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ABSTRACT2

Dynamic neural fields (DNFs) are dynamical systems models that approximate the activity of3
large, homogeneous, and recurrently connected neural networks based on a mean field approach.4
Within dynamic field theory, the DNFs have been used as building blocks in architectures to5
model sensorimotor embedding of cognitive processes. Typically, the parameters of a DNF in an6
architecture are manually tuned in order to achieve a specific dynamic behavior (e.g. decision7
making, selection, or working memory) for a given input pattern. This manual parameter search8
requires expert knowledge and time to find and verify a suited set of parameters. The DNF9
parametrization may be particular challenging if the input distribution is not known in advance,10
e.g. when processing sensory information. In this paper, we propose an autonomous adaptation11
of the DNF resting level and gain by a learning mechanism of intrinsic plasticity (IP). To enable12
this adaptation, an input and output measure for the DNF are introduced, together with a hyper13
parameter to define the desired output distribution. The online adaptation by IP gives the possibility14
to pre-define the DNF output statistics without knowledge of the input distribution and thus, also15
to compensate for changes in it. The capabilities and limitations of this approach are evaluated16
in a number of experiments, including a comparison of stochastic gradient with natural gradient17
descent.18
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1 INTRODUCTION

A Dynamic Neural Field is a description of activity of a large homogeneous neuronal population (Amari,20
1977; Wilson and Cowan, 1973; Coombes et al., 2014; Schöner and Spencer, 2015). The DNF equation is21
obtained as a mean-field approximation of the dynamics of a network of spiking neurons and describes the22
dynamics of a continuous activation function, spanned over a feature dimension, such as color, location,23
velocity, or other perceptual or motor parameters, to which the neurons in the underlying population24
respond.25
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The core elements of the DNF dynamics are a winner-takes-all type of connectivity, expressed by a26
symmetrical interaction kernel with a short-range excitation and a long-range inhibition (a “Mexican Hat”27
connectivity pattern), and a sigmoidal non-linearity. The sigmoidal non-linearity determines the output of28
the DNF. The DNF’s output is a function over the feature dimension that vanishes for activation values29
below zero and saturates at one for positive activation values. The recurrent connectivity pattern and30
sigmoid output function of the DNF lead to non-linear properties of this model. These properties enabled31
its successful application in modeling cognitive functions in humans: e.g., formation of a representation,32
working memory, decision making, rule learning, or executive control (Schöner and Spencer, 2015), as33
well as for control of cognitive robots (Sandamirskaya et al., 2013; Bicho et al., 2011).34

One of the obstacles to a wider adoption of the DNF model in technical systems and in neurobehavioral35
modelling is the parameter tuning required to obtain the desired behavior. In general, the behavior of a DNF36
for a given input depends on the parameters of the neural field, e.g. the strength and width of the interaction37
kernel, the resting level, or the slope of the sigmoidal non-linearity. However, when considering the DNF38
output behavior over time for sequences of inputs, the particular input distribution has a major impact39
on the DNF output statistics. Therefore, the input distribution has to be taken into account when setting40
parameters of a DNF in order to achieve a desired behavior over time. When the input distribution is not41
known in advance and its online normalization is not straight-forward, the tuning of the DNF parameters42
may be time consuming, in particular when the input distribution varies (e.g. drifts) over time.43

Let us consider an example that we will use throughout this paper: a robotic hand with a tactile sensor44
on its fingertip (Shunk Dexterous Hand 2, SDH-2) is used to estimate the shape of an object by rotating45
it and bringing the fingertip in contact with the object in different locations. In this example, we use the46
tactile sensor on the robotic fingertip as a source of input to a DNF (see Strub et al. (2014b,a) for the47
details of the robotic setup and the DNF architecture). When the tactile sensor is brought into contact with48
the object, the shape of the contact area is characteristic for the properties of the object’s surface at the49
location of the contact. A low circularity of the contact area on a tactile sensor (down to zero circularity for50
a sharp line) corresponds to an edge on the object’s surface, whereas high circularity (up to 1 for a perfect51
circle) corresponds to a flat surface under the sensor. The task we will consider is to create a “map” of52
flat surfaces of an object (in an object-centered coordinate frame), as the robotic hand rotates the object,53
repeatedly bringing the tactile sensors on its fingertips in contact with the object at different locations. To54
build such “map”, we need to detect the most circular contacts within a sequence of contacts and store their55
positions on the object’s map. Here, the angular coordinate anchored in the object’s center is the feature56
dimension we are interested in (on which we build a “map” of the detected flat surfaces, using the DNF).57
The circularity of the contact point determines the activation level of the DNF, induced by the sensory58
input. The desired output of the DNF in this case is an activity peak for a given fraction of the inputs (e.g.,59
within 20% of the most circular inputs), and no output activity for inputs with lower circularity values.60

The parametrization of such a detector depends crucially on the distribution of the circularity feature in61
the input stream from the sensor, as illustrated in Fig. 1. In the figure, the sensed property – circularity in62
our example, – which determines activation level of the DNF, is plotted on the x-axis and its probability63
of occurrence on the y-axis, thus showing the distribution of input amplitudes that can be measured.64
The green-colored part of the distribution corresponds to a fixed fraction of the input distribution, say65
20% that includes the highest input circularities. The three examples shown in Fig. 1, illustrate that the66
classification threshold for the activation of a DNF – which is determined by the negative resting level67
and the threshold parameter of the sigmoid of the DNF – depends on the particular feature distribution. If68
the input distribution is not known in advance, or varies over time, an online adaptation of the detection69
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Figure 1. Illustration of three different distributions of a “circularity feature”
obtained from sensory input. On the horizontal axis, the circularity is denoted,
which determines the activation level of a DNF; the vertical axis shows
the probability to measure the respective circularity value. The green filling
represents a fixed fraction (20%) of the total probability density.

threshold (i.e., resting level) and steepness of the classification function (i.e., steepness of the sigmoid) is70
necessary.71

