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Abstract—How agents generate meaningful sequences of ac-
tions in natural environments is one of the most challenging
problems in studies of natural cognition and in the design of
artificial cognitive systems. Each action in a sequence must
contribute to the behavioral objective, while at the same time
satisfying constraints that arise from the environment, the agent’s
embodiment, and the agent’s behavioral history. In this paper, we
introduce a neural-dynamic architecture that enables selection of
an appropriate action for a given task in a particular environment
and is open to learning. We use the same framework of neural
dynamics for all processes from perception, to representation and
motor planning as well as behavioral organization. This facilitates
integration and flexibility. The neural dynamic representations of
particular behaviors emerge on the fly from the interplay between
task and environment inputs as well as behavioral history. All
behavioral states are attractors of the neural dynamics, whose
instabilities lead to behavioral switches. As a result, behavioral
organization is robust in the face of noisy and unreliable sensory
information.

I. INTRODUCTION

Consider a typical task that could be accomplished by a
robot equipped with an arm, a gripper, and a vision sensor,
for instance, the task to “grasp an object”. This task may
be segmented into chunks, which we will call elementary
behaviors (EBs): (1) find the object within the visual array, (2)
open the gripper while (3) moving the end-effector toward the
object, and finally, (4) close the gripper. The order of the EBs
in this sequence is constrained by the physical characteristics
of the robot (it’s camera and arm geometry, it’s gripper
mechanics), by the specifics of the task (the sequence of
behaviors would differ if the task were to “push the object”),
and by the particular environmental situation (the sequence
of behaviors would differ depending on whether the gripper is
closed or opened at the beginning of the sequence and whether
the object is in view or not).

Even for such a simple task, the constraints may be analyzed
in terms of a logic of action, which can be expressed as rules
of the behavioral organization of the EBs. Thus, the third EB,
“move end-effector”, cannot be executed until the first one,
“find object”, has terminated and the location of the object of
interest has been identified. The second EB (“open gripper”)
may run concurrently with the EB “find object”, but should
precede the third EB (“move end-effector”), whereas the forth
EB (“close gripper”) must be at the end of the sequence.
Again, the structure of the sequence that corresponds to this
task depends on the agent’s embodiment (its sensors and

motors), on the task’s specifics, and on the moment-to-moment
environmental situation as the sequence unfolds.

Such rule-like relationships between EBs are relatively easy
to capture in abstract representations of behaviors such as the
verbal descriptions provided above, or by programming the
EBs in separate software modules. However, early efforts to
design architectures that control action selection in robotic
agents [1], [2], [3], [4] have revealed, that scaling up hand-
crafted control systems to complex tasks and environments is a
major challenge. The autonomous development of the control
architectures has been envisioned as a solution to this problem
[5], [6], [7]. First efforts to autonomously learn action policies
have invoked principles of reinforcement learning (e.g., [8]),
used neuronal networks (e.g., [9]), and exploited analogies
with human language learning (e.g., [10]). A behavior-based
approach uses a relatively simple fixed scheme of behavioral
organization but achieves learning through belief estimation
[11]. Another line of related work draws on analogies with
the function of the basal ganglia [12], [13], [14], [15].

Our goal here is to provide a firm conceptual basis for how
behavioral organization may be integrated with perceptual,
cognitive, and motor processes so that noisy sensory signals
and time-varying, unpredictable environments can be accom-
modated. Openness to learning is a constraint, although we do
not yet directly address learning processes here.

We build on the dynamical systems approach which has
been successfully used to capture natural developmental pro-
cesses [16]. Within this approach, development may be under-
stood as the gradual change of the parameters of a dynamical
system that models the processes controlling behavior. Insta-
bilities in the dynamics mark qualitative changes in behavior
and the emergence of new functions. In Dynamic Field Theory
(DFT), a neurally-grounded variant of the dynamical systems
approach that uses dynamic neural fields (DNFs) [17], the
development of spatial and visual working memory, motor
planning, and perception may be understood [18], [19], [16].
Moreover, a number of architectures have been developed
based on DFT to generate behavior in autonomous robots that
are situated in physical environments about which they obtain
partial information from noisy sensory inputs [20], [21], [22],
[23]. Thus, the framework of DFT provides a means to design
architectures that generate robotic behavior and are grounded
in neural and behavioral findings about learning mechanisms
and natural development.



