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Abstract—Learning and generating serially ordered sequential the environment? When the successful completion of each
behavior in a real, embodied agent that is situated in a parglly  individual action requires careful monitoring and potali
unknown environment requires that noisy sensory informaton is ., rection, serial order errors may no longer be the main

used both to control appropriate motor actions and to deternine bottl K of fi Instead. th
that a particular action has been successfully terminatedWhile ottieneck of sequence generation. Instead, the sensagr mo

most current models do not address these conditions of embiedi  grounding of sequence g?ner.ation may become relevant. Th_is
sequence generation, we have earlier proposed a neurallydgpired has not been much studied in adults, whereas these consid-

model based on Dynamic Field Theory that enables sequenceserations are quite natural in children, who begin to produce
in which each action may take unpredictable amounts of time. well-ordered sequences of actions only relatively lateyad

Here we extend this earlier work to accommodate heterogenes - .
sets of actions. We show that a set of matching conditions- two years of age [13], [14], [15]. The capability of produgin

of-satisfaction can be used to stably represent the termida action sequences may depend on cognitive capacities such as
condition of each action and trigger the cascade of instatities keeping in memory choices and order, but also on the capacity

that switches the system from one stable state to the next. Ato coordinate actions in time, and to achieve the sensory-
robotic implementation on a vehicle with a camera and a sim@ 40 goals of each step. That the sensory-motor capacities
robot arm demonstrates the stability of the resulting schera. . - .
constrain cognitive development has been broadly recegniz

since Piaget and is at the core of the Dynamical Systems
perspective of development and the embodiment stance [16].

Action sequences form the core of human behavior. TheThree particular, yet fundamental problems arise when
question of how serially ordered sequences are learndd, insequence generation is considered in an embodied system.
ated, and produced in the form of fluent and flexible behavifirst, in the face of highly variable sensory informatioaural
is fundamental to understanding human cognition. A larggates representing and controlling actions need tsthkle
number of models address the problem of serial order Because the duration of an individual action in a sequence
language [1], speech [2], spelling [3], [4], action plarmmincan be unpredictable, this stability needs to include theale
[5], and in sensori-motor tasks [6]. In most of these modelspresentation of where in a sequence the system currently
individual actions are represented symbolically, sengmpyt is. Second, in order to proceed along a sequence of actions,
is highly preprocessed and delivers categorical inforomatithe stable state corresponding to a particular action mest b
about the state of the environment and of the acting systetiestabilizedautonomously once the goal of that action has
and the performance of the sequence in time is reduced tolen achieved. Third, actions and perceptual states are not
a-temporal advance from one state to a successor stateirevagenerally, categorical in nature but requiggaded neural
models using neural dynamics or distributed neural represeepresentationgo achieve smooth and flexible behavior in
tations [7], [8], [9], [10], actions are idealized, negiegtthat complex natural environments.
they may take finite and variable amounts of time to terminateTo address these issues of embodied sequence generation,
and may achieve their goals only partially. largely neglected in the existing theoretical literatuveg

This level of abstraction matches the strategy of many esecently established a model for sequence learning andiprod
perimental studies of the serial order, in which the comipfex tion based on neural attractor dynamics [17]. The framework
of the individual actions in a sequence is limited such as of Dynamic Field Theory (DFT) [18] offers the means to
keyboarding or reading tasks [1], [11], [12]. When actionaddress the constraints of embodiment through the notion of
are simple and fast and involve highly familiar perceptualttractor states of the neural activation fields which can be
or motor states, errors of serial order are the most frequémiluced by noisy sensory input and can be coupled to error-
failures and can be studied in isolation providing access poone actuators. The embodied nature of DFT models can be
how serial order is represented. But would this remain true demonstrated by implementing these models on real robots
more natural settings in which more variable, object-dadn situated in structured environments. Apart from a proof of
motor actions must be performed to achieve goal statesdoncept, robotic implementations help generate ideasrfer u
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derstanding how natural developing systems learn and ajevel ’ Ordinal dynamics
through interaction with their environments. PR -7

In the DFT sequence generation model, actions are repre- - :// - = s
sented as attractor states of neural dynamics. The syabflit
these states enables them to resist perturbations andtpersi
over variable durations as an action is realized. The graded
nature of the neural field representations makes it possible v
to represent the graded, low-level sensory informatiore Th Motors and sensors
transitions between subsequent states of a sequence arise
from instabilities, which occur in the dynamics of the ne*uriig. 1. The sequencing architecture including action systepecific to the
fields controlled by a neural representation of a conditibn @botic implementation.
satisfaction (CoS) that signals successful completion rof a
intended action.

