
Fine-tuning Deep Reinforcement Learning Policies with r-STDP
for Domain Adaptation

Mahmoud Akl
mahmoud.akl@tum.de

Technical University Munich
Munich, Germany

Yulia Sandamirskaya
yulia.sandamirskaya@intel.com

Intel Labs
Munich, Germany

Deniz Ergene
deniz.ergene@tum.de

Technical University Munich
Munich, Germany

Florian Walter
florian.walter@tum.de

Technical University Munich
Munich, Germany

Alois Knoll
knoll@in.tum.de

Technical University Munich
Munich, Germany

ABSTRACT
Using deep reinforcement learning policies that are trained in simu-
lation on real robotic platforms requires fine-tuning due to discrep-
ancies between simulated and real environments. Multiple methods
like domain randomization and system identification have been
suggested to overcome this problem. However, sim-to-real trans-
fer remains an open problem in robotics and deep reinforcement
learning. In this paper, we present a spiking neural network (SNN)
alternative for dealing with the sim-to-real problem. In particular,
we train SNNs with backpropagation using surrogate gradients and
the (Deep Q-Network) DQN algorithm to solve two classical con-
trol reinforcement learning tasks. The performance of the trained
DQNs degrades when evaluated on randomized versions of the
environments used during training. To compensate for the drop in
performance, we apply the biologically plausible reward-modulated
spike timing dependent plasticity (r-STDP) learning rule. Our re-
sults show that r-STDP can be successfully utilized to restore the
network’s ability to solve the task. Furthermore, since r-STDP can
be directly implemented on neuromorphic hardware, we believe
it provides a promising neuromorphic solution to the sim-to-real
problem.

CCS CONCEPTS
• Computer systems organization → Robotics; • Computing
methodologies→ Reinforcement learning.

KEYWORDS
reinforcement learning, neural networks, spiking neural networks

ACM Reference Format:
MahmoudAkl, Yulia Sandamirskaya, Deniz Ergene, FlorianWalter, andAlois
Knoll. 2022. Fine-tuning Deep Reinforcement Learning Policies with r-STDP

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICONS 2022, July 27–29, 2022, Knoxville, TN, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9789-6/22/07. . . $15.00
https://doi.org/10.1145/3546790.3546804

for Domain Adaptation. In International Conference on Neuromorphic Sys-
tems (ICONS 2022), July 27–29, 2022, Knoxville, TN, USA. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3546790.3546804

1 INTRODUCTION
Deep Reinforcement Learning (DRL) has been gaining a lot of trac-
tion for learning control policies in the field of robotics that allows
agents to solve complex tasks. It combines advancements from
Deep Learning with ideas on learning from rewards developed in
the field of Reinforcement Learning (RL) [36]. Over the past few
years, multiple works demonstrated how DRL algorithms can be
utilized to solve object manipulation [33, 50], navigation [42, 49],
and locomotion tasks [13, 20].
While training DRL agents on real robotic platforms has been ex-
plored [21], using simulators to train agents is the preferred method
as they offer multiple advantages over training on real robots. For
example, simulators can run faster than real time, can be paral-
lelized given enough computational resources, and are safer and
more cost effective [12]. To that end, there has been an increasing
number of robot learning simulators and frameworks connecting
different physics simulators and RL frameworks in the past few
years [7, 9, 10, 24].
However, transferring a policy that was trained in simulation to the
real world is usually challenging due to mismatches between simu-
lated and real environments, also known as the simulation-to-reality
gap [46]. Differences between simulation and reality manifest in
actuation due to inaccuracies of the physical parameters of the
models, and in sensing due to differences between real and ren-
dered images for example. To overcome this gap, multiple methods
have been suggested [48]. Among the suggested methods is domain
adaptation, which is a sub-domain of transfer learning, and has
been applied to robotic sim-to-real transfer scenarios [4, 41].
In this work, we consider a spiking neural network (SNN) and
reward-modulated synaptic time-dependent plasticity (r-STDP) for
domain adaptation. SNNs have been studied as a possible energy
efficient and biologically plausible alternative to artificial neural
networks (ANNs) [23]. Recently, gradient based learning in SNNs
was made possible through the introduction of gradient approxima-
tion techniques [15, 28, 34]. Since then, the information processing
performance of SNNs is constantly improving. In the supervised
learning domain, for example, SNNs almost match ANNs image clas-
sification performance measured on popular benchmark datasets

