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Abstract—Learning and generating serially ordered sequential
behavior in a real, embodied agent that is situated in a partially
unknown environment requires that noisy sensory information is
used both to control appropriate motor actions and to determine
that a particular action has been successfully terminated.While
most current models do not address these conditions of embodied
sequence generation, we have earlier proposed a neurally inspired
model based on Dynamic Field Theory that enables sequences
in which each action may take unpredictable amounts of time.
Here we extend this earlier work to accommodate heterogeneous
sets of actions. We show that a set of matching conditions-
of-satisfaction can be used to stably represent the terminal
condition of each action and trigger the cascade of instabilities
that switches the system from one stable state to the next. A
robotic implementation on a vehicle with a camera and a simple
robot arm demonstrates the stability of the resulting scheme.

I. I NTRODUCTION

Action sequences form the core of human behavior. The
question of how serially ordered sequences are learned, initi-
ated, and produced in the form of fluent and flexible behavior
is fundamental to understanding human cognition. A large
number of models address the problem of serial order in
language [1], speech [2], spelling [3], [4], action planning
[5], and in sensori-motor tasks [6]. In most of these models,
individual actions are represented symbolically, sensoryinput
is highly preprocessed and delivers categorical information
about the state of the environment and of the acting system,
and the performance of the sequence in time is reduced to an
a-temporal advance from one state to a successor state. Evenin
models using neural dynamics or distributed neural represen-
tations [7], [8], [9], [10], actions are idealized, neglecting that
they may take finite and variable amounts of time to terminate
and may achieve their goals only partially.

This level of abstraction matches the strategy of many ex-
perimental studies of the serial order, in which the complexity
of the individual actions in a sequence is limited such as in
keyboarding or reading tasks [1], [11], [12]. When actions
are simple and fast and involve highly familiar perceptual
or motor states, errors of serial order are the most frequent
failures and can be studied in isolation providing access to
how serial order is represented. But would this remain true in
more natural settings in which more variable, object-oriented
motor actions must be performed to achieve goal states in

the environment? When the successful completion of each
individual action requires careful monitoring and potentially
correction, serial order errors may no longer be the main
bottleneck of sequence generation. Instead, the sensory motor
grounding of sequence generation may become relevant. This
has not been much studied in adults, whereas these consid-
erations are quite natural in children, who begin to produce
well-ordered sequences of actions only relatively late, around
two years of age [13], [14], [15]. The capability of producing
action sequences may depend on cognitive capacities such as
keeping in memory choices and order, but also on the capacity
to coordinate actions in time, and to achieve the sensory-
motor goals of each step. That the sensory-motor capacities
constrain cognitive development has been broadly recognized
since Piaget and is at the core of the Dynamical Systems
perspective of development and the embodiment stance [16].

Three particular, yet fundamental problems arise when
sequence generation is considered in an embodied system.
First, in the face of highly variable sensory information, neural
states representing and controlling actions need to bestable.
Because the duration of an individual action in a sequence
can be unpredictable, this stability needs to include the neural
representation of where in a sequence the system currently
is. Second, in order to proceed along a sequence of actions,
the stable state corresponding to a particular action must be
destabilizedautonomously once the goal of that action has
been achieved. Third, actions and perceptual states are not,
generally, categorical in nature but requiregraded neural
representationsto achieve smooth and flexible behavior in
complex natural environments.

To address these issues of embodied sequence generation,
largely neglected in the existing theoretical literature,we
recently established a model for sequence learning and produc-
tion based on neural attractor dynamics [17]. The framework
of Dynamic Field Theory (DFT) [18] offers the means to
address the constraints of embodiment through the notion of
attractor states of the neural activation fields which can be
induced by noisy sensory input and can be coupled to error-
prone actuators. The embodied nature of DFT models can be
demonstrated by implementing these models on real robots
situated in structured environments. Apart from a proof of
concept, robotic implementations help generate ideas for un-
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derstanding how natural developing systems learn and develop
through interaction with their environments.

