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Abstract— Spatial language is a privileged channel of human-
robot interaction. We extend a neural-dynamic architecture
for grounded spatial language in three ways: First, viewer-
centered vs. intrinsic reference frames may be autonomously
selected. Using intrinsic reference frames requires estimation
of the orientation of the reference object. Second, we employ a
similar orientation estimation to enable the use of configurations
of reference objects for spatial terms such as “between”.
Third, we enhance the autonomy of the system so that the
required sequence of attentional shifts, coordinate transforms,
and selection decisions emerges from the time-continuous neural
dynamics. By implementing the approach in a robotic setting
we demonstrate that simple feature information obtained from
video cameras is sufficient to ground spatial language.

I. INTRODUCTION

Spatial language is an important communicative channel in
many tasks that include locating and manipulating objects in
a scene. We humans use language about spatial relations be-
tween objects flexibly, applying terms such as “to the left of”
or “between” to complex visual scenes both in “where” tasks
when answering such questions as “where is the blue pen?”,
as well as in “what” tasks when answering, e.g., “what object
is to the left of the green cup?”. Studies on human cognition
reveal the complex processes underlying spatial language
behaviors [18], [20], including identification, localization,
and representation in working memory of the reference and
target objects, representation of the spatial terms’ semantics,
application of these semantic representations to the particular
arrangement of objects, alignment of reference frames, and
tracking of changing sensory information.

Recently, we have proposed a theoretical framework based
on Dynamic Fields (DFs) in which models accounting for
human spatial language behaviors and the underlying neural
processes can be formulated [17] and be used to enable
spatial communication with a robotic system [22]. Based on
a neural color-space scene representation and representation
of spatial semantic templates, this system is able to ground
spatial terms such as “to the left of” or “behind” in a visually
perceived scene. The user may ask questions about a visual
scene using spatial terms, or she may direct attention to
objects in a scene using spatial language. The dynamics of
the architecture converges on a spatial or color term response
and builds a representation of the target object that may
guide the robotic action. The spatial relations in the previous
architecture are anchored on a reference object in reference
frame aligned with the viewing axis. The representations
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consist of stable peaks of activation, induced by sequences
of inputs that instantiated different types of queries.

In this paper, we generalize the DF framework for spatial
language in three ways. First, we enable the flexible use
of intrinsic and viewer-centered reference frames, consistent
with human spatial language. This requires extending the
spatial language architecture with a mechanisms to estimate
the intrinsic orientation of the reference object, rotating the
spatial semantic templates to be aligned with the reference
object, and autonomously choosing one of a set of competing
reference frames. Second, we introduce the spatial term
“between” as an exemplary model case that requires a
configuration of two reference objects. Third, we increase
the autonomy of the architecture, by generating the sequence
of inputs autonomously from a neural dynamics of sequence
generation. We implemented the extended framework to take
visual input form a real robotic camera. Our demonstrations
illustrate the flexibility of the system when faced with
moving objects in the visual input.

Our project contributes in different ways to the literature.
We build on the extensive work that has been done on the
psychophysics of spatial language [18], [20], [10] including
the integration of different reference frames [5], and on the
cognitive models that formalize the mappings from space
to spatial terms [15], [9], [14]. When models of spatial
language are used to endow cognitive robots with natural
language capabilities, a broad set of problems in architecture
and system integration must be solved [1], [12], [16], [7].
We address a subset of these problems, most critically, we
focus on the grounding of spatial language in perceptual
representations that are obtained from visual input [21], [19],
[11], [13], [4]. Integration of the multiple required processes
emerges in the neural dynamic framework we use [8]. We
extend earlier process models within that framework [22],
[3], [17] through the autonomous selection of intrinsic vs.
viewer-centric reference frames from image information and
the selection of reference object configurations for terms such
as “between”. The system can track moving objects while
processing spatial language tasks. The enhanced autonomy
of the neural dynamics enables it to generate the sequence
of internal states entailed in computing spatial relations.
Conversely, our work demonstrates that the process models
used to account for human data may actually deliver the
claimed performance when linked up to real sensors in real
environments. Although we do not address learning here, our
approach is broadly consistent with the research program of
developmental robotics [6].
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Fig. 1. The neural dynamic architecture is shown together with a snapshot of the activation patterns in the different Dynamic Fields. The snapshot is
taken at the final stage of answering the query “what is between the blue and the yellow object?”. The response of the model can be read off the color
nodes, the elevated activation level of the node for red designating the red object.