https://doi.org/10.1145/3546790.3546804
https://doi.org/10.1145/3546790.3546804

ICONS 2022, July 27–29, 2022, Knoxville, TN, USA Akl et al.

[19, 43, 47]. Also in the reinforcement learning domain, it was
shown that SNNs can be directly trained with backpropagation
and state-of-the-art DRL algorithms to solve robot navigation tasks
and OpenAI Gym benchmark environments [1, 38, 39], while other
works focused on converting ANN DRL policies to SNNs [30, 37].
In a previous work [1], we trained quantized SNNs with the DQN
algorithm to solve the CartPole-v0 and Acrobot-v1 environments
from OpenAI gym, and were able to port them on Intel’s neuro-
morphic research chip Loihi [8] without loss in performance. We
noticed, however, that the networks’ performance degrades when
evaluated with modified environment parameters. Here, we expand
on our previous work by utilizing local onchip plasticity mecha-
nism r-STDP to adapt the backpropagation-trained networks to
environments with parameter variations.
Our study shows that r-STDP fine-tuning of the weights acquired
through training by backpropagation improves the network’s per-
formance when subjected to perturbations. Since using SNNs for
RL tasks and robotics is gaining increasing popularity, the need
for a neuromorphic sim-to-real solution is inevitable. We believe
that online three-factor learning rules like r-STDP implemented on
neuromorphic hardware can be used to address the transfer of SNN
policies trained in simulation to real robots.

2 METHODS
In this section, we describe the overall experimental setup, the
details of the environments we ran the experiments on, the training
details of the spiking DQNs, and the r-STDP formulation used in
our experiments.

2.1 Experimental Setup
We conducted our experiments on two classical control environ-
ments from OpenAI Gym [5]: CartPole-v0 and Acrobot-v1. These
environments were chosen because of their discrete action spaces,
which are required for the SNN-based implementation of the DQN
algorithm [26] that we consider in this paper. Unlike vision-based
tasks, they moreover do not require complex processing of the input
signals. After training, we evaluate the Deep Spiking Q-Networks
(DSQNs) on 100 randomly initialized environments with the same
environment’s parameters used during training. This evaluation
measures the trained networks’ performance and serves as a base-
line for future experiments on randomized environments.
We then measure the DSQN’s performance on randomized environ-
ments with the same initialization as before, to be able to compare
the results. We created two types of random environments, one
where only one physical parameter is modified (e.g. changing the
pole’s length in CartPole), and one where multiple physical param-
eters are modified simultaneously (e.g. changing the pole’s length,
the pole’s mass and the force magnitude in CartPole). When modify-
ing multiple parameters simultaneously, we sample the parameters’
values from a uniform distribution. Inspired by a previous work on
generalization in RL [29], we defined two ranges: one for "random
normal" and one for "random extreme" environments. The details
of the random environments are listed in Table 2.
When measuring the DSQNs’ performance on randomized environ-
ments, we notice a degradation of performance which we discussed
in our previous work [1]. In order to adapt the network to the new

Figure 1: Overview of the experimental setup. SNNs are
trained with backpropagation to solve OpenAI Gym envi-
ronments. After training, r-STDP is applied to the connec-
tions between hidden layers 1 and 2 to adapt the network to
changes in the environment.

environment, we apply r-STDP to the synapses connecting hidden
layers one and two, as shown in Figure 1.

2.2 Environments
Here we provide a brief overview of the environments used in our
experiments, highlighting the observations, actions and rewards
for each environment. Additionally, we explain which environment
parameters are randomized. The default values for those parameters
as well as the ranges for random normal and random extreme
environments are shown in Table 2.