In the DFT sequence generation model, actions are repre-
sented as attractor states of neural dynamics. The stability of
these states enables them to resist perturbations and persist
over variable durations as an action is realized. The graded
nature of the neural field representations makes it possible
to represent the graded, low-level sensory information. The
transitions between subsequent states of a sequence arise
from instabilities, which occur in the dynamics of the neural
fields controlled by a neural representation of a condition of
satisfaction (CoS) that signals successful completion of an
intended action.

It is an important limitation, that the first DFT model was
only designed to generate sequences of actions that could
be characterized by the values of a single metric dimension
represented in a neural field. In an exemplary implementation,
that dimension was the color of objects that a robot vehicle
needed to search for in a particular order. Here we address
the question of whether the principles of neural field attractors
and their instabilities can be extended to produce sequences
of heterogeneous actions that may require the specification
of a set of different parameters. This requires addressing
how the condition of satisfaction, the driving force behind
sequence learning and production in our framework, may
be neurally represented when it depends on different graded
aspects of actions and perceptual signals. We demonstrate
how a neural representation of serial order may be asso-
ciated with distributed multimodal neural representationof
actions and perceptual states. The model is implemented on
an autonomous robot vehicle that carries a camera and a
simple robotic arm. We demonstrate how sequence learning
and generation with flexible timing emerges in a simple robotic
scenario that involves different categories of motor behaviors
that rely on different actuators and sensors.

II. T HE ARCHITECTURE

In order to represent heterogeneous sequences in the DFT
sequencing architecture, we separate the ordinal dimension,
which reflects the serial order of sequence elements, from
the metric motor dimensions. Thus, a set of discrete dynamic
nodes represents the ordinal positions of actions in a sequence.
Their bistable dynamics with lateral inhibition guarantees that
only one node can be active at a time. A second layer of
memory nodes ensures activation of the correct successor at
each transition.

The ordinal nodes project onto a number of neural fields that
represent actions. The connection weights in these projections
constitute the memory for the sequence and are learned within
a single demonstration of the action. Localized peaks in
the action fields impact on the motor system of the agent,
shaping attractors of the motor dynamics, and thus specifying
a particular action. The stability of the neural field dynamics
guarantees that the impact on the motor dynamics is sustained
as long as needed for current action goal to be achieved.
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Fig. 1. The sequencing architecture including action systems specific to the
robotic implementation.

For each action modality, a condition of satisfaction (CoS)
neural field is defined. Localized input from the active regions
of action fields makes the CoS field sensitive to sensory input
signaling successful accomplishment of the action. Positive
activation in the CoS field triggers a cascade of instabilities
that bring about the sequential transition to the next action.

An overview of the architecture for the present robotic
implementation is given in Figure 1. We briefly describe the
dynamics of the three main parts of the architecture, relegating
the detailed mathematics to the Appendix.

A. Ordinal nodes

The ordinal positions in a sequence are represented by a
set of dynamic neural nodes. Each ordinal node has a self-
excitatory connection which generates a bistable dynamics.
The mutual inhibition among ordinal nodes allows only one
node to be active at any particular point in the sequence.
The active node provides input to the action fields through
modifiable connection weights. When the final state of the
action is reached, the ordinal set is inhibited by input fromthe
condition of satisfaction system. A memory node associated
with each ordinal node keeps the ordinal information during
the transition phase and facilitates activation of the nextordinal
node once the ordinal system is released from inhibition.

B. Action fields and synaptic projections

The action fields are dynamic neural fields defined over
characteristic dimensions of actions. During sequence genera-
tion, the active ordinal node projects its activation through the
modifiable connection weights onto the regions of the action
field, that were active at this particular ordinal position during
learning. A self-stabilized peak induced by the ordinal input
controls the robotic action by setting attractors for the sensory-
motor dynamics.

Action fields also receive perceptual input about the charac-
teristic action parameter of an ongoing or demonstrated action.
This input is critical during sequence learning, when it induces
a localized, self-stabilized peak of activation in the action
field that represents a demonstrated action. The connection
weights linking the active ordinal node to the region of positive
activation of the action field are upweighted according to a
Hebbian learning rule.
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Fig. 3. The robotic scenario.

