/bin remains relatively high during the
entire algorithm only to be overtaken by The DE/Rand/2/bin
in the last generation.

C. Comparison of models

Table IV shows the selected final parameters of each model.
These values were all found by the SADE algorithm, due to
the superior quality of its results. The (1) tag in the parameter
column indicates that the variable is unit-less.

In both models with plasticity, the clamping value c was set
to 0.05, or 5%.

As expected, all of the models have a τiA < τiB which
means that the B inhibitions will persist for longer and
have slower dynamics relative to the A inhibitions. What
is unexpected is that the B inhibitions also have stronger
current injection than the A inhibitions. On top of this,
both of the inhibitory current injections are actually stronger
than the excitatory connections. Whereas the model in [24]
with discrete dynamics had relatively low inhibitory current
injections, with inhAS = 0.25 and inhBS = 0.125 of the
excitation strength. Clearly, there is a difference between the
neuron models that are used, but this is an interesting outcome
nonetheless.

Table V shows the accuracy, sensitivity, precision, and
specificity for each LGMD model for a given simple stimulus.
The stimuli can be described as follows:
composite: A standard test bench stimulus that consists of a

black circle on a white background that translates and
looms at increasing speeds. Fig. 4a shows the composite
input.

TABLE V: Quality metrics of the performance of different
LGMD models for different simulated looming stimuli.

Stimulus Model Acc Sen Pre Spe

comp

LGMD 0.90 1.00 0.83 0.80
A 0.90 1.00 0.83 0.80
P 0.90 1.00 0.83 0.80

AP 0.90 1.00 0.83 0.80

circleSlow

LGMD 0.80 0.60 1.00 1.00
A 0.80 0.60 1.00 1.00
P 0.90 0.80 1.00 1.00

AP 1.00 1.00 1.00 1.00

circleFast

LGMD 1.00 1.00 1.00 1.00
A 1.00 1.00 1.00 1.00
P 1.00 1.00 1.00 1.00

AP 1.00 1.00 1.00 1.00

squareSlow

LGMD 1.00 1.00 1.00 1.00
A 1.00 1.00 1.00 1.00
P 1.00 1.00 1.00 1.00

AP 1.00 1.00 1.00 1.00

squareFast

LGMD 1.00 1.00 1.00 1.00
A 1.00 1.00 1.00 1.00
P 1.00 1.00 1.00 1.00

AP 1.00 1.00 1.00 1.00

circleFast/Slow: A purely looming black circle on white
background at high or low speeds. Collected on hovering
QUAV. Fig. 4b shows the circleFast/Slow stimulus.

squareFast/Slow: A purely looming black square on a white
background at high/low speeds. Fig. 4c shows the square-
Fast/Slow stimulus.

The results in Table V show that the models performed
well (Accuracy ≥ 0.8) on most of the stimuli. LGMD and
A perform poorly on the circleSlow test, missing two out of
five of the looming stimuli. P misses one looming stimulus,
and AP detects all stimuli accurately. The plasticity increases
the weights of important connections and the adaptation filters
out over excited neurons.

These results show that the models are capable of detect-
ing looming stimuli of varying speeds and of differentiating
between translation and looming stimuli for the most part.
AP scored 100% in every test besides the composite stimulus
where it misclassified the first short translation as a loom.
It is likely that this is due to the network not starting in its
resting/equilibrium state. Inspecting the output trace of LGMD
on the composite stimulus it takes the model 1̃50ms to stop
spiking after the looming phase has finished.

After performing the simulated experiments of computer
generated shapes, real objects moving towards and away from
the camera were recorded. These stimuli can be described as:
ballRoll[1-3]: Three different runs of a white ball rolling

towards the camera on a black platform at different angles
and speeds. This is a purely looming stimulus. Fig. 5a
shows one of the three ball rolls.

cupQUAV: A QUAV flying towards a cup suspended in
front of it with a white wall behind it. This is a self
stimulus.Fig. 5b shows the QUAV cup stimulus.
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(a) Filtered Composite Input (P Layer Raster Plot).

(b) Filtered circleSlow Input (P Layer Raster Plot).

(c) Filtered squareFast Input (P Layer Raster Plot).

Fig. 4: The input layer for the simple stimuli.The white
and coloured backgrounds indicate non-looming and looming
respectively.

Hand: A Hand moving towards and away from the hovering
QUAV. Fig. 5c shows the looming hand stimulus.

Fig. 5a, Fig. 5b, and Fig. 5c show that the real stimuli tend
to have more noise and do not adhere to a strong pattern
when compared to Fig. 4a, Fig. 4b, and Fig. 4c. Table VI shows
that the models do not perform as well on real world stimuli.
ballRoll[1-3] is the simplest real stimulus, and as such P and
AP achieved full accuracy. LGMD and A missed one roll.

Surprisingly good results come from the cupQUAV stimu-
lus: 70% accuracy for all models except for AP, which had
80%. It is worth noting that AP performed consistently well
when compared with the other models.