2.2.1 CartPole. The CartPole problem is a classic problem in the
reinforcement learning literature [2] and has been used in previous
works on generalization in RL [44]. It consists of an un-actuated
rigid pole hinged to a cart which can move left and right on a one-
dimensional track. The pole is free to move only in the plane vertical
to the cart and track, and the task is to keep it balanced by applying
a force of +1 or -1 to the cart. At each time step, the agent is given
four observations from the environment: the cart’s position, the
cart’s velocity, the pole’s angle, and the pole’s velocity. The agent
receives a reward of +1 for every time step that the pole remains
upright. The maximum possible reward an agent can achieve is 200.
An episode is terminated when the pole falls beyond 15 degrees
from the vertical, or when the maximum time step 200 is reached.
Three environment parameters can be modified: the pole’s length,
the pole’s mass, and the force magnitude.

2.2.2 Acrobot. The Acrobot problem is also a classic reinforce-
ment learning problem [35]. It consists of a two-link robot, with
an actuated joint between the two links. The task is to swing up
the lower link to reach a certain height as fast as possible. At each
time step, the agent is given six observations from the environment:
(cos(θ1), sin(θ1), cos(θ2), sin(θ2), Ûθ1, Ûθ2), where θ1 and θ2 are the
joints’ angles, and chooses to either apply a positive, negative, or
no torque on the joint between the two links. The agent receives a
reward of -1 for each time step. An episode is terminated when the
lower link reaches the required height, or when the maximum time
step 500 is reached. Acrobot has no defined maximum achievable

Fine-tuning Deep Reinforcement Learning Policies with r-STDP for Domain Adaptation ICONS 2022, July 27–29, 2022, Knoxville, TN, USA

reward, since how fast swinging the link up to the target height de-
pends on the initial configuration. Three environment parameters
can be modified: the links’ length, the links’ mass and the links’
moment of inertia. In the default environment, both links share the
same parameters, and we kept that constraint for the randomized
environments.

2.3 Training SNNs with the DQN algorithm
To train the networks in the experiments described in this paper, we
used the surrogate gradient approach to utilize the backpropagation
algorithm. All networks were trained with the SpyTorch framework
[45], in which the neuronal dynamics are described by:

vi (t) = βvi (t − 1) + ui (t − 1), (1)

where vi (t) is the membrane potential at time t , β ∈ [0, 1] is the
membrane potential decay factor, and ui (t) is the input current at
time t , in turn described by the equation:

ui (t) = αui (t − 1) +
∑
j
wi jsj (t), (2)

whereα ∈ [0, 1] is the current decay factor,wi j are synaptic weights,
and sj (t) is a binary function, representing the emission of a spike
from neuron j.
As in our previous work [1], we inject the weighted sum of the
real-valued observations as current in the first hidden layer. How-
ever, we apply a two-neuron transformation to the observations
before calculating the weighted sum, in which each observation
value is assigned two mutually exclusive input neurons, one repre-
senting positive, and the other representing negative values. The
two-neuron encoding method was first introduced in [31], and we
found that it has stabilizing effects on surrogate gradient based
training.
To read out the Q-values, we removed the spiking mechanism from
the output layer, i.e. incoming spikes depolarize the output neu-
rons, but the threshold is set to infinity so that the neurons never
spike. We then read the membrane potential values of the output
neurons as the Q-values. After that the network state is reset, i.e. all
membrane potentials and synaptic currents are set to zero before
feeding in a new observation.