C. Condition of satisfaction fields

For each action in a sequence, its condition of satisfaction
(CoS) is defined. The CoS dynamic fields are spanned over
metric dimensions that characterize the terminal states ofthe
actions. The CoS fields receive localized inputs from active
regions of the action fields. The mapping between the action
fields and CoS fields could be learned from previous experi-
enced, but was assumed given in the current implementation.
The action field input preactivates its CoS field so that the
CoS is sensitive to perceptual input that matches the expected
terminal state of the action. When such a terminal state is
detected, a self-stabilized peak in the CoS field is induced,
that then inhibits the ordinal system. This suppresses activity
in the ordinal system and thus removes the input the ordinal
system provided to the action fields. As a result, the peak in the
action field becomes unstable and decays. This removes the
previous input to the CoS field, pushing that system through
the same instability and leading to the decay of the peak in the
CoS field. This transition, finally, removes inhibitino fromthe
ordinal set, and the next ordinal node becomes activated. This
cascade of instabilities separates the different ordinal positions
in a sequence both during sequence learning and production.

III. ROBOTIC IMPLEMENTATION

In order to demonstrate learning and production of action
sequences in an embodied setting, we describe an exemplary
implementation of the architecture on a mobile robot vehicle
of the Khepera type.

A. The scenario

In the learning phase of the scenario, a teacher demonstrates
arbitrary sequences of alternating movements or colors to the
robot. After learning, the robot is put in an arena in which
colored blocks have been distributed. The first node of the
ordinal set is activated by a “go” signal and the robot performs
the learned sequence.

In this scenario, three action modalities are considered:
search of objects of a given color, lifting movement of the
robotic arm, and opening of the robotic gripper. The three
metric parameters, characterizing the three action modalities -
color, arm height and gripper opening - span the three neural
dimensions over which the action fields are defined.

The particular sequence, described in the following is “find
green - lower arm - close gripper - lift arm - find yellow - lower
arm - open gripper”, which results in the grasping of a green
block, its transportation to a yellow block and its depositing
there (Figure 3).

B. Implementation

1) Teacher interaction:During learning, graded sensory in-
put specifies the demonstrated action. Additionally, the teacher
specifies the intended action modality by pressing buttons in
a GUI. That signal provides a homogeneous activation boost
that raises the resting level of the cue action field. Thus, for
instance, specifying “color” boosts the color action field so that
the color of the block that is currently present in the robot’s
visual array induces a localized peak of activation. Similarly,
specifying “arm” boosts the arm-pose field and a peak is built
at the location that represents the sensed current elevation of
the robot’s arm. Specifying “gripper” activates the gripper field
in the same manner.

2) Perception and motors:The robot’s color camera pro-
vides perceptual input to the color-search modality. Color
extraction is performed through a color-space neural field,
which models early stages of visual processing (see [17] which
employed the same method). The search for colored objects
is accomplished by an attractor dynamics of the heading
direction of the robot, as described in [19].

The arm of the Khepera robot can be lifted and lowered.
This movement is controlled by a one-dimensional neural field
defined over the dimension “arm elevation”. For a robotic arm
with several degrees of freedom, the corresponding field canbe
defined over the three spatial dimensions the specify the spatial
position of the end-effector. A localized peak of activation
in the arm field sets an attractor for the dynamics of arm
movement. During learning, the sensed current position of the
arm sets a localized sensory input to the arm action field. That
input may induce a peak if the teacher specifies “arm” as the
action modality to attend to.

The robotic gripper consists of two bars which can be
closed or opened. The action field is defined over the dimen-
sion “gripper opening”. A peak in that field initiates either
the “closeGripper()” or the “openGripper()” commands (only
these two options exist for the Khepera’s gripper), depending
on where along that dimension the peak is centered relative to
the current gripper position. During learning, a graded sensory
signal reflecting the current opening of the gripper is fed into
the action field inducing a peak, whose location represents the
action at that ordinal position.

In this implementation, the CoS fields for the color, arm
and gripper modalities are defined over the same dimensions
of color, arm elevation and gripper opening. For color, the
sensory input to the field is derived from the central portion
of the robot’s field of view; consequently, the CoS field is
activated when an object of the searched color is close to the
robotic camera and centered in view. The arm and gripper
CoS field are activated when a match is detected between the
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Fig. 2. Snapshot of the dynamics of the model. See text for details.

attractor position for the corresponding movements and the
actual position of the arm and the gripper.