In this paper, we propose a method to autonomously adapt parameters of a DNF – in particular, the gain72
of the sigmoid non-linearity and the resting level (bias) – using a homeostatic process. In order to achieve73
this adaptation, global input and output measures for the DNF have to be defined. Here, we use as an output74
measure the maximum level of the output of the field (output is the activation after it is passed through75
the sigmoid function). The corresponding input measure is the activation value of the input at the location76
of the maximum output. The underlying notion is that the maximum level of the DNF output reflects77
the decision that the field has made about its input. That decision was based on the input at the selected78
location. Based on these measures, the gain and resting level for the DNF are adapted in order to match the79
distribution of this output measure obtained over time to a predefined target distribution. This adaptation80
drives the DNF dynamics towards the detection instability, which separates the inactive, subthreshold states81
of the DNF from the active states with a local activation peak. As a result, the DNF is kept in a dynamical82
regime in which it remains sensitive to input, preventing both saturation and the complete absence of83
activity. Furthermore, the adaptation ensures that the distribution of the output measure of the DNF remains84
invariant when the input distribution changes over time, for example, in terms of its mean or variance.85

In the following sections, the DNF and IP equations are introduced, the derivation of DNFs with IP is86
outlined, and the performance of the modified DNF is evaluated on an example, in which input from a87
tactile sensor is processed.88

2 METHODS

2.1 Dynamic Neural Fields89

DNFs are dynamical systems which model activation dynamics in large homogeneously connected90
recurrent neuronal networks. The DNF equation describes an activation function that may represent a91
perceptual feature, location in space, or a motor control variable (Schöner and Spencer, 2015). This92
behavioral variable is encoded along a feature dimension x of the DNF, and the activation u(x, t) at position93
x encodes the confidence that the feature has value x at time t. The current state of the neuronal system is94
encoded by the position on the dimension x of high activation values. Such space coding allows to encode95
multiple possible values of a feature as well as “fuzziness” of the experienced or stored values. Other96
artificial neural networks encode feature values through the level of activity of particular neuronal units97
(rate coding) or through the pattern of activation across a distributed set of units. What is special about the98
space code used in DNF is that the metric distance between represented values is explicitly encoded in99
the distance between locations along the feature dimension. Neural coupling that depends on the distance100
between field locations thus depends on the distance in feature space between the represented feature101
values.102
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The equation for the DNFs used in the proposed model is shown in Eq. (1) and defines the rate of change103
of the activation u(x, t) of the field:104

τ u̇(x, t) = −u(x, t) + h+ S(x, t) +

∫
ω(|x− x′|)g

(
u(x′, t)

)
dx′. (1)

In Eq. (1), u(x, t) is the activation of the DNF at time step t and position x. The positions x belong to a105
feature dimension, and can also span a multi-dimensional feature space: ~x ∈ Rn (Schöner and Spencer,106
2015). In practice, the dimensionality of fields ranges from zero (neural nodes) to three or four. In this107
paper only one dimensional fields are considered.108

The term −u(x, t) stabilizes an attractor for the activation function at values that are defined by the last109
three terms in the equation. The time constant, τ , determines how fast activation patterns, u(x, t), relaxes110
to the attractor. The negative resting level, h, ensures that the DNF produces no output in the absence of111
external input, S(x, t). The convolution term models recurrent neural interactions between activation levels112
at different locations within the DNF, and is shaped by the interaction kernel:113

ω(|x− x′|) = cexc exp

[
−(x− x′)2

2σ2exc

]
− cinh exp

[
−(x− x′)2

2σ2inh

]
, (2)

with a short-range excitation (strength cexc, width σexc) and a long-range inhibition (strength cinh, width114
σinh > σexc). A sigmoidal non-linearity, g

(
u(x, t)

)
= (1 + exp[−βu(x, t)])−1 defines the output of the115

DNF through which the DNF impacts on other neural dynamics within a neural architecture, and also on116
its own neural dynamics through the recurrent interactions.117

The−u(x, t) in Eq. (1) guarantees the existence of at least one attractor. Dependent on the parametrization118
of the recurrent interaction kernel ω and the sum of the input signal S and the resting level h, the DNF119
may undergo saddle-node bifurcations. Fig. 2 shows schematically the bifurcations that a DNF undergoes120
when the sum h+ S(x) changes. The left column of the figure shows a zero-dimensional case (when u is a121
scalar value and the state is a point), and the right column shows a one-dimensional case (when u(x) is a122
function and the state corresponds to a line).123

The phase plots on the left in Fig. 2 qualitatively show Eq. (1) for a zero-dimensional state x (i.e. a point)124
at different input values:125

• In the top plot (“Low-stable”), the black dot denotes a single stable fixed point (attractor), marked with126
a, for the case when h + S is below activation threshold of the DNF. Loosely speaking, the resting127
level h together with the input S of the DNF shift the function of the phase plot up and down, while ω128
determines the non-linearity of the function whose general shape is determined by the sigmoid g.129

• A stronger input intensity S may cause a bifurcation, creating two new fixed points: a stable one (point130
c) and an unstable one (point b) (“Bi-stable” regime, middle plot).131

• If the input further increases, a second bifurcation occurs, where the unstable fixed point (b) collides132
with the stable fixed point (a) in the phase plot. Now the system state at the former fixed point (a) has133
lost its stability and the system will converge to the remaining stable fixed point (c) (“High-stable”,134
lower plot). This second bifurcation, where the bi-stable state looses stability and switches to the135
high-stable state, is termed detection instability.136
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Figure 2. The three regimes of stability. Left column: phase plots for different regimes of the DNF equation for a zero-dimensional feature space x (u is a
scalar value). Black dots indicate stable fixed points, empty circles – unstable fixed points. Right column: the output g(u) of a DNF is illustrated (in red) for an
one-dimensional feature space x. The blue-dashed line represents the input S(x). The arrows depict qualitative changes in the regimes of stability determined
by the input strength S(x).