2.4 r-STDP
STDP is a Hebbian-like learning rule [6]. The strength of synapses
is adapted according to the timing of pre- and postsynaptic spikes:

∆t = ti − tj ,

W (∆t) =

{
A+ e(−

∆t
τ+), if ∆t > 0

−A− e(
∆t
τ−), if ∆t < 0

∆wi j =
∑
ti

∑
tj

W (∆t),

(3)

where tj and ti are the times of pre- and postsynaptic spikes,A+ and
A− are constants for potentiation and depression, and τ+ and τ−
are the time constants for the STDP update windows. The change
in the synaptic weight ∆wi j is calculated as the sum of function
W (∆t) over all pre- and postsynaptic spikes.
While STDP correlates spike times in short time frames, it does
not account for the association of events over longer timescales.

However, this is important for many use-cases, e.g. distal reward
problems. One approach to tackle this problem is r-STDP [11, 16].
It is a three-factor learning rule, i.e. besides two hebbian factors
(pre- and postsynaptic spike-times), it uses a third factor to trigger
changes in synaptic strength [18]. In r-STDP, the co-activation of
pre- and postsynaptic neurons modifies an eligibility trace. This
trace is multiplied by a third signal, the reward, to calculate the
change in synaptic strength at a later timestep.
Therefore, two traces k+i j and k−i j are computed at each timestep.
They encode the amount and recency of pre- and postsynaptic
spikes, respectively:

k+i j (t + 1) = k
+
i j (t) e

(
− 1
τ+

)
+ sj (t) (4)

k−i j (t + 1) = k
−
i j (t) e

(− 1
τ−) + si (t), (5)

The values k+i j (t) and k
−
i j (t) are used to modify the eligibility trace:

∆ci j (t) = −
ci j (t)

τ c
+ (A+ k+i j (t) si (t) −A− k−i j (t) sj (t))C

ci j (t + 1) = ci j (t) + ∆ci j (t),
(6)

where ci j (t) denotes the value of the eligibility trace at timestep
t , τ c is the time constant for the trace’s decay, and C is a constant.
Note that presynaptic spikes increment k+i j , but k

+
i j is added to ci j (t)

upon the occurrence of postsynaptic spikes. The inverse is true for
k−i j . Furthermore, even though we reset the network state after
every inference step, we maintain the value of the eligibility trace
(see Figure 2). This way, we can use the value of the eligibility trace
when an episode terminates to update the weights. The change in
synaptic strength is then calculated as:

∆wi j = r (t) · ci j (t), (7)

where r (t) is the value of the reward signal at timestep t .
To apply r-STDP, we evaluate the DSQNmodels trained on CartPole-
v0 and Acrobot-v1 on a randomized version of the environment.
Upon episode termination, weight updates are applied according
to equation 7. For that, we defined custom reward functions based
on each environment’s default reward such that the magnitude of
the weight updates is inversely proportional to the model’s perfor-
mance. We defined the reward function for CartPole-v0 to be:

rcar tpole = 1 −
reward

max_reward
(8)

wheremax_reward is the maximum possible reward and is equal
to 200. This reward formulation for CartPole-v0 restricts weight
updates when the model performs well. For Acrobot-v1, we had to
define the reward function differently since the maximum possible
reward is not defined. Only the minimum possible reward is known,
which is the maximum number of time steps in an episode and is
set to 500. We defined the reward function for Acrobot-v1 to be:

racrobot =
reward − 50
min_reward

(9)

This reward definition for Acrobot-v1 also ensures that good-performing
agents will have negligible weight updates. Additional non-linear
modifications of the reward were not considered in order to stay
close to the original rewards returned by the environments.

ICONS 2022, July 27–29, 2022, Knoxville, TN, USA Akl et al.

Figure 2: Evolution of the eligibility trace in one synaptic
connection during one CartPole-v0 episode. Horizontal axis:
the number of timesteps of the episode (200) multiplied by
the network simulation time for each observation (8). The
eligibility trace is persistent, even though the network state
(membrane potentials, synaptic currents, and spikes) is reset
every 8 timesteps.

Table 1: SNN parameters. Membrane parameters used dur-
ing DQN training (top), and r-STDP parameters used during
fine-tuning (bottom).