II. FRAMEWORK

Here, we describe the extended spatial language frame-
work (Fig. 1).

The scene representation is established by the visual and
the color-space dynamic fields (DFs) and the color-term
nodes (blue box in Fig. 1). The visual DF constitutes a spatial
representation of the scene in image coordinates. All objects
in the observed scene induce activity peaks in the visual
field at locations that correspond to their positions in the
image. The color-space DFs build a single peak over location
and color of the selected object. The object may be selected
by providing a specific user input to one of the color-term
nodes in a “where” task, or it may be autonomously selected
by the dynamics of the architecture and a homogeneous
boost of all color-term nodes during processing of a “what”
task. To provide the color-term input to the system and to
represent the color-term output of the architecture, the color-
term nodes are reciprocally coupled to the color-space DFs.

The DFs grouped in the green box in Fig. 1 are used
to label an object either as the reference object or as the
target object. The target and reference DFs receive input from
the visual field about all objects in the scene and from the
color-space field about the currently selected object. This
visual input impacts on either the target or the reference DF
depending on which of these DFs is currently brought to the
activation threshold by a homogeneous boost. The boosts
are introduced sequentially to build the representations of
the target and the reference objects from the shared scene
representation. Since a task might require representation of
multiple target objects (e.g. the task “What objects are to
the left from the green object?”) as well as representation of
multiple reference objects (e.g. in a task “What is between
the two objects?”) both target and reference DFs support
multiple activity peaks. The selection of a single object for

processing of the spatial task is done in the reference and
target selection fields. The memory DF inhibits locations of
the already selected target and reference objects and ensures
that each object is selected only once.

The spatial relations (“left”, “right”, “behind”, “in front”,
“between”) between the objects are represented by a set
of spatial relation nodes. A spatial relation node may be
activated by a specific user input in a “what” task. In a
“where” task, all spatial relation nodes are boosted in the
final step of the process and the node with the highest
activation is selected to yield the spatial-term response of
the system. The spatial relation nodes are coupled through
the spatial semantic templates to the object-centered DF,
which holds a representation of the location of the target
object relative to the location of the reference object. The
transformation of the spatial representation of the target
object from the image-based reference frame to the object-
centered reference frame is implemented by a convolution of
outputs of the target and the reference selection fields.

The system may use either intrinsic or viewer-centered
reference frames to process a scene. Both reference frames
are centered on the reference object; the viewer-centered ref-
erence frame is aligned with the viewer, whereas the intrinsic
reference frame is aligned with the intrinsic orientation of the
reference object. The intrinsic orientation of each reference
object is estimated in the orientation estimation field. The
two reference frames are represented by two dynamical
nodes (RF nodes), one of which may be activated by the
direct user input or by the dynamics of the architecture
through mutual competition. If the intrinsic reference frame
is selected, the reference object’s orientation estimate is used
to rotate the spatial semantic templates for the projective
spatial terms.

The processing of a spatial task in the architecture requires
sequences of homogeneous boosts to the fields and sets of



nodes. For instance, to process a ”where” task, the following
sequence of boosts is needed: (1) specific input to one of
the color nodes and boost of the target field, (2) boost of
the target selection field and the memory field, (3) specific
input to the second color node and boost of the reference
field, (4) boost of the reference selection field, the memory
field, and the orientation estimation field, (5) boost of the
object-centered field, (6) boost of the spatial relation nodes
and either boost of the reference frame (RF) nodes or input
to one RF node, (7) boost of the the spatial term and spatial
relation nodes and either boost of the RF nodes of input
to one of the RF nodes. Such sequence of boosts may
be produced autonomously by a serial order mechanism
[23]. A set of the ordinal and the associated memory nodes
constitute the ordinal system (Fig. 2). The ordinal nodes are
activated sequentially, the sequential transitions are triggered
by activation of the condition-of-satisfaction (CoS) nodes. In
our architecture, each ordinal node projects onto the specific
dynamical fields or nodes of the architecture, which receive a
boost or specific input at the respective step in the processing
sequence. The CoS nodes detect activation of the boosted
structures and trigger autonomous transitions to the next step
in the sequence when the boosts have had the desired effect.
This mechanism enables autonomous processing of a spatial
language task. All tasks of a particular type (e.g. “what?” or
“where?”) are represented by a set of ordinal nodes.