• If the input S now decreases again, it will induce a bifurcation, leading back to the bi-stable regime;137
however, the system will remain at the stable fixed point (c) (hysteresis). Only if the input decreases138
enough to induce the second bifurcation, where the stable fixed point (c) collides with the unstable139
fixed point (b), the system will return to the stable fixed point (a) (“Low-stable”).140

In the one-dimensional system in the right column of Fig. 2, the output activation g(x) over the feature141
space x is plotted in red while the input S(x) is plotted as a dashed blue line. In the “Low-stable” case,142
when the sum h+ S(x) does not reach activation threshold anywhere in the dimension x, the output of the143
DNF is zero (top plot A1). If the input intensity increases, the system enters a “Bi-stable” regime (middle144
plot A2), with a weak positive output. When input strength further increases, the detection instability leads145
to a visible change of the DNF output, which has now a localised “peak” that might even surpass the146
input strength (lower plot, C1). If the input intensity is decreased now, the system will enter the bi-stable147
regime again (middle plot, C2), however, without a qualitative change in the system output. The system148
output drops back to the resting level activity in (A1) only if input is further decreased, which is termed149
the “reverse detection instability”. For high values of lateral excitation, a negative (inhibitory) input is150
required for the system to return to an inactive state. This parametrization is termed “self-stabilizing”, i.e.151
maintaining the output in the absence of input S(x, t) = 0.152

To conclude, the recurrent interactions shaped by the kernel ω stabilize the system in its state (either153
“low” or “high”) when the input fluctuates around the bistable setting, by shaping the non-linearity in the154
phase-characteristics of the system’s dynamics.155
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2.2 Intrinsic Plasticity156

Neurons in biological organisms have a large spectrum of plasticity mechanisms, implementing a157
broad range of functions. One functional class of neuronal plasticity mechanisms is termed “homeostatic158
plasticity”, which optimizes the information processing within a neuron by keeping the firing rate of the159
neuron in a reasonable regime Turrigiano (2008); Pozo and Goda (2010); Turrigiano (2012). Non-synaptic,160
i.e. intrinsic forms of homeostatic plasticity are termed “intrinsic homeostatic plasticity” (IP), which161
adapt the intrinsic excitability of a neuron (Frick and Johnston, 2005; Schulz, 2006). Additionally to the162
adaptation in the neuron soma, this plasticity of excitability has also been discovered in compartmentalised163
dendritic structures of neurons (Frick and Johnston, 2005; Losonczy et al., 2008; Makara et al., 2009). The164
plasticity of excitability of dendritic structures greatly increases the complexity and non-linearity of neural165
information processing and storage (Remy et al., 2010; Branco and Häusser, 2010; Spruston et al., 2016).166

In the context of artificial neural networks, IP is modeled as a mechanism that modifies the excitability of167
a neuron in order to achieve a specified output distribution for a given input distribution (Stemmler and168
Koch, 1999; Triesch, 2005). This is done by manipulating the parameters of a transfer function, which169
transforms the internal neural state to an output. A commonly used transfer function is the logistic function,170
defined in Eq. (3):171

ga,b(x) =
(
1 + exp(−ax− b)

)−1
. (3)

The a, b are termed gain and bias of the function g(x) and x is the input which is transferred to the output172
space. By choosing an appropriate gain and bias, the input may be scaled and shifted in order to cause a173
response in the desired part of the sigmoid function g(x). The objective of IP is to adjust the gain and bias174
such that for a given set of inputs X the corresponding set of outputs g(X) approximates a predefined175
target distribution. Hence, IP is an autonomous adaptation of the sigmoid transfer function.176

The particular IP learning rule for adapting the parameters of the transfer function is achieved by177
minimising the Kullback-Leibler-divergence (KLD) (Kullback and Leibler, 1951), such that the output178
distribution of a neuron is close to the target distribution. A common target distribution is the exponential179
distribution, as it reflects aspects of homeostasis, i.e. maximizing the transmitted information (entropy),180
while minimizing the positive mean output activity (metabolic costs) defined by the mean of the distribution.181
For logistic functions, Eq. (3), and the exponential as a target distribution, the learning rules have been182
derived in (Triesch, 2005). The procedure will only be sketched in the following. For neurons using the183
tanh as transfer function, see (Schrauwen et al., 2008).184

LKL(fg || fexp) = Ex
[
LKL

(
fg
(
ga,b(x)

)
|| 1

µ
exp

(−ga,b(x)

µ

))]

=

∫
fg
(
ga,b(x)

)
log

 fg
(
ga,b(x)

)
1
µ exp

(−ga,b(x)
µ

)
 dx (4)

fg
(
ga,b(x)

)
=

fx(x)
∂ga,b(x)
∂x

(5)

In Eq. (4), a loss function L is defined as the KLD LKL with the probability distribution function fg185
of the outputs of the logistic transfer function ga,b(x) with respect to the exponential target distribution186
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fexp. The output distribution of the logistic function ga,b(x) is parameterised by a, b, while the parameter187
of the exponential distribution is the mean µ. The output distribution fg(ga,b(x)) is defined as the input188
distribution fx(x) remapped by the sigmoid g(x), as in Eq. (5). Minimizing the KLD is done by taking189
the derivative with respect to (a, b) and performing gradient descent with a learning rate of η (the step190
size). For online updating rules (stochastic gradient descent) the inputs x are assumed to be independent191
and identically distributed. Then the true gradient of the expectation value can be approximated for an192
appropriate choice of the learning rate. This leads to the learning rules for adaptation of the parameters193
gain a and bias b with the learning rate η (Triesch, 2005):194

∆b = η

(
1−

(
2 +

1

µ

)
ga,b(x) +

1

µ
ga,b(x)2

)
, (6)

∆a =
η

a
+ x∆b. (7)

Besides this online adaptation rule, a batch version of IP was derived in (Neumann and Steil, 2011).195
The application of IP has repeatedly been reported to improve performances in reservoir computing – a196
particular form of computing with transients in dynamical systems – (Steil, 2007a,b; Schrauwen et al.,197
2008; Wardermann and Steil, 2007) as well as increasing the robustness with respect to the parameter198
initialization (Neumann and Steil, 2011). It has been noticed that in a network of neurons adapted by IP the199
target distribution is also approximated on the network level (Steil, 2007a). There have been a number200
of variations of IP learning with respect to the target distribution, for further information see (Verstraeten201
et al., 2007; Schrauwen et al., 2008; Boedecker et al., 2009b,a). Furthermore, combinations of IP with202
other forms of plasticity have been investigated, e.g. with Hebbian learning, which leads to identification of203
independent components in the input (Triesch, 2007).204