Hyperparameter Cartpole-v0 Acrobot-v1

α 0.8 0.8
β 0.8 0.8
threshold 0.5 1.0
simulation time 8 3
network architecture [8, 64, 64, 2] [12, 256, 256 ,3]
A+ w>0 w>0
A− |w<0 | |w<0 |
τ+/− 5 30
τ c 10 10
C 0.01 0.05

3 EXPERIMENTS AND RESULTS
For each environment we trained three spiking DSQN models with
the methods described in 2.3. The membrane parameters used for
both experiments are listed in Table 1. We used slightly different
membrane parameters than in our previous work [1], as we found
that those parameters lead to faster and more stable learning. After
training, we conducted two types of experiments on random envi-
ronments. We fixed 100 random seeds for the test environments to
able to conduct all experiments on the same initial conditions.
In a first set of experiments, we modified only one parameter in
the environment at a time. When modifying the value of an envi-
ronment’s parameter, we can either increase or decrease its value.
In our experiments, we chose to increase all the parameters’ val-
ues, except for the force magnitude in CartPole. We observed that
DSQNs perform worse when the force magnitude is decreased than
when it is increased, which makes restoring the performance with
r-STDP more challenging.
Overall, we observed that the DSQN performance is inversely

proportional to the degree of randomness in the environment (see
Figure 3). However, we chose the range of randomness for each
parameter separately, as we observed that varying each parameter
has different effects on the performance of the DSQN. For example,
when increasing the pole’s length in CartPole, we chose the range
[10% - 100%]. However, applying the same range to the pole’s mass
did only have negligible effects on the network’s performance. This
is why we defined the range for the pole’s mass increase to be
[500% - 1100%]. Furthermore, we found that there is an upper limit
for randomness, beyond which the DSQN performance collapses.
For example, increasing the pole’s mass in CartPole beyond 1100%
makes the pole fall right away and renders the problem no longer
solvable. The same behavior was observed when decreasing the
force magnitude. The DSQN looses more than 60% of its perfor-
mance when decreasing the force magnitude below 80%. This is
also why we defined the range for the decrease in force magnitude
to be [10% - 80%].
To compensate for the drop in performance, we apply r-STDP to
the synapses connecting neurons in hidden layers one and two
with the methods described in 2.4. We use a different set of random
seeds during r-STDP training. To apply r-STDP, we evaluate the
DSQN on the randomized environment for one episode, and only
apply weight changes after an episode ends. The magnitude of the
weight change depends on the value of the eligibility trace at the
end of the episode (see Figure 2), as well as on the value of the
reward achieved (see equations 8 and 9), and is applied according
to equation 7. After each r-STDP training episode, we measure
the performance of the new weights on the initial 100 randomized
environments used for evaluation. We repeat this process for 250
episodes and keep the weights that achieved the highest reward on
the evaluation environments. This is analogous to measuring accu-
racy on a validation set after completing an epoch in supervised
learning, and performing early stopping [32]. The parameters we
used for r-STDP are listed in Table 1. Since we are conducting the
experiments using three DSQN models, we set the values for A+
and A− for each DSQN model separately as we saw variations in
mean weight values for the trained DSQNs. This allows the r-STDP
induced weight change to be proportional to the existing weight
values acquired through backpropagation. We set A+ to the mean
value of the positive weights, and A− to the absolute value of the
mean of the negative weights.
The top panels in Figure 3 show the difference in performance
before and after applying r-STDP on randomized environments.
The CartPole results show that the drop in performance can be
restored for each parameter within the specified range of random-
ness. The Acrobot results show that r-STDP always improves the
DSQN performance, yet not fully restore the DSQN performance
to that on the not modified environments. The performance on
non-randomized environments can be seen on the blue bars in Fig-
ure 4. The Acrobot problem is inherently different than CartPole. In
CartPole, the maximum reward (200) is known and achievable after
modifying the parameters to a certain extent. Acrobot, on the other
hand, does not have an established maximum possible reward and
the maximal reward heavily depends on the initial configuration.
Additionally, modifying the environment’s parameters affects the
number of time steps required to lift the lower link to the target
height. To highlight the difference parameter modification has on