DNFs are continuous-time dynamical systems of activa-
tion fields, defined over continuous metric spaces of char-
acteristic parameters [24]. The stability of the behaviorally
relevant states of DNFs arises from the homogeneous in-
teraction pattern within a neural field and makes behavior
robust and reproducible in the presence of noisy, time-varying,
and incomplete sensory information. In the DFT framework,
instabilities separate qualitatively different attractor states of
the neural dynamics, which correspond to particular percepts,
motor intentions, or decisions. A sequence of attractor states
separated by instabilities may be generated, when transitions
between the attractor states are initiated by a neural system
that detects and stabilizes a representation of the condition for
the sequential transition [22].

Here, we explore how the DFT framework may be extended
to accommodate rules of behavioral organization that guide the
selection of the most appropriate next action. Expressing these
rules by means of neural dynamics makes it possible to con-
sider multiple constraints in selection decisions – constraints
arising from perceptual inputs, from the current task, and
from the specifics of the agents’ motor and sensory systems.
The neuronal dynamics stabilizes these decisions, which may
therefore be initiated by time varying and fluctuating sen-
sory information. Controlled switches between different stable
states enable robust transitions between different behaviors.
The formulation of the complete architecture within the DFT
framework opens the possibility of learning from experience
through well-known neuronal mechanisms. In particular, the
Hebbian learning mechanism and the related mechanism of
the memory trace may both operate online, concurrently with
the ongoing behavior.

In previous work, a dynamical systems architecture for be-
havioral organization was proposed in which dynamic neurons
were coupled to implement behavioral rules [25], [26], [27],
[28]. Although successful in the implementation of behavioral
constraints, the particular dynamical mechanisms used in these
earlier architectures rendered the design of these systems quite
complex. A number of specific stability problems arose when
behavioral switches were driven by fluctuating sensory inputs
(such as the possibility that a behavior would be rapidly
switched on and off again). Specific solutions for many of
these problems were found. Here we show that the intrinsic
stability of states of the DNF dynamics solves many of the
problems of the previous dynamical systems architectures in a
principled fashion. In particular, we propose a set of dynamical
primitives that both stabilize high-level representations of the
intended goal of an EB and warrants robust switching between
the EBs through a condition of satisfaction mechanism [22].

In the following section, we describe the neural dynamics
of behavioral organization by laying out the structure of each
elementary behavior, and the dynamical couplings that express
the constraints of behavioral organization. Next, we demon-
strate that switching between EBs is robust, stabilized through
neuronal interaction. Signals that trigger behavioral transitions
may be derived from low-level sensory input, thus reducing the
demands made on sensory signals. We also show an example

of a complete architecture, including the perceptual and motor
modules. We demonstrate how the elements of behavioral
organization may be coupled to sensory-motor representations
likewise formulated within the DFT framework and previously
tested in robotic experiments [29], [21].

II. ELEMENTARY BEHAVIOR IN THE NEURAL-DYNAMIC
FRAMEWORK FOR BEHAVIORAL ORGANIZATION

In the neural-dynamic architecture we propose, an ele-
mentary behavior (EB) is represented by an intention and
a condition of satisfaction (CoS), see Fig. 1. A particular
task (e.g., “grasp an object”) activates the intentions of all
EBs that contribute to this task. An activated intention affects
the sensory-motor systems (periphery) of the agent and thus
controls its behavior. Furthermore, it sends activation to the
associated CoS system, making it sensitive to the perceptual
input that is characteristic of ”goal state” of the EB. When
the ”goal state” is detected, the CoS system is activated and
inhibits the corresponding intention, triggering an instability
in its dynamics (see [22] for the detailed description of this
mechanism).

intention condition of 
satisfaction

task

periphery

efferent afferent afferent

Fig. 1: Schematic representation of an elementary behavior
within the neural-dynamic framework for behavioral organi-
zation.