Finally, it should be noted that IP leads to instability of recurrent neural networks (RNN). In Marković205
and Gros (2010, 2012) the authors show that introduction of IP in RNN leads to the destruction of the206
attractor stability, resulting in spontaneous and continuously ongoing activity for networks without and207
with very small input amplitudes. The result of RNN destabilisation by IP has also been confirmed in208
spiking neural networks (Lazar et al., 2007). These destabilizing effects on the dynamics are relevant for209
applying IP in dynamic neural fields as will be discussed in this paper.210

The adaptation of the intrinsic plasticity via stochastic gradient descent can be optimized by utilizing the211
concept of a natural gradient, introduced in (Amari, 1998). It has been shown, that the metric structure of212
the parametric space of neural networks has a Riemannian character (Amari, 1998). Thus the relationship213
between the distance of two sets of parameters and the distance in the output space of the transfer function214
defined by the loss function is non-linear. Adapting the conventional gradient with respect to the Riemannian215
metric corrects for this non-linearity, such that the distance of two parameter sets linearly transfers to216
the output space, measured by the loss function. This change of the gradient is termed natural gradient217
and leads to a substantial performance increase in the convergence rate for IP(Neumann and Steil, 2012;218
Neumann et al., 2013). Therefore the natural gradient is used in this paper due to these technical benefits,219
although the adaptation of DNFs with IP proposed in this paper in principal also works with the standard220
IP adaptation.221
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A natural gradient-based parameter adaptation for IP termed NIP has been derived in (Neumann and222
Steil, 2012), here only the resulting learning rules are given:223

∆~θ = −η
(
F (~θ) + εI

)−1
∇ELKL

(
fg || fexp), (8)

= −η ∇FLKL
(
fg || fexp

)
F (~θ) = Ex

[
∇ELKL

(
fg || fexp

)
· ∇TELKL

(
fg || fexp

)]
. (9)

The standard gradient of the loss function in an Euclidean metric ∇E is transformed into a gradient in the224
Riemannian metric ∇F by inverting the Matrix F (~θ), which is the Fisher information, i.e. the Riemannian225
metric tensor. In order to prevent numerical instabilities of the tensor inversion, a Tikhonov regularization226
is applied by adding the identity matrix I with a small regularization factor ε to the tensor F (~θ) before227
inversion. Just as before, the loss function LKL is the KLD for neuron output gθ(x) and parameters a, b. As228
the needed expectation value of the gradient with respect to the input in Eq. (9) is not available in an online229
framework, the tensor F (~θ) is estimated online by:230

F̂t+1(~θ) = (1− λ)F̂t(~θ) + λ∇ELKL
(
fg || fexp

)
· ∇TELKL

(
fg || fexp

)
, (10)

with λ realizing a low pass filter with exponential decay which is set to 0.01. For computational efficacy, the231
inversion of the tensor F in every time step (Eq. (8)) can be circumvented by directly estimating the inverse232
tensor F−1 as described in (Park et al., 2000). Using NIP gives a good approximation of the gradient233
direction in parameter space, which is also confirmed by the experiments in the evaluation section.234

3 INTRINSIC PLASTICITY FOR DYNAMIC NEURAL FIELDS

Intrinsic plasticity (IP) is a local adaptative mechanism that models the autonomous adaptation of the235
sensitivity (gain) and threshold (bias) of a single neuron in order to match the statistics of the neuron’s236
output to a predefined target distribution. We apply this idea to DNFs with respect to a global gain and237
a global bias parameter that control the entire population of neurons in a DNF. DNFs are a mean field238
approximations of a heterogeneous recurrent networks to capture the qualitative, global patterns. Our239
proposed application of IP on a population level directly tunes the DNF output distribution and therefore240
achieves the same effect (on the network level) as IP in single neuron would. Thus, conceptually IP in241
DNFs captures the qualitative, global pattern change in a network as would result form IP in every single242
neuron.243

DNFs are consistent with population coding, in which the value of a feature is encoded by the activity of244
those neurons within a population that are broadly tuned to that value. If particular feature values never245
occur in the input, the corresponding neurons never become active. If the gain and bias of each neuron246
would be adapted individually, this would lead each neuron to approximate the desired target distribution.247
The output of the population would converge to an uniform distribution of feature values, reducing the248
information encoded in the population. In contrast, the adaptation of a global gain and bias for all neurons249
in a population of a DNF proposed here ensures that the encoding of the input in the DNF activity remains250
stable. In the Discussion we briefly review evidence from computational neuroscience that supports this251
notion of global adaptation.252
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To implement IP in a DNF, the field equation needs to be slightly reformulated. The standard formula of253
a DNF is given in Eq. (1), where the logistic transfer function g(·) is now used in the parametric version:254

ga,b(x) =
(
1 + exp (−ax+ b)

)−1 (11)

The gain, a, controls the steepness of the sigmoid and the bias parameter, b, controls the position of the255
zero-crossing of the sigmoid. The bias defines a gain dependent resting level, b = ah, which replaces the256
former static resting level, h, in Eq. (1). The gain, a, scales all weights, i.e. is a scaling factor for the input257
S(x, t) together with the recurrent, lateral interaction kernel, ω(x, x′), in Eq. (1). As all the weights are258
jointly scaled, the relative contributions of input signal and lateral interaction remain fixed for a static input.259

Furthermore, three design choices have to be made for deriving the IP learning rules:260

1. Define a scalar measure, z, of the input of the field.261

2. Define a scalar measure, y, of the output of the field.262

3. Chose the desired target output distribution.263

Regarding the first two points, the output measure, y(t), of the field is defined as the maximum output of264
the neural field:265

y(t) = max
x

(
ga,b
(
u(x, t)

))
. (12)

The input measure, z(t), of the field is given by the field activation at the position of the maximum output:266

z(t) = u
(

argmax
x

[
ga,b (u(x, t))

]
, t
)
. (13)

Hence, the input for IP is a composition of the actual field input and lateral field interactions, reflecting267
recurrent components of the neural dynamics. The main advantage of this measure is that it does not alter268
the output range. If the field output activity is in the range of (0, 1), for instance, the max(·) is in that range269
too. This removes the need for an additional processing step of input normalization and parameter tuning.270