Sum CoS

Memory
Nodes

Ordinal
Nodes

CoS
Nodes

Peak-Detector Nodes
with Field / Set of Nodes

Sum Ord

Fig. 2. Schematic of the nodes for sequence generation. Each stage in a
sequence is represented by a memory node, an ordinal node, a condition-
of-satisfact (CoS) node, and a peak detector node which receives input
from a Dynamic Field. Each ordinal node receives inhibitory input from
the weighted sum over the output of all CoS nodes and from the ordinal
nodes.

III. MATHEMATICAL DESCRIPTION OF THE FRAMEWORK

A. The general Dynamic Neural Field equation

The spatial language architecture consists of a number
of dynamic fields (DFs) with activation that evolves in
time according to the dynamical equation, first analyzed in
the context of modeling temporal dynamics of large neural
populations by Amari [2]. This equation specifies the rate
of change of the activation function, u(x, t), defined over a
task-relevant space, x:

τ u̇(x, t) =−u(x, t)+h+
∫

O(x′, t)Klat(x−x′)dx′

+S(x, t)+qζ (t). (1)

The dynamics of the neural field is characterized by the
negative resting level, h < 0, and the homogeneous lateral
interactions, realized by a convolution between the output of

the DF, O(x, t), and a sum-of-Gaussians interaction kernel,
Klat(x−x′). The field receives external input S(x, t) and the
activation is modulated by uncorrelated noise ζ (t).

The output of a DF is shaped by a sigmoidal non-linearity

O(x, t) = g(u(x, t)) =
1

1+ e−βu(x,t) , (2)

where β is the steepness of the sigmoid.
The interaction kernels throughout the architecture are

Gaussian functions,

K(x−x′) =
c√

2πσ2
exp
(
− (x−x′)2

2σ2

)
, (3)

characterized by the amplitudes, c, and widths, σ . In the
architecture, we use four different kernel widths, σs = 6,
σm = 12, σl = 30, σb = 45, and will use the same subscripts
to denote the kernels with the respective width, as well
as the DF’s output, convolved with this kernel. The lateral
interaction kernel consists of three terms:

Klat(x−x′) = Kexc(x−x′)−Kinh(x−x′)− cg, (4)

where the last term is the global inhibition in the field.
The external inputs, S(x, t) in Eq. (1), connect the dynamic

fields and dynamic nodes in the architecture. In the follow-
ing, we list the inputs to all fields and nodes of the spatial
language architecture.

The visual field only receives input from the camera,
constructed as described in Appendix and smoothed by a
medium-width kernel, Km(x,y):

Svis(x,y) = cimgIvis, m(x,y). (5)

The color-space fields receive input from the camera, Ics,
constructed as described in the Appendix and smoothed
by the medium-width kernel, Km. Each color-space field is
coupled a color node and receives a homogenous boost,
proportional to the node’s output, Ocol. The output of the
reference selection field, Osr, and the target selection field,
Ost, smoothed by a broad kernel, support locations in the
color-space fields that correspond to the selected object.

Scs(x,y,c) = cimgIcs, m(x,y,c)+ ccolOcol(c)

+ csrOsr, b(x,y)+ cstOst, b(x,y). (6)

The color nodes receive a user-generated input, mcol =
{0,1}, which boosts one of the nodes in the beginning
of a “where” task, and the output of the associated color-
space field, Ocs(x,y,c), which, combined with the boost, bcol,
from the ordinal system activates one of the color nodes to
represent the color-term answer in a “what” task:

Scol(c) = ccol,cs

∫∫
Ocs(x,y,c) dxdy+ ccinmcol(c)+bcol . (7)