In the dynamic neural field (DNF) implementation of
the architecture, each intention is represented by a bi-stable
dynamic intention node and a corresponding intention field
(Fig. 2). While the intention node is the most abstract, high-
level representation of the intention of a particular EB, the
activation within the field is a more graded representation of
the parameter of the intention. The intention node projects
its activity onto the intention field through adaptable synaptic
weights. The activity distribution within the intention field is
thus defined by the connection weights from the intention node
and, possibly, by the perceptual input to the intention field.
This enables flexibility and coupling to the particular environ-
mental context of the intention’s representation. The condition
of satisfaction (CoS) of an EB is similarly represented by a
bi-stable dynamical CoS node that is driven by activity in a
CoS DNF. The CoS neural field is activated by perceptual input
that overlaps with input from the intention field. The particular
shape of the input from the intention field is encoded in the



connections between the intention field and the CoS field and
represents the parameters of the goal state of the EB. The
CoS node, activated by the CoS field, inhibits the intention
node and thus triggers a transition to the next EB. A memory
node that is associated with the CoS node holds the memory
about the EBs that have been accomplished in the context of
a particular task.
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action end-state

EB
task

mem

perc.input

(a) Single-action elementary behavior
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CoS fieldInt. field

action end-state
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(b) Reactivating elementary behavior

Fig. 2: Structure of an elementary behavior: The intention node
is activated by task input and pre-activates the condition of
satisfaction (CoS) node. Both nodes are connected to neural
fields that represent metric parameters of the intention and the
CoS, respectively. The memory node, activated by the CoS
node, holds memory for the accomplished EB. The intention
node is inhibited by either (a) the memory node (the EB stays
inhibited when CoS is deactivated) or (b) the CoS node (the
EB is reactivated if CoS is deactivated).

The activation of the bi-stable dynamical nodes in this
architecture follows the dynamics:

τ u̇(t) = −u(t) + h+ cexcf
(
u(t)

)
+ I(t), (1)

whereas the dynamic neural fields’ (DNF) activation evolves
in time according to equation [24]:

τ u̇(x, t) = −u(x, t)+h+
∫
f
(
u(x′, t)

)
ω(x−x′)dx′+I(x, t).

(2)
Here, u(·) is the activation of the node or the field, x is the

metrical parameter(s) of the neural fields, h is the negative
resting level, f(·) is a sigmoid non-linearity, ω(x − x′) is a
Gaussian-shaped kernel, characterizing the lateral interactions
in the neural field (local excitation and global inhibition), and
I is the sum of external inputs to the node or to the field. The
thorough analysis of this dynamics may be found elsewhere
[24], [17]. These two equations govern the dynamics of all
nodes and neural fields in our architecture, which are coupled
to each other through the term I . The connection weights of
the couplings may be adapted by a Hebbian learning.

Now, as we have introduced the basic dynamics of an
elementary behavior (its “intentional” part), we introduce the
essential elements of behavioral organization that enable rule-
based coupling between elementary behaviors. Afterwards, we
proceed with the sensory-motor part of the behaviors.

III. ELEMENTS OF THE BEHAVIORAL ORGANIZATION

In the DFT framework, the dynamic neural fields (DNFs)
represent different perceptual, motor, or cognitive parameters
of the neural states and of the behavior of an agent. Different
DNFs may be coupled through synaptic connections, so that
activation of one DNF is propagated to another DNF and
affects its dynamics. Thus, simple rules of behavioral orga-
nization may already be represented within graded sensory-
motor representation of the DFT framework. However, to
enable flexible switching between different couplings, the
rules of behavioral organization must be represented by neural
dynamics that may be activated or deactivated. The dynamical
precondition and competition nodes presented next serve this
function.