It is an important limitation, that the first DFT model was For each action modality, a condition of satisfaction (CoS)
only designed to generate sequences of actions that cobfral field is defined. Localized input from the active regio
be characterized by the values of a single metric dimensiehaction fields makes the CoS field sensitive to sensory input
represented in a neural field. In an exemplary implementatiignaling successful accomplishment of the action. Resiti
that dimension was the color of objects that a robot vehicistivation in the CoS field triggers a cascade of instabditi
needed to search for in a particular order. Here we addrést bring about the sequential transition to the next actio
the question of whether the principles of neural field atbexc ~ An overview of the architecture for the present robotic
and their instabilities can be extended to produce seqsenteplementation is given in Figure 1. We briefly describe the
of heterogeneous actions that may require the specificatidynamics of the three main parts of the architecture, réilega
of a set of different parameters. This requires addressititg detailed mathematics to the Appendix.
how the condition of satisfaction, the driving force behind
sequence learning and production in our framework, ma#y Ordinal nodes

be neurally represented when it depends on different grade(;ﬁ-he ordinal positions in a sequence are represented by a

aspects of actions and perceptual signals. We demonstr@é? of dynamic neural nodes. Each ordinal node has a self-

how a neural representation of serial order may be as§Qiiiatory connection which generates a bistable dynamics

ciated with distributed multimodal neural representatan The mutual inhibition among ordinal nodes allows only one

N
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and generation with flexible timing emerges in a simple ribot

i that involves diff ; ¢ b action is reached, the ordinal set is inhibited by input fritwe
scenario that involves different categories of motor 8V condition of satisfaction system. A memory node associated
that rely on different actuators and sensors.

with each ordinal node keeps the ordinal information during
the transition phase and facilitates activation of the oectinal
Il. THE ARCHITECTURE node once the ordinal system is released from inhibition.

In order to represent heterogeneous sequences in the DFT, = . L
sequencing architecture, we separate the ordinal dimensio Action fields and synaptic projections
which reflects the serial order of sequence elements, fromThe action fields are dynamic neural fields defined over
the metric motor dimensions. Thus, a set of discrete dynanaicaracteristic dimensions of actions. During sequencergen
nodes represents the ordinal positions of actions in a segue tion, the active ordinal node projects its activation thglouhe
Their bistable dynamics with lateral inhibition guararstéleat modifiable connection weights onto the regions of the action
only one node can be active at a time. A second layer fiéld, that were active at this particular ordinal positiarridg
memory nodes ensures activation of the correct successofearning. A self-stabilized peak induced by the ordinaluinp
each transition. controls the robotic action by setting attractors for thessey-

The ordinal nodes project onto a number of neural fields thatotor dynamics.
represent actions. The connection weights in these profexct  Action fields also receive perceptual input about the charac
constitute the memory for the sequence and are learnedhwitt@ristic action parameter of an ongoing or demonstratadract
a single demonstration of the action. Localized peaks irhis input is critical during sequence learning, when itlioéls
the action fields impact on the motor system of the agemt,localized, self-stabilized peak of activation in the aati
shaping attractors of the motor dynamics, and thus spedifyifield that represents a demonstrated action. The connection
a particular action. The stability of the neural field dynesni weights linking the active ordinal node to the region of figsi
guarantees that the impact on the motor dynamics is susdtaiaetivation of the action field are upweighted according to a
as long as needed for current action goal to be achieved. Hebbian learning rule.
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The particular sequence, described in the following is “find
green - lower arm - close gripper - lift arm - find yellow - lower
arm - open gripper”, which results in the grasping of a green
block, its transportation to a yellow block and its deposgjti
there (Figure 3).