The reference field receives as input the output of the
visual field, Ovis(x,y), a sum of outputs from the color-
space fields, the output of the transformation of the object-
centered field through the target field, Tobj, tar(x,y), and a



homogeneous boost from the ordinal system, bre f :

Sref(x,y) = cvisOvis(x,y)+ ccs ∑
c∈C

Ocs(x,y,c)

+ cref,objTob j,tar(x,y)+bre f . (8)

Here, the spatial transformation (shift) is computed as an
outer product (convolution) of the outputs of the object-
centered and the target fields:

Tobj, tar(x,y) =
∫∫

Otar(x′,y′)Oobj(x′− x,y′− y)dx′dy′. (9)

The target field receives inputs from the visual field and the
color-space field, output of the transformation of the object-
centered field through the reference field, Tobj, ref(x,y), and a
homogeneous boost from the ordinal system, btar:

Star(x,y) = cvisOvis(x,y)+ ccs ∑
c∈C

Ocs(x,y,c)

+ ctar,objTob j,re f (x,y)+btar. (10)

Here, the spatial transformation (shift) is computed as an
outer product (convolution) of the outputs of the object-
centered and the reference fields:

Tobj, ref(x,y) =
∫∫

Oref(x′,y′)Oobj(x− x′,y− y′)dx′dy′. (11)

The reference selection field is driven by the output of the
reference field, Oref(x,y), and is inhibited by the output of the
memory field, Omem(x,y), which represents objects that have
already been selected and processed. This field also receives
a homogeneous boost from the ordinal system, bref,sel. The
reference selection field has strong lateral interactions and
may sustain only a single activity peak.

Ssr(x,y) = crefOref(x,y)− cmemOmem(x,y)+bsr. (12)

The target selection field is driven by the target field and
the boost from the ordinal system and is inhibited by the
output of the memory field:

Ssr(x,y) = ctarOtar(x,y)− cmemOmem(x,y)+bst. (13)

The memory field receives as input the outputs of the
reference selection field and the target selection field and
a homogeneous boost from the ordinal system, bmem. The
lateral interactions in this field are chosen to enable multiple
self-sustaining peaks (no global inhibition).

Smem(x,y) = csrOsr(x,y)+ cstOst(x,y)+bmem. (14)

The object-centered field has no lateral interactions and is
driven by the output of the spatial relation nodes, Ospr(s),s∈
T = {left, right, in front,behind,between}, shaped by the spa-
tial semantic templates, W (x,y,s), the summed over color
output of the color-space fields, smoothed by a medium-
width kernel, Km, the output of the transformation between
the target and the reference object, Ttar,ref, and a homoge-
neous boost, bobj:

Sobj(x,y) = cspr ∑
s∈T

Ospr(s)W (x,y,s)+ ccs ∑
c

Ocs, m(x,y,c)

+ ctar,refTtar,ref(x,y)+bobj (15)

The transformation (reference frame shift) is computed as
convolution:

Ttar,ref(x,y) =
∫∫

Oref(x′,y′)Otar(x− x′,y− y′)dx′dy′ (16)

Spatial term nodes receive a user input m(s) = {0,1}
that activates one of the nodes, selected by the user in the
beginning of a “what” task, the output of the spatial relation
nodes, Sspr(s), and a boost from the ordinal system, bspt:

Sspt(s) = csprSspr(s)+ csinm(s)+bspt. (17)

Spatial relation nodes receive output of the spatial term
nodes, Ospt(s), as input. Each projective spatial term in
our architecture (left, right, in front,behind) corresponds to
two spatial relation nodes: a viewer-centered and an intrin-
sic one. The two reference frame (RF) nodes, Orf(r),r ∈
intrinsic, viewer-centered, represent the currently selected
(viewer-centered or intrinsic) reference frame. An active
RF node inhibits the spatial relation nodes, which do not
correspond to the selected reference frame. Output of the
object-centered field is multiplied with the spatial semantic
templates (Eq. 19) to provide input, Sspr,obj(s,r), which
determines the spatial relation to be selected after processing
of a “where” task:

Sspr(s,r) = csptOspt(s)− crfOrf(r)+ cobj,excSspr,obj(s,r), (18)

where

Sr
spr,obj(s) =


∫∫

Oobj(x,y)W (x,y,s) dxdy,
if r = viewer-centered∫∫

Oobj(x− x′,y− y′)W (x′,y′,s) dx′dy′,
if r = intrinsic.