Figure 2 shows a snapshot of the sequence generation
dynamics. The fifth ordinal node is active here and projects
onto the “arm” action field through the neural connections.
The ordinal input induces an activity peak in the action field,
and the arm elevation valuepose ≈ 5 is set as attractor for the
arm movement. When the CoS field detects the arm elevation
of pose ≈ 5, an activity peak arises in the CoS field and starts
to inhibit the ordinal nodes. The “color” and “gripper” action
and CoS fields also receive perceptual input from sensors of
the robot here, but this input alone is not sufficient to induced
peaks in those fields.

C. Results

Figure 4 presents the time courses of activity of the eight
ordinal nodes and the three action fields during learning
(Figure 4(a)) and production (Figure 4(b)) of the sequence
“find green - lower arm - close gripper - lift arm - find yellow
- lower arm - open gripper”. During learning, the teacher
demonstrates the actions to the robot by naming the modalities
of interest and triggering the needed actions. The demonstrated
actions are detected in the action fields at times that are
marked with arrows on the Figure 4(a). Lightly shaded regions
mark regions in the action fields with positive activity. These
regions are associated with the currently active ordinal node by
quickly adaptable neural weights. The CoS is activated shortly
thereafter by perceptual input that signals the accomplished
action. The CoS signal inhibits the ordinal set (top row on
the Figure 4) and triggers an instability, after which the next
ordinal node is activated. The next action, demonstrated by
the teacher is associated with this node.

After learning, the robot is put into the arena, in which
colored objects may be distributed in a different spatial ar-

rangement. A “go” signal brings the robot into its initial state
(gripper is high and opened) and activates the first ordinal
node. A stable peak of activation emerges in the “color” action
field (dark red region on the Figure 4(b)). This peak represents
the color-search action for however long it takes to locate,
center and approach an object of the specified color (with
hue ≈ 100, green, here). The CoS field detects that an object
of the specified color is sufficiently close and centered, builds
a peak, and inhibits the ordinal set. This triggers the ordinal
transition, a cascade of instabilities leading to the activation of
the second ordinal node. The second action, “arm lowering” is
performed by the robot, its termination again being controlled
by the CoS field and pertinent sensory input. The rest of the
sequence is acted out in the same manner. The robot picks up
the green block and delivers it to the yellow one.

Note the flexible timing of the actions both during learning,
when the timing is controlled by the teacher, and during
production, when the duration of actions depends on the
current situation in the arena.

IV. D ISCUSSION

In this paper we extended the DFT model of sequence
generation to heterogeneous sequences involving different
motor and perceptual modalities. This is an important step
toward an approach to sequential behavior in natural settings
in agents with rich behavioral repertory.

Stability of the functional neural states is the critical prop-
erty of the model that enables the agent to connect to noisy
and unreliable sensory information. Stability is in conflict with
the need to transition among the sequential stages and is,
therefore, absent from most of dynamical models of sequence
generation [20], [21], [9], [10]. We overcome this conflict
by introducing the concept of a condition of satisfaction, a
stable neural representation of the terminal state of an action.
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Fig. 4. Time-courses of the dynamics of ordinal nodes and thethree action fields during learning and production of a multimodal sequence.

This mechanism makes it possible to execute sequences in
environments in which the durations of individual actions
are unpredictable and the signal for a sequential transition
must be extracted autonomously from noisy sensors. Our
extension of the model required enabling the condition of
satisfaction system to represent graded aspects of actions, that
are specified by graded sensory information controlling the
sequential transitions during learning and production.

Neural inspiration for model comes from findings of a
separate neural substrate for the ordinal position of an element
in a sequence, along with the neural representation of the
motor characteristics of the associated movements [22], [23].
The condition of satisfaction system may be thought of as a
potential reward mechanism. Together with the ordinal nodes,
the condition of satisfaction system resembles the mechanisms
of action selection hypothesized to reside in the basal ganglia
[24], which project onto the distributed neural representations
of actions and perceptual states. In our model, the adjustable
neural weights hold the memory for each element of a se-
quence. These weights are established from a single exposure
to a sequence element. Such fast learning is possible due to
the explicit segregation of ordinal position within the ordinal
layer and stands in contrast to the extensive learning required
in models of serial order that are based on distributed and
overlapping representations of the order along with motor and
perceptual features [7].