Two alternative definitions would be the integrated (i.e. summed) or the mean of the field output activity.271
In contrast to the maximum, these are sensitive to the particular parametrisation of the recurrent lateral272
interaction kernel (i.e. the peak size) with respect to the DNF size. Hence, both of these alternative measures273
require a tuning of the target distribution parameters with respect to the particular DNF parametrization274
and are therefore neglected. Moreover, choosing the integrated output activity of a DNF as field output275
would make the output distribution more sensitive to the simultaneous occurrence of multiple peaks.276

The target output distribution of y is set to the exponential distribution with mean µ, implying a sparseness277
constraint on the field output with respect to the output over time:278

T (y(t)) =
1

µ
e−

y(t)
µ . (14)

The exponential distribution is particularly suited when the DNF output is desired to be near zero for the279
majority of inputs (i.e. most of the time) and output activity is only required for a minority of the inputs.280
Furthermore the exponential is the maximum entropy probability distribution for a specified mean which is281
optimal with respect to the information transfer. Thus, an exponentially distributed DNF output corresponds282
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Figure 3. Sketch of the bias adaptation in
Eq. (16) (left) and the gain adaptation in
Eq. (15) (right) for µ = 0.2, input z(t) in
the range of [0, 1], learning rate η = 1, and
a current gain of 1.

to an optimization of the information encoding in the DNF which remains stable during changes in the283
input statistics, e.g. mean or variance.284

With these design choices, the optimization problem is equivalent to the one in (Triesch, 2005) (described285
in Sec. 2.2) and the learning rules for adapting the gain a and bias b are given by:286

∆a

∆t
=

η

a
+

∆b

∆t
z(t), (15)

∆b

∆t
= η

(
1−

(
2 +

1

µ

)
y(t) +

1

µ
y(t)2

)
. (16)

The learning rate η is set to 0.001 and µ to 0.2.287

Concerning the impact of IP on the stability of the DNF dynamics, it should be noted that IP drives the288
dynamics towards the detection instability, i.e. to the “edge of stability”. This becomes apparent, when289
inspecting the behavior of the learning equations Eq. (15) and Eq. (16), depicted in Fig. 3. It is visible,290
that for high DNF output the bias (i.e. resting level) is decreased while for low DNF output the bias is291
increased, independent of the input. While the gain adaptation depends on the bias adaptation and the292
current input, the principal “direction” of adaptation is the same as for the bias: high output with high input293
leads to a decrease of the gain, low output with high input leads to the gain increase. Hence, the parameters294
are adapted such that IP leads to the destruction of the attractor in which the system state currently is. In295
the long run, this enforces an oscillation between the two attractors (the stable fixed points a) and c) in296
Fig. 2), i.e. drives the system repeatedly through the detection instability. Therefore, IP prevents the DNF297
from operating in a self-stabilizing regime where the recurrent interaction is sufficient for maintaining the298
system output, independent of the input. A DNF with IP will operate in a regime where the system state299
regularly runs through the detection instability – driven by the input.300

The parameter adaption of IP can be significantly improved with respect to the convergence speed and301
robustness by computing the natural gradient (Sec. 2.2). Therefore, the gradient direction and amplitude302
of ∆a and ∆b is corrected by a metric tensor imposing a Riemannian structure in parameter space, i.e.303
the natural gradient is computed as described in (Neumann et al., 2013). The tensor decay parameter λ304
in Eq. (10) is set to τ

1000 where τ is the time constant of the DNF equation in Eq. (1). The regularization305
parameter ε in Eq. (8) of the tensor inversion is set to 0.0001.306

This is a provisional file, not the final typeset article 10



Strub et al. DNF with IP

4 EVALUATION

For evaluating the DNF with IP, an input time series is constructed from haptic recordings of robotic object307
manipulations conducted in Strub et al. (2014a). Two features were used from these data, the orientation of308
a contact ([0, 360 deg]) and its spatial shape on the two-dimensional tactile sensor arrays. The spatial shape309
of the contact is rated between (0, 1), dependent on how “circular” its shape is: 1 corresponds to a perfect310
circular contact shape and 0 corresponds to a sharp line on the tactile sensor. As the object manipulations311
are done with two fingers, there may be none, one, or two simultaneous contacts at every point in time312
(originating from both fingers but with opposing contact orientations). A one dimensional population code313
is generated from these two features, as depicted in Fig. 4. A population of neurons encodes the contact314
shape over the contact orientation, where the output rate of each neuron (bars in Fig. 4) signals the presence315
of a circular contact at the orientation which the neuron encodes (position along the x axis in Fig. 4). The316
neuron response is blurred with a Gaussian filter across the contact orientation dimension, depicted by317
the blue bars in Fig. 4. This population encoding of the tactile input is accordingly done for every step in318
time and the resulting time series of the recorded dataset is looped in order to present it for arbitrarily long319
periods.320

With this setup, the following cases are evaluated (an average one and three limit cases):321

1. input with average amplitudes S(x) ∈ [0, 6] for µ = 0.1 and µ = 0.2;322

2. input with low amplitudes S(x) ∈ [0, 1] (i.e. ÷6);323

3. input with high amplitudes S(x) ∈ [0, 36] (i.e. ×6);324

4. input with high offsets S(x) ∈ [−12,−6] (i.e. −12) for IP with and without natural gradient.325

These limit cases were selected, since they are quite common in situations when DNFs are driven with326
sensory inputs and lead to incorrect behavior: high amplitude input might saturate the field, whereas low327
amplitude might render the field unresponsive. Both effects can occur if input distribution is scaled or328
shifted. The goal in all these experiments is to detect the most circular contacts with the DNF, i.e. the DNF329
output should give a peak if the relative input “circularity“ is sufficient to be classified as a circular contact330
and have zero output otherwise. This classification into two classes depends on the particular distribution331
of the circularity feature.332

4.1 Varying the mean333

In the first set of experiments, the input time series S(x, t) is fed into a one-dimensional DNF with IP for334
two different means (µ = 0.1 and µ = 0.2) of the target exponential distribution. These values are in the335
range of biological neurons in the cortex, see e.g. (Barth and Poulet, 2012; Hromádka et al., 2008; Margolis336