(19)

The reference frame nodes are driven by the spatial relation
nodes, Ospr(s,r), and the user input, m(r) = {0,1}. The
reference frame nodes are forced to make a selection decision
by the boost from the ordinal system, brf.

Srf(r) =cspr ∑
s∈T r

Ospr(s,r)+ crinm(r)+brf. (20)

The auxiliary reference fields A and B (or short refA field
and refB field) are driven by the reference selection field
and the homogeneous boost from the ordinal system, which
ensure that the two reference objects are input sequentially
to the field A and B:

Sra(x,y) = csrOsr(x,y)+bre f a, (21)
Srb(x,y) = csrOsr(x,y)+bre f b. (22)

The orientation estimation field is a one-dimensional DR
defined over the orientation angle, θ . This field receives
input from the rotation estimation system and stabilizes the
representation of the estimated orientation:

Soe(θ) = coeaoe(θ). (23)

The direction estimation field, similarly to the orientation
estimation field, receives input from the direction estimation



system and stabilizes representation of the estimated direc-
tion:

Sde(θ) = cdeade(θ). (24)

The orientation estimation of the reference object, direc-
tion estimation and scaling of the “between” pattern are
performed by a dynamical mechanism outside DF framework
and are described briefly in the Appendix

IV. RESULTS

We present several experiments using two different tasks
to demonstrate the capabilities of the framework: Either the
framework has to locate and identify a target object from a
given spatial description, containing a reference object and
a spatial term (“what” task); or it has to determine a spatial
relation between given target and reference objects (“where”
task). The visual input is a video stream of a table top scene
containing multiple toy cars in changing arrangements. A
white marker is applied to the front end of each car to
simplify identification of the car’s intrinsic reference frame.
The connections within the framework and their parameters
remain fixed for both tasks and all experimental settings.
The different behaviors of the framework are generated by
a series of control inputs together with the inputs from the
concrete task, which are all organized and supplied at the
appropriate time by the autonomous sequence generation
mechanism.

First, we will describe exemplarily how the framework
progresses through the individual sequence steps to solve
the “what” task. Next, we present two demonstrations that
highlight how the framework can deal with moving objects.
We illustrate the basic tracking ability of the system in an
instance of the “what” task, in which we query the system to
identify the target object again after it has moved to a new
location; and we show how the framework is able to change
its answer in the “where” task to reflect a changed position
of the target object. Finally, we illustrate the flexible use
of reference frames in the model using the “where” task in
different settings: We demonstrate how the reference frame
for the spatial description can either be selected by an explicit
external input, or be chosen autonomously dependent on the
arrangement of objects in the scene.

A. Locating a target object (“where” task)

This demonstration shows in detail how the framework
processes the task “What is between the blue and the
yellow car?” This task requires first to localize the blue
car and yellow car as reference objects in the scene, then
to determine the region that matches the spatial description
“between”, select a target object from this region and give
its color as a response. To solve the task in the framework,
it is divided into nine elementary steps. Each step activates
specific external inputs and/or global boost inputs to certain
fields. This induces the transition of the framework dynamics
to a new attractor state, typically through the formation of a
peak. A peak detector then activates the CoS node for the step
and triggers the transition to the next step. The resulting end

state of the framework after these steps is shown in Fig. 1,
and the corresponding time course is shown in Fig. 3.
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Fig. 3. Time course of activation for selected fields and nodes for the
task “what is between the blue and the yellow car?” The top panel shows
the ordinal and the CoS nodes, indicating each step in the sequence. The
second and third panel from top show the activation patterns projected onto
the vertical visual dimension for the reference and the target fields as a
function of time. The two bottom panels show the output of the color nodes,
and of the spatial relation and spatial term nodes. See text for an explanation
of what happens.