With the introduction of multiple motor modalities, the
sequence generation model touches on the problem of be-
havioral organization, the coordination of multiple different
behaviors in time. At this point, the model sidesteps this issue.

Within the model, different motor modalities do not interfere
or interact. In the implementation, the three action systems
link to different effector systems and degrees of freedom of
the robot. Their simultaneous initiation, represented by co-
existing peaks in the different action fields, is allowed. The
actions “move gripper”, “close gripper” and “search for red”,
for instance, can all be active at the same time. Integrating
principles of behavioral organization would require a formof
hierarchical organization, in which actions within a sequence
may consist of an organized ensemble of sub-actions. One
direction in which we would like to develop our approach
would be to autonomously learn such organizational rules
as something like a grammar of action. The fundamental
mechanism established here for sequence generation in a stable
neuronal dynamics may also provide a framework for how
heterogeneous sequences of actions may be produced that lead
to a given goal.

APPENDIX

The dynamics of the ordinal nodes and the corresponding
memory nodes are described by the equations:

τ ḋi(t) =− di(t) + hd + c0f
(

di(t)
)

− c1
∑
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)

+ c6f
(

di(t)
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The first three terms shape the bistable dynamics of the
ith ordinal node: the negative activation−di(t) provides
stabilizing properties,hd < 0 is the resting level,c0 is the
strength of the self-excitatory term.f(·) is a sigmoid non-
linearity shaping the node’s output.c1 is the strength of the
mutual inhibition in the ordinal set;c2 andc3 are the strengths
of couplings to the memory nodes.IC is the input from the
condition of satisfaction field, which signals the successful
accomplishment of an on-going action.
hm is the resting level of thememory nodes, c4 is the

strength of the self-excitation,c5 is the strength of lateral in-
hibition, c6 is the strength of the input form the corresponding
ordinal node.

The dynamics of theaction fieldsfollows the equation:

τ U̇
A
j (xj , t) =− U

A
j (xj , t) + h

A +

∫

f
(

U
A
j (x′

j , t)
)

w(xj − x
′
j)dx

′
j

+

Nd
∑

i=0

f
(

di(t)
)

Mi(xj , t) + c
A
p I

A
p (xj , t)

(3)

Here, the first three terms define the generic neural field
dynamics with a negative resting levelhA, and the lateral
interactions term.Nd is the number of ordinal nodes, activities
of which,di(t), are thresholded by a soft sigmoid functionf(·)
and then projected on the action field through the modifiable
weights,Mi(xj , t), wherej numbers the actions fields, and
i numbers the ordinal nodes.cAp controls the strength of the
perceptual input,IAp (xj , t), essential during sequence learning.

When an ordinal node is active (i.e.f(di(t)) > 0), its
activation propagates to the action field, providing a localized
input to this field. The shape of this input is defined by the
neural weights, Mi(x, t), which are modified during sequence
learning according to a Hebbian-like rule:

τlṀi(x, t) =
(

−Mi(x, t) + f
(

UA(x, t)
)

)

· f
(

di(t)
)

(4)

The CoS neural fieldsevolve according to a dynamical
equation:

τ U̇
C
j (y, t) =− U

C
j (y, t) + h

C +

∫

f
(

U
C
j (y′

j , t)
)

w(yj − y
′
j)dy

′
j

+ T (xj , yj) ∗ f
(

U
A
j (xj , t)

)

+ cpIp(yj , t).

(5)

Here, the activity of the CoS fieldUC(y, t) is defined over
the neural dimension,y. The transfer functionT (x, y) defines
the mapping between the dimensions characterizing actions
and their terminal states (T (x, y) = 1 in the implementation
presented here). Positive activation in the action field (where
f
(

UA(x, t)
)

> 0) propagates to the CoS field through this
mapping. The constantcp controls the strength of the per-
ceptual inputIp(y, p), hC is the resting level, andτ is the
time-constant of the field’s dynamics.
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