Figure 4. Sketch of the input encoding used for evaluation of DNFs with IP,
illustrated for two tactile contacts at opposing orientations (x = 95◦ and
x = 275◦). A population of neurons encode the contact circularity over contact
orientation, with each neuron encoding a specific orientation. The corresponding
neurons representing the orientations of the tactile inputs are activated and their
response strength is related to the contact circularity of the tactile contacts (the
two black bars). The Gaussian blurring of the neuronal activation to neighboring
neurons (encoding similar orientations) is depicted in the blue bars. This population
representation of tactile inputs is done for every time step, leading to the input time
series S(x, t).
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Figure 5. Selection of the input time sequence S(x, t) and the corresponding DNF output g(u(x, t)) for converged gain and bias adaptation. Time is on
the x-axis and the one dimensional population code is on the y-axis. In the top plot the color encodes the input amplitude S(x) at the corresponding contact
orientation x (y-axis) for a point in time (x-axis). In the middle and bottom plots the color encodes the DNF output activity g(u), i.e. surface detection at the
corresponding contact orientation x (y-axis). Top: The input time series S(x) to the DNF. Middle (µ = 0.1): the DNF output for the converged IP parameters
(a = 0.65 and b = −3.5). The input-output correlation (Eq. (17)) for the shown sequence is 0.69. Bottom: The DNF output for the converged IP parameters
(a = 0.59 and b = −3.0) for µ = 0.2. The input-output correlation is 0.67.

et al., 2012). The aim here is to point out the qualitative influence of the target distribution mean on the337
DNF output.338

The recurrent interaction kernel is parametrized with: cexc = 14, σexc = 2, cinh = −7, σinh = 6 and the339
DNF is sampled at 100 points (i.e. a size of [1,100]). The setup is run with presenting the input time series340
based on recorded data in realtime (3fps) and the DNF with IP has a τ of 100ms and is updated with an341
Euler step width of 10ms. The DNF with IP is run until the parameter adaptation by IP does not change342
qualitatively, i.e. it has converged.343

A selection of the input sequence and the corresponding output sequence of the DNF in this setup344
is shown in Fig. 5. In the top row the DNF input amplitudes (i.e. intensity) S(x) is shown for contact345
orientations along the y-axis of the plot for a given point in time (x-axis). The dark regions encode high346
input amplitudes at the corresponding contact orientation (y-axis), see the colorbars on the right of the347
figure. The corresponding output of the DNF for the converged IP parameters is shown in the bottom row348
of Fig. 5.349

It is noticeable that the processing by the DNF results in a “sharpened” version of the input, where the350
structure is preserved. The IP hyper-parameter µ determines how “sensitive” the DNF is with respect to351
the input: for µ = 0.1 peaks are only generated for the highest input intensities, for a mean of µ = 0.2352
the DNF generates more peaks in time which also tend to last longer. The difference in the converged353
parameters between the two cases is a decrease of the gain a of 0.06 (-10%) and an increase of the bias b354
by 0.5 (+15%).355
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4.2 Varying the input distribution356

In the following set of experiments the impact of a sudden change in the input distribution is analyzed.357
This could result e.g. from tactile exploration of a new object with different geometry (i.e. circularity358
distribution), changes in the tactile exploration speed or strategy. For this the input sequence is presented359
for four cycles (i.e. 20 minutes in the experimental setup) in order to let the IP parameter adaptation360
converge. After the 20th minute, the input amplitude S(x) is manipulated in its variance (scaled) or its361
mean (shifted). Then the parameter adaptation by IP is analyzed for the succeeding 30 minutes. The results362
of this evaluation are shown in the Figs. 6–9.363

These figures show histograms of the unmodified input z(t) (A) as defined in Eq. (13) and the output of364
the DNF y(t) for the original input (B) defined in Eq. (12). In (C) the DNF output y(t) histogram is shown365
after learning has adapted the system to the manipulated input statistics and the experiment is stopped366
(i.e. after 50 minutes). All histograms are computed within a 5min time window. Furthermore, in (D)367
the output y(t) histogram (y axis) is plotted over time (x axis) with a 5 minutes sliding time window to368
estimate the distribution. The size of the time window was chosen such that it contains one full input period369
(approximately 5:15min with 3.33fps) representative for the input sequence. The color intensity encodes370
the occurrence of the output value during this time window, where white corresponds to no occurrence371
and black to 100+ occurrences (similar to the plots A-C). For an enhanced visualization of the output372
histogram over time in (D), it is additionally plotted on a logarithmic color scale in (E). The corresponding373
development of the gain over time is plotted in (F), and the bias in (G). The correlation of the maximum374
DNF output y(t) with the corresponding input z(t) of the DNF is shown in (H), computed for a sliding375
time window located at time step t:376

corr(t) =

t∑
i=t−l

(
z(i)− z̄

)(
y(i)− ȳ

)
√

t∑
i=t−l

(
z(i)− z̄

)2 t∑
i=t−l

(
y(i)− ȳ

)2 , (17)

z̄ =
1

l

t∑
i=t−l

z(i). (18)

The mean of the output ȳ is computed analogous to z̄ (18). The length of the time window l is set to 5min,377
just as for the computation of the sliding output histogram plots mentioned above. In the following, the378
results of the evaluation for different manipulations of the input statistics are presented.379

4.2.1 Low Amplitude380

In the first of this set of experiments, the input is down-scaled in its amplitude from a range of [0, 6] to381
[0, 1]. The results are shown in Fig. 6.382

The DNF is initialized with a bias (i.e. resting level) of -5 and a gain of 1 and has a recurrent interaction383
kernel which is kept constant for all experiments in this paper. The parameter adaption by IP results in the384
DNF output distribution shown in Fig. 6 (B) for the original input z(t). At the 20th minute the input is385
down-scaled by the factor of 6, which is too low to initiate DNF output activity. However, the gain and386
bias are adapted such that the DNF output distribution is restored within 10 minutes in the experiments. In387
particular mainly the gain is adapted, the bias remains in its regime, which is expected as the input variance388
is manipulated. In the plots (D) and (E) this drop and the recovery in the output activity y(t) is visible in the389
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Figure 6. DNF with IP for low amplitude input after the 20th minute. (A) DNF input z(t) histogram, (B) DNF output y(t) histogram after IP parameter
convergence at the 20th minute. (C) DNF output y(t) histogram at the 50th minute after the input down-scaling. (D) DNF output histogram over time, (E)
logarithmic version of (D), (F-H) gain, bias and the input-output correlation over time, respectively. See text for further description.