A. Precondition

The precondition relationship between two EBs (EB0 and
EB1 in Fig. 3a) expresses the fact that the second EB of
the two cannot be activated unless the first EB has been
completed. In our architecture, this relationship is represented
by a precondition node that, if activated by the task input,
inhibits the intention node of the second EB (EB1 in Fig. 3a).
When the precondition node is, in its turn, inhibited by the
activated CoS node of the first EB (EB0 in Fig. 3a), EB1 is
released from inhibition. Alternatively, the precondition node
can also be inhibited by the memory node. In this case,
EB1 may be activated further in the behavioral sequences
independently of EB0 (the activity of the CoS of EB0 may
cease if the sensory input to the CoS field changes).

The precondition node may also be directly connected to
a sensory system (e.g., a perceptual neural field described in
Section IV), so that the intention of EB1 is activated when a
particular state of the environment is perceived, independent
of the EB that created this particular state.

B. Competition

Another possible relation between EBs is competition,
which may be bi- or unidirectional. An implementation of a
uni-directional competition is illustrated in Fig. 3b. Here, the
intention node of EB1 is inhibited as long as the intention
node of EB0 is active. The inhibition is released when the
CoS of EB0 is activated.

Depending on the dynamical regime of the competition
node, the decay of activity of EB0’s intention may be sufficient
for the competition node to be deactivated (the CoS node is
not involved then). When the competition node is inhibited
by the memory of EB0, the competition will not be activated
when EB0 is reactivated later in the behavioral sequence; the
competition is specific to the first occurrence of the two EBs.

C. Logical conditions

Activation of an EB may depend on a combination of pre-
conditions, or competitive conditions. Different combinations
of logical conditions are possible and may be implemented
in the neural-dynamical framework: “AND” by a node that
sums several inputs with a activation threshold set to be
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(a) Precondition coupling between two reactivating elementary behav-
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CoS
Int.

CoS fieldInt. field

action end-state

EB 0
task

CoS
Int.

CoS fieldInt. field

action end-state

EB 1
task

task
competition nodes

(b) Competition coupling between a single-action elementary behavior
and a reactivating behavior

Fig. 3: Coupling of two elementary behaviors through a (a)
precondition node or a (a) competition node is illustrated.
Filled circles are activated nodes, half-transparent nodes are
pre-activated nodes, arrows mark excitatory connections, lines
with circles – inhibitory connections.

activated only if all inputs are present, “OR” by a node, that is
activated by either of its inputs. By pairwise coupling of such
interneurons, complex logical conditions can be represented
in the dynamical structure with the stabilizing properties of
the neural-dynamics that we use. For the real-world tasks,
however, such complex conditions are rarely relevant.

IV. THE OVERALL ARCHITECTURE: COUPLING TO THE
SENSORY-MOTOR REPRESENTATIONS

The neural-dynamic mechanisms of behavioral organization
must be linked to low-level representations that are directly
coupled to sensors and motors of the agent. To illustrate how
this coupling can be achieved in the DFT framework, we
introduce the complete DNF architecture capable of producing
behavioral sequences that correspond to different tasks. The

particular task is specified by introducing the task inputs to
different intention, precondition, and competition nodes.

The tasks we have looked at are within a table-top scenario
with a robot equipped with an arm with a gripper and a pan-
tilt camera unit. Fig. 4 presents a DNF architecture that guides
the behavior of the robot.

On the lowest level, several modules are implemented that
are responsible for the actual robotic movements or constitute
the physical sensors: the camera module grabs images from
the color camera and outputs unprocessed color distribution
maps over the image, used to detect objects on the table-top, or
the location of the end-effector. The arm module implements a
dynamical system that controls the arm movement. The gripper
module simply generates the “close” and “open” commands
on the gripper hardware and outputs the current gripper’s
opening. The pan/tilt module implements a dynamical system
that controls the rotation of the camera head.