B. Implementation

1) Teacher interactionDuring learning, graded sensory in-
put specifies the demonstrated action. Additionally, tleher
specifies the intended action modality by pressing buttans i
a GUI. That signal provides a homogeneous activation boost
that raises the resting level of the cue action field. Thus, fo
instance, specifying “color” boosts the color action figidlisat
C. Condition of satisfaction fields the color of the block that is currently present in the rabot’
visual array induces a localized peak of activation. Sirtyila

For each action in a sequence, its condition of satisfaction . " . . :
9 I§:C|fy|ng “arm” boosts the arm-pose field and a peak is built

(CoS) is defined. The CoS dynamic fields are spanned oV . .
metric dimensions that characterize the terminal statebef a‘?the IO(,:at|on that “?pfes‘i“‘? the"sen_sed current .elE.Wat'O
he robot’s arm. Specifying “gripper” activates the gripfield

actions. The CoS fields receive localized inputs from acti\}e
the same manner.

regions of the action fields. The mapping between the acti . ] ,
fields and CoS fields could be learned from previous experi_—z) Perception and motorsThe robot's color camera pro-

enced, but was assumed given in the current implementati¥lfl€S perceptual input to the color-search modality. Color
The action field input preactivates its CoS field so that tfE{raction is performed through a color-space neural field,
CoS is sensitive to perceptual input that matches the esgecf/Nich models early stages of visual processing (see [17gfwhi
terminal state of the action. When such a terminal state ggnployed the same method). The search for colored objgcts
detected, a self-stabilized peak in the CoS field is induced, acgompllshed by an attrac.tor d_ynam|cs of the heading
that then inhibits the ordinal system. This suppressesiBcti direction of the robot, as described in [19]'_

in the ordinal system and thus removes the input the ordinall N& arm of the Khepera robot can be lifted and lowered.
system provided to the action fields. As a result, the pealken t' NiS movementis controlled by a one-dimensional neura fiel
action field becomes unstable and decays. This removes @§éined over the dimension “arm elevation”. For a robotic arm
previous input to the CoS field, pushing that system througf{th several degrees of freedom, the corresponding fielbean
the same instability and leading to the decay of the peaken tHefined over the three spatial dimensions the specify thigaspa
CosS field. This transition, finally, removes inhibitino fraime  POSition of the end-effector. A localized peak of activatio
ordinal set, and the next ordinal node becomes activateid. TH the arm field sets an attractor for the dynamics of arm
cascade of instabilities separates the different ordiasitipns Movement. During learning, the sensed current positiohef t

in a sequence both during sequence learning and productiéfn sets a_IocaIized sensory input to the arm f_;lction fieldt Tha
input may induce a peak if the teacher specifies “arm” as the

I1l. ROBOTIC IMPLEMENTATION action modality to attend to.
In order to demonstrate learning and production of action The robotic gripper consists of two bars which can be
sequences in an embodied setting, we describe an exempfd@ped or opened. The action field is defined over the dimen-
implementation of the architecture on a mobile robot vehickion “gripper opening”. A peak in that field initiates either

Fig. 3. The robotic scenario.

of the Khepera type. the “closeGripper()” or the “openGripper()” commands ¢onl
) these two options exist for the Khepera’s gripper), depamndi
A. The scenario on where along that dimension the peak is centered relative t

In the learning phase of the scenario, a teacher demorsstrdle current gripper position. During learning, a gradedseen
arbitrary sequences of alternating movements or colorheo tsignal reflecting the current opening of the gripper is fed in
robot. After learning, the robot is put in an arena in whickhe action field inducing a peak, whose location represéets t
colored blocks have been distributed. The first node of tlastion at that ordinal position.
ordinal set is activated by a “go” signal and the robot perf®r  In this implementation, the CoS fields for the color, arm
the learned sequence. and gripper modalities are defined over the same dimensions