The two reference objects are selected sequentially, start-
ing with the blue one. The first ordinal node provides the
specific input to the color node “blue” and a homogeneous
boost to the reference field. A peak for the location of the red
toy car first forms in the “blue” color-space field, and in turn
induces a peak at the same location in the boosted reference
field. This triggers the first CoS node via a peak detector,
and thereby induces a transition to the next sequence step.
The peak in the reference field remains stable even without
the inputs. The second ordinal node provides boost inputs to
the reference selection field, memory field, and refA field.
This induces peaks for the previously selected location in all
three fields, of which the ones in the memory and refA field
remain stable for the remainder of the task. In the following
two steps, the yellow car is selected as reference object in an
analogous fashion and its location represented by a second
peak in the reference and memory field as well as a peak in
the refB field.

In the next step, the locations of the peaks in the refA
and refB fields are used in the direction estimation module
to determine the direction of the line between the reference
objects. The direction estimation field is boosted in this step,
and forms a peak based on the input from this module. The
distance between the reference objects is also determined and
used to adapt the semantic pattern for the term “between”
(which should reflect the range and orientation of the region
between the reference objects). This adaptation is done
continuously and does not require its own sequence steps.
The transition to the next step occurs as soon as the direction
estimation field has formed a peak.

The next ordinal node activates the specific task input to
the spatial term node “between” and simultaneously boosts
all spatial relation node. This causes the spatial relation
node “between” to become active, and the associated spatial



semantic template for “between” is projected into the object-
centered field. The activation of the spatial relation node
triggers the transition to the next step. At this point, there
is significant activation in both the object-centered and the
reference field (with the two peaks still standing there).
These fields together feed into the target field via the multi-
directional convolution operation. Effectively, this convolu-
tion shifts the semantic spatial template from the object-
centered field so that it is aligned with the reference object
locations, and projects this shifted pattern into the target
field. At the same time, the target field receives continuous
input from the visual field reflecting the spatial locations
of all objects. The next ordinal node now boosts the target
field, and through the combined input a peak forms at the
location of the one object in the scene that matches the spatial
description. The formation of that peak serves as CoS for this
step.

In the last sequence step the target selection field and the
color nodes are boosted. The target selection field selects a
peak from the target field by forming a peak at the same
position. Once the peak has formed, its output is used to
highlight the selected position in all color-space fields, where
it matches the location of one of the visual stimuli. Here,
this match occurs in the “red” field, and its output activates
the “red” color node. When the “red” color node reaches a
certain activation level, the last CoS is fulfilled and the task
sequence ends.

B. Visual tracking of a moving target object

The neural dynamics in the framework allow the au-
tonomous tracking of moving objects without requiring spe-
cial treatment. In particular, the reference and the target field
are continuously coupled to the visual input via the visual
field. If objects in the scene move, the activation peaks follow
this movement. We present an instance of both the “what”
and the “where” task, processed in the usual manner, in
which the target object changes its position after the initial
response. We then query a second response from the system
by repeating the last steps of the sequence.

In the first experiment, we ask “What is between the
red and the green car?” A time course is shown in Fig. 4.
The system identifies the target object, then the object starts
moving and the peak in the target field keeps tracking
its position. The initial spatial description has effectively
been used to create a “spatial label” for this object. The
tracking continuous when the object leaves the “between”
region, albeit with a slightly decreased activation level of
the peak. When an identifying response is queried again by
boosting the color nodes after the movement has stopped,
the framework still produces the correct response “yellow”.

For the second experiment, the task is “Where is the blue
car relative to the green car?”, and the time course is shown
in Fig. 5. This task is processed by a different sequence
of ordinal nodes: First, the blue car is selected as target
object, then the green car is selected as reference object.
Next, the spatial relation nodes and reference frame nodes
are boosted. When the spatial relation node “intrinsic in
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Fig. 4. Time courses of inputs and activation levels for the task “What is
between the red and the green car?” The activation of the target field and
the reference field is summed along the horizontal spatial dimension.

front” and the reference frame node “intrinsic” is active, the
spatial term nodes are boosted, as well. This leads to the
selection of the spatial term “in front” as the framework’s
response for the task. After this first response, the target
object moves to a new location. The system is released from
its initial response by de-boosting the spatial relation nodes,
spatial term nodes, and reference frame nodes. Target and
reference object remain selected. We repeat the last step
of the task sequence to produce a new spatial description,
and this time the framework activates the spatial relation
node “viewer-centered right” and the reference frame node
“viewer-centered”. This yields the response “to the right”
(in a viewer-centered reference frame), which correctly de-
scribes the new spatial relation between target and reference
object.
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Fig. 5. Time courses of inputs and activation levels for the task “Where
is the blue car relative to the green car?”. The activation of the target field
and the reference field is summed along the horizontal spatial dimension.