Fine-tuning Deep Reinforcement Learning Policies with r-STDP for Domain Adaptation ICONS 2022, July 27–29, 2022, Knoxville, TN, USA

(a)

(b)

Figure 3: r-STDP results on single parameter variation for CartPole (a) and Acrobot (b). Top panels show the performance of
the trained DSQN on the randomized environment (in red) vs. the performance of the DSQN after applying r-STDP (in green)
measured over three different DQN models. The dots indicate the mean value of the rewards measured for three models,
each on 100 randomly initialized environments with fixed random seeds. Bottom panels show the average number of r-STDP
episodes required to reach the best reward. All error bars represent the standard deviation.

each environment, we trained DSQNs to solve CartPole-v0 and
Acrobot-v1 with 50% and 100% pole and link lengths increase. The
training curves can be seen in Figure 5. They show that DSQNs
achieve the same reward on CartPole-v0 with different pole lengths,
while the same parameter modifications in Acrobot-v1 yield differ-
ent reward values. This distinction between both environments is
important when interpreting the results.
The lower panels in Figure 3 show the average number of episodes
required to reach the best r-STDP result. In some experiments we
see that the number of episodes decreases as we increase the degree
of randomness. This is because for smaller degrees of randomness,
the DSQN’s drop in performance is not considerable. This means
that during r-STDP training, the agent will perform well on many
episodes, which will result in either no or negligible weight updates.

Consequently, r-STDP training might require more episodes, until
it encounters an episode in which the agent does not perform well.
In a second set of experiments, we modified all the environments’
physical parameters at once. The values for the random parameters
were sampled uniformly from the ranges defined in Table 2. The
classification of “random normal” and “random extreme” environ-
ments, as well as the range of values is inspired by a previous work
on generalization in RL [29]. We sampled 10 sets of random nor-
mal and 10 sets of random extreme values for each environment.
We then measured the performance of the DSQN on 100 random-
ized environments for each random setting using the same fixed
random seeds, and applied r-STDP to compensate for the drop in
performance. Figure 4 shows the results of the multiple parame-
ter randomization experiment. For the random normal CartPole

ICONS 2022, July 27–29, 2022, Knoxville, TN, USA Akl et al.

(a) (b)

Figure 4: r-STDP results on multiple parameter variation for CartPole-v0 and Acrobot-v1. The results are averaged over 3000
runs (3 DQN models x 10 random environments x 100 environment initializations). The values for the parameters in the
randomnormal and random extreme environments were drawn from a uniform distribution, the details of which are specified
in Table 2. All error bars represent the standard deviation.

Table 2: Random normal (R) and random extreme (E) en-
vironment parameter ranges, and default parameter values
(D) for CartPole (top) and Acrobot (bottom)

Parameter D R E

Force 10 [5, 15] [1, 5] ∪ [15, 20]
Length 0.5 [0.25, 0.75] [0.05, 0.25] ∪ [0.75, 1.0]
Mass 0.1 [0.05, 0.5] [0.01, 0.05] ∪ [0.5, 1.0]
Length 1 [0.75, 1.25] [0.5, 0.75] ∪ [1.25, 1.5]
Mass 1 [0.75, 1.25] [0.5, 0.75] ∪ [1.25, 1.5]
MOI 1 [0.75, 1.25] [0.5, 0.75] ∪ [1.25, 1.5]

experiment, the drop in performance was 5.47% and was reduced
to 0.401% after applying r-STDP. In accordance with the previous
results, the performance drop in the random extreme environments
was higher and reached 19.28% and was reduced to 2.05% after ap-
plying r-STDP. Similarly, the random normal Acrobot experiment
showed 5.34% drop in performance. After applying r-STDP, the
reward received on the 100 evaluation environments surpassed that
of the normal, non-randomized environments (-88.2 vs. -91.22). The
random extreme acrobot environments showed a 11.4% drop in
performance. After applying r-STDP, the evaluation on the random-
ized environments also surpassed that on the normal environments
(-86.90 vs. -91.22).
Unlike the single parameter modification experiments, random nor-
mal and random extreme environments end up with a combination
of modified parameters. Some of which with an increased while
others with a decreased value. Similar to the Acrobot-v1 training
results shown in Figure 5 that show how increasing the link lengths
results in lower rewards, decreasing the values of some parameters
has the opposite effect. For example, decreasing the value of the