In this scenario, three action modalities are considereaf: color, arm elevation and gripper opening. For color, the
search of objects of a given color, lifting movement of theensory input to the field is derived from the central portion
robotic arm, and opening of the robotic gripper. The thre# the robot's field of view; consequently, the CoS field is
metric parameters, characterizing the three action migtal activated when an object of the searched color is close to the
color, arm height and gripper opening - span the three neurabotic camera and centered in view. The arm and gripper
dimensions over which the action fields are defined. Cos field are activated when a match is detected between the
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Fig. 2. Snapshot of the dynamics of the model. See text faildet

attractor position for the corresponding movements and thengement. A “go” signal brings the robot into its initiahte
actual position of the arm and the gripper. (gripper is high and opened) and activates the first ordinal
Figure 2 shows a snapshot of the sequence generatimte. A stable peak of activation emerges in the “color’acti
dynamics. The fifth ordinal node is active here and projectield (dark red region on the Figure 4(b)). This peak represen
onto the “arm” action field through the neural connectionthe color-search action for however long it takes to locate,
The ordinal input induces an activity peak in the action fieldenter and approach an object of the specified color (with
and the arm elevation valymse ~ 5 is set as attractor for the hue ~ 100, green, here). The CoS field detects that an object
arm movement. When the CoS field detects the arm elevatioithe specified color is sufficiently close and centeredidisui
of pose ~ 5, an activity peak arises in the CoS field and starts peak, and inhibits the ordinal set. This triggers the @idin
to inhibit the ordinal nodes. The “color” and “gripper” amti  transition, a cascade of instabilities leading to the atitin of
and CosS fields also receive perceptual input from sensorstioé second ordinal node. The second action, “arm lowerigg” i
the robot here, but this input alone is not sufficient to iretlic performed by the robot, its termination again being coitgcbl
peaks in those fields. by the CoS field and pertinent sensory input. The rest of the
sequence is acted out in the same manner. The robot picks up
C. Results the green block and delivers it to the yellow one.
Figure 4 presents the time courses of activity of the eight Note the flexible timing of the actions both during learning,
ordinal nodes and the three action fields during learnifghen the timing is controlled by the teacher, and during

(Figure 4(a)) and production (Figure 4(b)) of the sequenggoduction, when the duration of actions depends on the
“find green - lower arm - close gripper - lift arm - find yellowcyrrent situation in the arena.

- lower arm - open gripper”. During learning, the teacher

demonstrates the actions to the robot by naming the maekaliti IV. DiscussionN

of interest and triggering the needed actions. The demetestr  In this paper we extended the DFT model of sequence

actions are detected in the action fields at times that ageneration to heterogeneous sequences involving ditferen

marked with arrows on the Figure 4(a). Lightly shaded regiomotor and perceptual modalities. This is an important step

mark regions in the action fields with positive activity. Bee toward an approach to sequential behavior in natural ggsttin

regions are associated with the currently active ordindertyy in agents with rich behavioral repertory.

quickly adaptable neural weights. The CoS is activatedtshor Stability of the functional neural states is the criticabpr

thereafter by perceptual input that signals the accomgdisherty of the model that enables the agent to connect to noisy

action. The CoS signal inhibits the ordinal set (top row oand unreliable sensory information. Stability is in cornfligth

the Figure 4) and triggers an instability, after which th&tnethe need to transition among the sequential stages and is,

ordinal node is activated. The next action, demonstrated therefore, absent from most of dynamical models of sequence

the teacher is associated with this node. generation [20], [21], [9], [10]. We overcome this conflict
After learning, the robot is put into the arena, in whiclby introducing the concept of a condition of satisfaction, a

colored objects may be distributed in a different spatial astable neural representation of the terminal state of anract
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Fig. 4. Time-courses of the dynamics of ordinal nodes andtihee action fields during learning and production of a rmdtial sequence.