The real world stimuli tended to contain more activations
due to the irregularity of the shapes and increased noise. The
possibility of detecting the hand by stochastically dropping
pixel-events, was investigated. Dropping 50% of the DVS
events and re-optimising the network gave 100% accuracy
for the hand and cupQuad stimulus. However, in doing this,

(a) Filtered ballRoll2 Input (P Layer Raster Plot).

(b) Filtered cupQUAV Input (P Layer Raster Plot).

(c) Filtered Hand Input (P Layer Raster Plot).

Fig. 5: Complex real stimuli. The white and coloured back-
grounds indicate non-looming and looming respectively.

TABLE VI: Quality metrics of the performance of different
LGMD models for different real looming stimuli

Stim Model Acc Sen Pre Spe

ballRoll[1-3]

LGMD 0.66 0.66 1.00 0.00
A 0.66 0.66 1.00 0.00
P 1.00 1.00 1.00 0.00

AP 1.00 1.00 1.00 0.00

cupQUAV

LGMD 0.70 1.00 0.62 0.40
A 0.70 1.00 0.62 0.40
P 0.70 1.00 0.62 0.40

AP 0.80 1.00 0.71 0.60

hand

LGMD 0.50 1.00 0.50 0.00
A 0.50 1.00 0.50 0.00
P 0.50 1.00 0.50 0.00

AP 0.50 1.00 0.50 0.00
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the network was no longer robust to the speed changes in
the composite benchmark test. Indeed, even using all of the
pixels, the network could be optimised to work on the real
world stimuli, but would no longer be as accurate for inputs
that contained less activations. The inhibition values went up
and the gain values went down, meaning the network struggled
to spike on stimuli that weren’t noisy or event heavy. Some
sort of additional pre-filtering could be useful in getting the
looming network to be fully robust in all situations, such as
a sub-sampling filter that allows less than some maximum
number of input pixels to be active at a given time stepls
to be active at a given time step.

(a) Effect of changing the c clamping value on the learning
weight w for the composite stimulus

(b) Effect of changing the c clamping value on the learning
weight w for the circleSlow stimulus

(c) Effect of changing the c clamping value on the learning
weight w for the hand stimulus

Fig. 6: The effect of changing the clamping value on various
stimuli

1) The effect of changing c on plasticity: Fig. 6a, Fig. 6b,
and Fig. 6c show how changing the bounds of the plasticity
clamping changes the LGMD (P model) accuracy for the
composite, cicleSlow, and hand stimuli respectively.

Interestingly, for the two simulated stimuli increasing the
clamping to beyond 25% caused the accuracy to drop to 50%.
The sensitivity dropped to 0% indicating that it was no longer
detecting looms and that the synaptic weights were no longer
causing the LGMD neuron to fire.

Increasing the clamping to 45% increases the accuracy
for both the P and AP models on the hand stimulus. This
shows that plasticity is a double edged sword that can both
improve and degrade the performance of the model. In the
simulated stimuli lower clamping, c = 0.1 − 0.2, tended to
perform better but in the hand stimulus larger, c = 0.5, gave
better results. This could suggest that too much plasticity
can cause the weights to deviate too far from their good
values on well formed stimuli but help to reduce noise in real
world stimuli. Knowledge about the nature of your input can
help to determine what level of plasticity you require. In all
simulated and real cases except for the hand stimulus, a small
contribution of plasticity improved the performance.

VI. CONCLUSIONS

We implemented a neuromorphic model of the locust
LGMD network using recordings from a UAV equipped with
a DVS sensor as inputs. The neuromorphic LGMDNN was
capable of differentiating between looming and non-looming
stimuli. It was capable of detecting the black and white simple
stimuli correctly regardless of speed and shape. Real-world
stimuli performed relatively well using the parameters found
by the optimiser for synthesised stimuli. However, when re-
optimised, the real-world stimuli performed comparably to
the synthesised stimuli. This was mainly because real-world
stimuli tend to contain a higher number of luminance changes
and therefore the magnitude parameters needed to be reduced.

We showed that BO, DE, and SADE are capable of finding
parameter values that give the desired performance in the
LGMDNN model. It can be seen that SADE statistically sig-
nificantly outperformed DE on all metrics besides specificity
and the number of evaluations, although the only metrics that
formed part of the objective function were fitness and accuracy.
Once a suitable objective function was found that accurately
described the desired output of the LGMDNN, BO, DE and
SADE outperformed hand-crafted attempts, but a uniform
random search also performed well. The algorithms were able
to achieve 100% accuracy on black and white simple stimuli of
varying shapes and speeds. SADE performed well in this task
and we have shown that it is suitable for the optimisation of a
multi-layered LGMD spiking neural network. This could save
time when developing biologically plausible SNNs in related
applications.

We have also studied effect of synaptic plasticity and
neuronal spike-frequency adaptation on the performance of the
LGMDNN, using the most successful parameter optimisation
method. Our conclusion is that plasticity plays an important
role in increasing (and decreasing) performance, depending on
how its parameters are selected.

In the future, we plan to apply the optimisation algorithms
directly to tuning the neuromorphic processors implementation
of the model, with the end goal being a closed loop control
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system on a UAV. Showing that the optimisation approach pro-
posed is effective for selecting parameters directly on closed-
loop neuromorphic hardware set-ups will greatly increase their
usability.
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