C. Switching between different reference frames

The reference frame for a task can either be selected by an
explicit external input to the reference frame nodes (which
is conveyed in the appropriate step by the ordinal dynamics),
or it can be chosen autonomously by the framework to find
the best fitting spatial description for the specified objects.

Fig. 6 illustrates how the reference frame given by an
external input affects the behavior of the framework. Shown



is the activation of the object-centered field after processing
the task “Where is the green car relative to the red one?”
The experiment is performed once with the viewer-centered
reference frame specified (yielding the activation in Fig. 6a)
and once with the intrinsic reference frame ( Fig. 6b). The
visual and task input is the same for both trials (Fig. 6c),
yielding in both cases the same relative position of the target
to the reference object in the object-centered field (the spot
of high activation indicated by the red circle). In contrast, the
shape of the spatial semantic template visible in the figures
changes depending on the selected reference frame and the
chosen spatial relation. When the viewer-centered reference
frame is selected, the system chooses the response “viewer-
centered right”, which only provides a moderate match for
this spatial arrangement (Fig. 6a). In the intrinsic reference
frame, the response “intrinsic behind” is chosen, which yields
a more precise match of the relation between the two cars.
This shows that the framework can use both reference frames
equally.
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Fig. 6. Fig. (a) and (b) show the activation of the object-centered field in
the final stage of processing a “where” task. In Fig. (a) the viewer-centered
reference frame is specified. In Fig. (b) the intrinsic reference frame is
specified. Fig. (c) shows the visual input for both trials.

In a second experiment we allow the framework to select
a reference frame autonomously. The same task is processed
with different visual inputs: The locations of the red and
blue car remain fixed, but the green car (the target object
in the task) is moved in small steps from trial to trial,
describing a semi-circular path around the reference object.
Fig. 7 illustrates chosen responses dependent on the target
location. The system switches between viewer-centered and
intrinsic reference frame to select the spatial description that
best matches the arrangement of the two cars: It responds
with “viewer-centered behind” for angles between target
and reference object from −11.31◦ to 24.1◦, switches then
to “intrinsic behind” between 23.39◦ and 80.36◦, then to
“viewer-centered right” between 71.92◦ and 111.8◦, and
then to “intrinsic left” between 108.4◦ and 121.3◦. We
note, however, that the reaction time (number of time steps
between the activation of the ordinal node and the CoS node
for the response selection step) is longer at positions where
two spatial relations provide a good match.

V. DISCUSSION

We extended a neural-dynamic framework that grounds
spatial language in robotic settings. Spatial relations relative
to the intrinsic reference frame of the reference objects can be
obtained and the system can autonomously choose between

Fig. 7. The target object (green car) was presented at different positions
along an imaginary circle. Four samples of visual input are show. Colored
dots near the green cars indicate the positions of peaks in the object-centered
field for different inputs. In the sector demarcated by green dashed lines, the
model responds “viewer-centered behind”. Analogously, the other response
sectors are marked: magenta for “intrinsic behind”, cyan for “viewer-
centered right”, and yellow for “intrinsic left”.

the ego-centric and the intrinsic reference frame. We ex-
tended the spatial vocabulary by the spatial term “between”,
that brings in configurations of references objects, whose
orientation matters. We showed that the system can track
objects and update spatial labels in changing environments.
The neural dynamics operating in real time autonomously
generates the sequence of inputs and boosts that is need to
ground spatial language.

VI. APPENDIX

A. Camera input.
The camera image, I(xi,yi) ((xi,yi) = 100x100 pixels), provides

external input to two structures in the architecture: the visual field
and the color-space fields.