This mechanism makes it possible to execute sequenceshithin the model, different motor modalities do not intede
environments in which the durations of individual actionsr interact. In the implementation, the three action system
are unpredictable and the signal for a sequential transitibnk to different effector systems and degrees of freedom of
must be extracted autonomously from noisy sensors. Qhbe robot. Their simultaneous initiation, represented by c
extension of the model required enabling the condition ekisting peaks in the different action fields, is allowedeTh
satisfaction system to represent graded aspects of acti@is actions “move gripper”, “close gripper” and “search for ted
are specified by graded sensory information controlling tHer instance, can all be active at the same time. Integrating
sequential transitions during learning and production. principles of behavioral organization would require a fasi
Neural inspiration for model comes from findings of dierarchical organization, in which actions within a seuee
separate neural substrate for the ordinal position of aneh may consist of an organized ensemble of sub-actions. One
in a sequence, along with the neural representation of téigection in which we would like to develop our approach
motor characteristics of the associated movements [23], [2would be to autonomously learn such organizational rules
The condition of satisfaction system may be thought of asas something like a grammar of action. The fundamental
potential reward mechanism. Together with the ordinal spdenechanism established here for sequence generation ibla sta
the condition of satisfaction system resembles the mesh@mni neuronal dynamics may also provide a framework for how
of action selection hypothesized to reside in the basal lgandheterogeneous sequences of actions may be produced tthat lea
[24], which project onto the distributed neural represtoits to a given goal.
of actions and perceptual states. In our model, the adjigstab
neural weights hold the memory for each element of a se- APPENDIX
quence. These weights are established from a single ex@osurrye dynamics of the ordinal nodes and the corresponding

to a sequence element. Such fast learning is possible due}ﬁ@mory nodes are described by the equations:
the explicit segregation of ordinal position within the ioral

layer and stands in contrast to the extensive learning redui .
in models of serial order that are based on distributed and  7di(t) == di(t) + ha + cof (di(t)) — 1 Y f(dr (1))
overlapping representations of the order along with momar a - - s (1)
perceptual features [7]. +eaf (di%1(1) = eaf (A" (1)) — Ie(t)

With the introduction of multiple motor modalities, the
sequence generation model touches on the problem of berd"(t) = — dj" (t) + hu + caf (di* () — c5 Z F(dir(2))
havioral organization, the coordination of multiple ditet il i @)
behaviors in time. At this point, the model sidesteps thisés + co f(di(t))
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The first three terms shape the bistable dynamics of the
i ordinal node the negative activation-d;(t) provides [1]
stabilizing propertieshy < 0 is the resting levelg, is the
strength of the self-excitatory ternf.(-) is a sigmoid non- [
linearity shaping the node’s output; is the strength of the
mutual inhibition in the ordinal set; andcs are the strengths [3]
of couplings to the memory nodef: is the input from the
condition of satisfaction field, which signals the succelsstf 4,
accomplishment of an on-going action.

h., is the resting level of thememory nodesc, is the 5]
strength of the self-excitation; is the strength of lateral in-
hibition, ¢g is the strength of the input form the corresponding
ordinal node. [6

The dynamics of thaction fieldsfollows the equation:

[71
(8]

TUJA(l‘ﬁ t)

UMyt 4 B+ / F (U@ 0) (e — )
Ng

3 (i) Mies, 1) + 1 17 s, 1)

=0

[9]
®3)
[10]
Here, the first three terms define the generic neural field
dynamics with a negative resting levél*, and the lateral
interactions termN, is the number of ordinal nodes, activities
of which, d;(t), are thresholded by a soft sigmoid functiifi)
and then projected on the action field through the modifiabfe!
weights, M;(z;,t), wherej numbers the actions fields, and
1 numbers the ordinal nodes;‘ controls the strength of the
perceptual mput[A(a:] ,1), essential during sequence Iearnlnd
When an ordinal node is active (i.¢.(d;(t)) > 0), its
activation propagates to the action field, providing a lzeal [14]
input to this field. The shape of this input is defined by the
neural weights M, (x, t), which are modified during sequencgzs]
learning according to a Hebbian-like rule:

[16]

T Mi(x,t) = (— Mi(z,t) + f(UA(%t))> fldi®) @) 17
The CoS neural fieldsevolve according to a dynamlcal[lg]

equation:

U (y,t) == Uy (y,t) + B + f(UC (y,1) ) (y; — v;)dy;

+ T (x5,y5) * I(y;, t).

Gy

Here, the activity of the CoS fieltio(y,t) is defined over [22]
the neural dimensiory. The transfer functioff’(x, y) defines
the mapping between the dimensions characterizing actiqgﬁ
and their terminal states/'(z,y) = 1 in the implementation
presented here). Positive activation in the action fieldefgh
f(Ua(z,t)) > 0) propagates to the CoS field through thid¥
mapping. The constant, controls the strength of the per-
ceptual inputl,(y,p), hc is the resting level, and is the
time-constant of the field’s dynamics.
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