The next layer consists of perceptual neural fields that
represent in a graded fashion the sensory information. In
particular, three neural fields are relevant for our scenario:
a color-space field represents the color distribution over the
visual space, the end-effector-space field represents the spatial
representation of the end-effector’s location, and the spatial
target location field is the spatial projection of the color-space
field.

The perceptual fields are reciprocally coupled to the three
intention fields: the “color” field representing the intention
to search for the color of the target object, the “move end-
effector” field representing the intention to move end-effector
to the position specified by location of the activity peal within
this field. The location of the peak is determined by the
input from the spatial target location field. The gripper field
represents the intention to set the gripper to a particular
opening. Each intention field is coupled to a corresponding
CoS field, as described in Section II, and each CoS field
receives a perceptual input from either one of the perceptual
neural fields, or directly from the sensors, and stabilizes the
detection decision if the input from the intention field overlaps
with the input from the perception.

The intention and CoS fields are coupled to the intention
and CoS nodes, as described in Section II, and are also coupled
through particular precondition nodes (no competition nodes
are involved for the tasks in the present scenario, the lateral
competition within DNF is sufficient to prevent simultaneous
activation of the EBs “close gripper” and “open gripper” that
are intrinsically in conflict with each other).

V. RESULTS

At this point, our results are primarily proofs of concept.
We illustrate that the architecture does perform the sequential
activation of behaviors in a stable fashion consistent with the
designed behavioral rules. We also explore the different kinds
of organizational constraints that can be expressed within our
framework.

The connectivity within the neural-dynamic architecture
expresses a particular coupling structure between the neural-
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Fig. 4: Behavioral architecture for the “grasp” task
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Fig. 5: Time-courses of activation within the neural-dynamic architecture for behavioral organization.

dynamic subsystems, which corresponds to the particular
scenario, or set of tasks. For instance, within the architecture
presented in Fig. 4 the behavioral sequences that correspond
to the tasks “grasp an object”, “push an object”, “point at
an object”, “lift an object”, and “transport an object” may be
generated. The tasks differ in the precondition and competition
nodes involved, the rest of the connectivity between the

dynamical nodes and fields is shared between these tasks.

In Fig. 4, a snapshot of the architecture is presented. Here,
two EBs are already accomplished: the “open gripper” EB and
the “find color” EB: the CoS nodes and the memory nodes of
these EBs are activated. The currently active EB is the “move
end-effector” EB: the intention node of this behavior is active
and a peak of suprathreshold activation is present in the “move



end-effector” intention field. This peak is induced, on the one
hand, by the homogeneous input (boost) from the intention
node and, on the other hand, by the localized input from the
spatial target location field, which is coupled to the perceptual
color-space field and receives the spatial projection of this field
as input.

Activity within the “move end-effector” intention field im-
pacts on the robotic arm module, setting the location of the
peak as an attractor for the dynamics that controls movement
of the end-effector of the robotic arm.

The perceptual neural field “end-effector/space” represents
the current location of the end-effector of the robotic arm,
perceived by the visual sensor. This field provides input to the
CoS “move end-effector” neural field. When the location of
the peak of positive activation in the perceptual field “end-
effector/space” overlaps with the location of the input from
the intention field to the CoS field, a peak will emerge in the
CoS “move end-effector” field that will signal the successful
accomplishment of the elementary behavior: the end-effector
is then perceived to be at the desired location (at the object
of interest). The activated CoS node of the EB “move end-
effector” will inhibit the precondition node, connected to it.
This releases the inhibition on the intention node of the EB
“close gripper”. The activated intention node of this EB will
eventually impact on the motor gripper module and the gripper
will be closed around the object – the task will be completed.