histogram “gap” around the 25th minute. The absence of DNF output is partly obscured, as the histogram390
is computed within a 5 minute time window and the IP parameter adaption is completed within a similar391
time frame as visible in (F) and (G).392

While the output distribution is mostly restored by IP for a down-scaled input signal, the massive drop in393
the input-output correlation in Fig. 6 (H) indicates an additional aspect of the adaption with IP. The input394
signal S(x, t) is scaled by the gain a together with the recurrent interaction kernel ω(x− x′). As the gain is395
increased in order to compensate the decrease in the input signal intensity, the recurrent interaction is also396
increased. Thus, in this case there is a shift in the relative contributions of input and recurrent “feedback” to397
the current activity state u(x, t) of the DNF. The increased relative contribution of the recurrent component398
increases the stabilization of the DNF output and thus, reduces the input output correlation. This effect is399
also visible when comparing the final output distribution for the down-scaled signal in (C) with the output400
distribution in (B) for the original input signal. In (C) there is an increase in the “high” output states near401
one and a decrease in the “medium” output activity.402

4.2.2 High Amplitude403

The second experiment with respect to varying the input statistics is analogous to the previous, except404
that the input is now scaled-up. After the initial parameter convergence to the original input signal, the405
input is scaled to [0, 36] at the 20th minute. The re-adaptation of the IP parameters is then analyzed in406
Fig. 7.407

After the up-scaling of the input S(x), the DNF output is driven into saturation for the majority of all408
inputs. This is reflected in the plots (D) and (F) in Fig. 7, where a change in the output distribution y(t) is409
visible. Like in the previous experiment, the effect is partly obscured by the temporal integration within a 5410
minute time window in order to compute the histogram. As a consequence to the input up-scaling, the gain411
is lowered (F) for an appropriate re-scaling of the input signal. Similar as in the previous case of a lowered412
input amplitude, the bias remains stable. The final output distribution in (C) and at the 50th minute in (D)413
and (E) shows that the parameter adaptation by IP is capable to retain the desired target output distribution.414
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Figure 7. DNF with IP for high amplitude input after the 20th minute. (A) DNF input z(t) histogram, (B) DNF output y(t) histogram after IP parameter
convergence at the 20th minute. (C) DNF output y(t) histogram at the 50th minute after the input up-scaling. (D) DNF output distribution over time, (E)
logarithmic version of (D), (F-H) gain, bias and the input-output correlation over time, respectively. See text for further description.

However, just as in the previous experiment, the compensation of a re-scaled input signal S(x) with the415
gain parameter shifts the relative contributions of input and recurrent interactions, in this case towards416
a higher contribution of the input signal. As the gain parameter is decreased, the recurrent interactions417
are weakened in their contribution to the DNF activation. Thus output peaks are less stabilized with418
respect to input fluctuations. This is partially visible in the input-output correlation plot (H) in Fig. 7. Here419
the correlation reaches one, implying a strongly input driven system output. This decrease of recurrent420
interactions is also visible when comparing the output distributions before (B) and after (C) the input421
up-scaling. While for the original input the IP parameters lead to a suppression of intermediate outputs,422
these are more prevalent after the input up-scaling.423

4.2.3 High Offset424

In the last experiment, the input signal S(x, t) is shifted in its mean by 12, thus from the range [0, 6]425
to [−12,−6]. In contrast to the previous two experiments, in which the input signal was scaled, this426
experiment requires an adequate adaptation of the bias only in order to compensate the input shift. This427
experiment is further utilized to illustrate the impact of the natural gradient in the gradient descent. For this,428
the experiment is carried out twice: first the IP adaptation with the natural gradient (NG) will be described429
as before and then the case of adapting IP without the NG is compared.430

In the left column in Fig. 8 the case of the adaption with NG is illustrated, analogous to the previous431
experiments. After the 20th minute the input S(x) is shifted, which leads to decreased output activity in432
the output histograms (D1) and (E1). As visible in Fig. 9 (G), the bias is adapted such that it compensates433
the shifted input signal. Although the gain is initially modified, it converges back to the previous value,434
which will be discussed in a subsequent paragraph. When comparing the DNF output distributions in (B1)435
and (C1), no difference is noticeable. This also holds for the output histograms (D1 & E1), which look the436
same at the 50th minute as before the input shift at the 20th minute.437

In contrast to the previous experiments, the gain is ultimately not adapted, such that the relative438
contributions from the input signal and recurrent interactions remain the same. The input manipulation can439
be fully compensated by the additive bias. Therefore the input-output correlation in (H) also converges440
back to the previous value.441
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Figure 8. DNF with IP and shifted input after the 20th minute with- and without the natural gradient. On the left three rows show the results for IP with natural
gradient descent. The right three rows show the results when using the gradient descent in euclidean parameter space. Shown are the input z(t) (A) and output
y(t) (B-C) histograms of the DNF. The output histograms over time (D) and (E) show the output distributions over time, computed by a sliding time window of
5 minutes. See text for further description.
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Figure 9. Parameter adaptation in a DNF with IP and shifted input after the 20th minute with- and without the natural gradient. The parameter adaptation is
shown for the gain (F) and bias (G), and the input-output correlation (z(t), y(t)) (H) is plotted. The experiment with NG is stopped after the 50th minute, the
experiment without NG is run until minute 100. See text for further description.

The decrease of the gain for inputs with high bias (i.e. shifts) is an “input variance overestimation”442
problem of the IP algorithm (Neumann et al., 2013). The input variance, i.e. the deviation of the input443
signal from zero, can be reduced by lowering the gain, thereby reducing the error of the output distribution444
with respect to the target exponential distribution. However, this is only a short term solution as for an445
increasing bias the optimal gain returns to the former value. The standard gradient descent of IP learning446
therefore drastically lowers the gain in order to increase it again when the bias has been adapted such that447
the input mean is compensated, visible in the orange graph in Fig. 9 (F). In this case the computation of the448
natural gradient, i.e. the transformation of the gradient from the Euclidean space into the Riemannian space449
prevents the reduction of the gain to nearly zero and only leads to a slight input variance overestimation,450
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visible in the de- and increase of the gain around the 25th minute, shown in the blue graph in (F). At451
this point in time the bias reaches a regime in which the input leads DNF output and the gain starts to452
converge back to the previous value. Thus, in this experiment the impact of the change of the gradient453
metric on the gradient direction is directly visible, as the adaptation of the gain in a “wrong” direction is454
reduced, compared to the adaptation without NG in (F). Although the two learning algorithms have the455
same learning rate of η = 0.001, the learning with NG is much faster. This is in particular visible when456
comparing the parameter adaptations in Fig. 9 (F) and (G), but also when looking at the output histograms457
in Fig. 8 (D2) and (E2). Note, that in the output distribution plotted in Fig. 8 (C2) the parameter adaptation458
by IP has not converged yet. Altogether, the use of the NG leads to a significantly faster convergence with459
less fluctuations in the parameter adaptation.460