The color-space fields are a discrete along color-dimension
version of the three-dimensional color-space field. Input to the
color-space fields is computed by assigning color ranges to one of
the basic colors, c∈C = {red,green,blue,yellow}. A binarized map
Ic
cs(xi,yi) is extracted for each color by thresholding the image in

the ’saturation’ (threshold θs) and ’value’ (threshold θv) dimensions
of the HSV color-space:

Ics(xi,yi,c) =


1, if h(I(xi,yi)) ∈ Hc

∧s(I(xi,yi))> θs
∧v(I(xi,yi))> θv

0, otherwise

, (25)

where the HSV space if defined by h∈ [0◦,360◦), s∈ [0,1] and v∈
[0,1]. The discretization is done algorithmically here, but would be
the result of the DF interactions in a continuous three-dimensional
implementation of the color-space field. The input maps are resized
to match the array of the numerically discretized DFs and the
following we will denote this input Ics(x,y,c).

The camera input to the visual field is computed as

Ivis(x,y) = ∑
c∈C

Ics(x,y,c). (26)

Hred = [0◦,30◦) ∪ [300◦,360◦), Hgreen = [90◦,150◦), Hblue =
[150◦,300◦), Hyellow = [30◦,90◦), θs = 0.57 and θv = 0.58.



B. Direction estimation and scaling of the ’between’ pattern.
In order to apply the spatial pattern ’between’ to the current

scene, (1) the orientation of the axis connecting the two reference
objects had to be estimated to align the spatial semantic template
with this axis, and (2) the distance between the reference objects
has to be estimated to scale the semantic template. To accomplish
this, a representation of the location of one of the reference objects
relative to the other reference object is computing by convolving
the outputs of the auxiliary reference fields A and B:

M(x,y) =
∫∫

OrefA(x
′,y′)∗OrefB(x− x′,y− y′)dx′dy′ (27)

The result of this operation, M(x,y), is transformed to the polar
coordinates, Mpolar(ρ,θ). Projecting the Mpolar(ρ,θ) to the distance
dimension (Eq. 29) or the angular dimensions (Eq. (??)), we receive
estimation of the orientation of the line connecting the two reference
objects and the distance between them respectively:

d(ρ) =
θmax

∑
i=1

Mpolar(ρ, i), (28)

ade(θ) =
ρmax

∑
i=1

Mpolar(i,θ). (29)

The estimation ade(θ) is input into the direction estimation field.
The output of the direction estimation field is used to rotate

the default ”between” pattern Pdefault(ρi,θ) to align it with the
orientation of the reference objects:

Pdirection(ρi,θ) = Pdefault(ρi,θ)∗Ode(θ) (30)

To scale the “between” pattern Pdirection(ρ,θ) according to the
distance between both reference objects, it is multiplied with d′(ρ):

Pcut(ρ,θi) = Pdirection(ρ,θi) ·d′(ρ) (31)

The result Pcut(ρ,θ) is then transformed back into Cartesian co-
ordinates to get the transformed spatial semantic template for the
term “between”, Pcart(x,y).

C. Orientation estimation
Estimation of orientation of the reference object for intrinsic

reference frames is accomplished in a similar fashion. A match
is computed between the output of the reference selection field,
Osr(x,y) and a template, Tpolar(ρ,θ), that contains a canonical view
of the shape of the reference object in polar coordinates:

a(θ) =
ρmax

∑
s=1

θmax

∑
t=1

Tpolar(s, t) ·Mpolar(s,θ + t), (32)

which is normalized with:

aoe(θ) = σ

(
250 · (a(θ)−min(a(θ)))

∑
θmax
j=1 (a( j)−min(a(θ)))

−1,5

)
, (33)

with β = 50, x0 = 0, where aoe is input for the orientation estimation
field. The output Ooe of the field is used to shift any projective
spatial semantic template Ppolar(ρ,θ) in polar coordinates (derived
from any projective spatial semantic template Pcart(x,y) in Cartesian
coordinates) along the angle dimension θ according to the estimated
rotation of the reference object relative to its canonical orientation:

Pshift(ρi,θ) = Ppolar(ρi,θ)∗Ooe(θ) (34)

The result Pshift(ρi,θ) is then transformed back into Cartesian
coordinates to get the rotated projective spatial semantic template
Prot(x,y).
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