The shaded region in Fig. 4 marks the currently active
behavior, which is represented by activation in the following
structures: the intention “move end-effector” node and the
corresponding intention dynamic neural field (DNF), the spa-
tial target location DNF and the perceptual color-space DNF,
coupled to the camera input, the visual input from camera,
and the dynamics that controls the arm movement. These
dynamical structures, activated concurrently, constitute the
elementary behavior. The exact activity pattern here depends
on the top-down input, coming through the coupling structure
between the nodes and the fields from the task node through
intention node down to the motors, and on the bottom-up input,
coming from the sensory surface. This representation of an EB
emerges autonomously within the neural-dynamic architecture
and is stabilized by the lateral interaction within neural fields
and self-excitation of the nodes.

The signal for the transition to the next EB is detected
in a bottom-up stream from sensory surface to CoS node
and it’s memory node, the detection decision is stabilized by
the neural representations and ensures the robust switching.
One such sequential transition is depicted in Fig. 5, where a
transition between two elementary behaviors, coupled through
competition nodes is shown, resolved in time.

VI. CONCLUSIONS AND OUTLOOK

We presented base mechanisms of a neural-dynamic ar-
chitecture for behavioral organization and showed how these
may be integrated with grounded sensory-motor and cognitive
processes within the DFT framework. We illustrated how this
architecture generates sequences of elementary behaviors in

which the transition to and the selection of the subsequent
behavior depend on task constraints and sensory inputs. In
this picture, elementary behaviors are represented by patterns
of activation distributed across a broad variety of dynamic
neural fields (intention fields, condition of satisfaction fields,
perception fields, motor fields), dynamic neural nodes (in-
tention nodes, condition of satisfaction nodes, competition
and precondition nodes), and motor dynamics. These pat-
terns emerge from the interplay of top-down and bottom-up
activation streams along connections coupling the different
dynamical structures. These connections may be learned based
on standard learning rules.

Clearly, we have only made the first steps toward a com-
prehensive system of behavioral organization. Experience with
implementations in more complex scenarios will give us
feedback about how complete our set of elements of behavioral
organization is. Scaling up the architecture to real-world
scenarios will be an important step. Autonomous learning will
then become a necessity and is a longer-term goal.

VII. ADDITIONAL MATERIAL

The software package that implements the current archi-
tecture is written in Python and will be freely provided by
the authors on request. The authors are also happy to provide
additional figures and movies of the activation dynamics. This
material will available online when the paper is published.
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The dynamic field theory and the dynamics of visual cognition,” New
Ideas in Psychology, vol. 26, pp. 227–251, 2008.
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serial order: How instabilities drive sequence generation,” Neural
Networks, vol. 23, no. 10, pp. 1164–1179, December 2010. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6T08-
50PVFYC-1/2/796f3b7752716cd29e366a4538967022
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[25] A. Steinhage and G. Schöner, “Dynamical systems for the behav-
ioral organization of autonomous robot navigation,” in Sensor Fusion
and Decentralized Control in Robotic Systems: Proceedings of SPIE,
M. G. T. Schenker P S, Ed., vol. 3523, no. ISBN 0-8194-2984-8. SPIE-
publishing, 1998, pp. 169–180.

[26] E. W. Large, H. I. Christensen, and R. Bajcsy, “Scaling the dynamic
approach to path planning and control: Competition amoung behavioral
constraints,” International Journal of Robotics Research, vol. 18, no. 1,
pp. 37–58, 1999.

[27] R. Menzner, A. Steinhage, and W. Erlhagen, “Generating interactive
robot behavior: A mathematical approach,” in From Animals to Animats
6: Proceedings of the Sixth International Conference on Simulation of
Adaptive Behavior, J. Meyer, A. Berthoz, D. Floreano, H. Roitblat, and
S. Wilson, Eds. Cambride, MA: The MIT Press/Bradford Books, 2000,
pp. 135–144.

[28] P. Althaus and H. I. Christensen, “Smooth task switching through
behaviour competition,” Robotics and Autonomous Systems, vol. 44, pp.
241–249, 2003.
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