5 DISCUSSION

In this paper, the adaptation of dynamic neural fields by intrinsic plasticity is proposed, analogous to IP in461
single neuron models. The core idea behind our approach is, first, to define scalar measures of the input and462
output of the whole DNF. Here, the maximum output and the input at the corresponding location on the463
feature dimension are chosen. Second, a target distribution of the DNF output measure is defined, which464
determines the statistics of the output. Since we selected the maximum output as the output measure, the465
target distribution in our case characterizes the distribution of “peak”, i.e. detection, vs. “no peak”, i.e.466
non-detection, states. In this paper, the exponential distribution is chosen, analogous to the conventional IP467
learning in single neurons. However, the proposed approach is not limited to the exponential distribution,468
other target distributions as e.g. the Gaussian may be used. The choice of this target distribution for IP will469
shape the overall dynamics of the DNF. If the DNF output should spend more time in the activated state470
the Kumaraswamy’s double bounded distribution parameterized with a+ b = 1.0 could be an interesting471
candidate Kumaraswamy (1980).472

These design choices enable to derive learning rules for IP, which adapt the bias (i.e. resting level) and473
the gain in order to approximate the target distribution of the DNF’s output. For an appropriate kernel474
parametrization, IP ensures a highly input sensitive operating regime for the DNF dynamics, defined by the475
hyper-parameters of the target distribution. Therefore, only the DNF recurrent interaction kernel parameters476
remain to be tuned manually. This autonomous adaptation of the DNF resting level and gain is in particular477
relevant for architectures in which DNFs receive inputs with unknown distributions, but for which the478
desired output distribution is known, as in our example in the introduction, where 20% of the most circular479
contacts should be detected as being “flat surfaces”, i.e. should produce a suprathreshold activity peak.480
Furthermore, a DNF with IP is capable to compensate moderate changes in the input amplitude (i.e.481
variance) and mean – however, at the cost of a shift in the relative contributions of input and recurrent482
interactions to the DNF output. This shift in relative contributions is a clear limitation of the proposed483
approach when large changes in the variance of the input signal is expected, as revealed in the high- and484
low-samplitude experiments.485

Adaptation in our model changes a global gain and bias for the entire neuronal population, modelled by486
the DNF, in contrast to independent adaptation of a local gain and bias for every neuron in the population.487
Formulation of IP for population codes in a local, single neuron based fashion is not straight-forward: In488
population encoding, the activity of a neural field encodes the confidence that the input feature has the489
value, to which the underlying neurons are tuned, i.e. the neuron has a local receptive field in the input490
space of the DNF. It is only for a neuron that encodes relevant feature values (i.e. the input regularly falls491
within the receptive field of the neuron) that an adaptation of intrinsic excitability makes sense. In order492
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to realize an individual adaptation of gains and biases of single neurons, there needs to be an additional493
mechanism in place to adapt the receptive field position (i.e. the input weights) of each neuron, i.e. to tune494
the neuron to represent a new feature value. This would correspond to an adaptive feature resolution on the495
population level, with fovea-like effects where more neurons / representational space is used for feature496
value regions with high probability. The originally proposed algorithm of the self organizing maps (SOM)497
would be an example of such a receptive field tuning of a DNF (Kohonen, 1982). The problem here is the498
strong dependence on stochastic, uncorrelated input required for training and maintaining the SOM, which499
renders the SOM algorithm inapplicable for highly correlated in time inputs. This motivates the tuning of500
global parameters for the entire population.501

There is also a motivation from the biological perspective for the global adaptation based on IP. In502
addition to the plasticity of excitability in individual neurons and their dendritic structures, accumulating503
evidence exists of neuronal mechanisms that perform a multiplicative normalization of entire populations504
of neurons (Carandini and Heeger, 2012). The existence of global, network-wide activity regulation in505
addition to single neuron and synaptic adaptations is also proposed in Slomowitz et al. (2015) based on506
recordings of cultured hippocampal networks. In particular, a coupled gain and bias adaptation among507
neuronal populations has been proposed as an explanation for results from large-scale recordings in the508
primary visual cortex (V1) (Lin et al., 2015). These biological findings additionally motivate the proposed509
implementation of IP in DNFs in this paper, based on a coupled gain and bias for an entire population of510
neurons.511

This paper also shows the limits of the adaptation by IP, in particular when the amplitude of the input signal512
(i.e. variance) is subject to strong changes. If the input amplitude declines too much, the increasing gain513
will eventually reach a regime, where the recurrent feedback self-stabilizes the DNF output – independent514
of the input. In this case the adaptation will lower the gain and bias again, leading to an on-off oscillation515
of the DNF output. This corresponds to the results by Marković and Gros (2010, 2012), where the authors516
demonstrate that IP leads to the destruction of the attractor stability, leading to oscillatory and bursting517
behavior of recurrent neural networks with no- or very small inputs.518

Despite these limitations for strong changes in the input distribution, this paper shows that the adaptation519
of DNFs with IP is feasible and can be used in applications, in which a DNF architecture is driven by520
sensory inputs whose statistics is not known in advance or may change over time. Examples of such521
applications could be, e.g., color vision at varying illumination, or auditory perception with different levels522
of background noise. The benefit of this adaptation is that it simplifies tuning and allows application of523
DNFs to inputs whose distribution is only roughly known (e.g. in terms of the min and max values) while the524
desired distribution of DNF output can be specified in advance. In such cases, the definition of a recurrent525
interaction kernel and a desired output distribution with its hyper-parameter(s) drive self-adaptation of the526
DNF1.527
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