Table 3: Significance values of multiple parameter variation
experiments. P-values are calculated based on the depen-
dent t-test for paired samples.

Environment Random Normal Random Extreme
CartPole-v0 t=-22.16, p<.001 t=-35.71, p<.001
Acrobot-v1 t=-10.13, p<.001 t=-11.97, p<.001

links’ length or mass will result in higher rewards than that on nor-
mal environments. Therefore, surpassing the normal environment
reward after r-STDP fine tuning in the Acrobot-v1 problem is pos-
sible, depending on the sampled random environment parameters.
Following the recommendations from [14], we ran a statistical
analysis on the results of the multiple parameter variation experi-
ments. But we used the dependent t-test for paired samples since it
better suits our type of experiments. The p-values for cartpole and
acrobot on the random normal and random extreme environments
are listed in table 3.

4 DISCUSSION AND CONCLUSION
Local learning rules like r-STDP have been applied in previous
works to solve reinforcement learning [3, 22, 40] as well as super-
vised learning tasks [17, 27]. In this work, however, we propose
r-STDP as a fine-tuning method for adapting DRL policies that
were trained with backpropagation for environment variations. The
method presented in this paper can be applied to directly trained
SNNs, or to SNNs that were converted from ANNs. Additionally,
this method is agnostic to the DRL algorithm used during training,
and should be applicable to continuous control problems as well.
Our results on experiments with single parameter as well as multi-
ple parameter variations reveal that r-STDP can help correct the
behavior of the trainedmodel after parameter change, depending on

Fine-tuning Deep Reinforcement Learning Policies with r-STDP for Domain Adaptation ICONS 2022, July 27–29, 2022, Knoxville, TN, USA

(a) (b)

Figure 5: DSQN training curves with different pole and link lengths for Cartpole-v0 (a) and Acrobot-v1 (b), respectively. DSQNs
achieve the same reward on CartPole-v0 with different pole lengths, while modifying the links’ lengths in Acrobot-v1 yields
different reward values. Solid lines are smoothed rewards (window size of 100 episodes) averaged over three runs with random
initialization seeds. Shaded areas show the standard deviation.

the nature of dependence of the reward function on the parameter
change. If this dependence is monotonic, r-STDP in a single layer
restores the behavior to that of the non-modified environment. If
this dependence is more complex, it can only partially improve the
behavior. Our chosen encoding and decoding methods restricted
the application of r-STDP to the synapses connecting hidden layers
one and two, since our input and output layers do not produce any
spiking activity (see Figure 1). Even though applying r-STDP to
those synaptic connections was sufficient to improve the network’s
performance on randomized environments, we believe that extend-
ing the application of r-STDP to other layers might improve the
sampling efficiency. Further studies on what kind of local learning
rule (and in how many layers) can deal with which complexity
of the environment change and reward function dependence are
required. Furthermore, we observed that fine-tuning with r-STDP
is sensitive to the hyperparameters like eligibility trace time con-
stant, amplitudes of weight change for facilitation and depression,
and the time constant of the STDP time window. We found that
the r-STDP parameters listed in Table 1 worked well for two dif-
ferent models with different membrane parameters. However, we
conclude that an extensive hyperparameter search on the STDP
parameters as well as the investigation of the dependency of the
r-STDP parameters on the membrane parameters (for example a
higher SNN simulation time might require larger time constants)
could lead to better sample efficiency in neuromorphic fine-tuning
of DRL policies.
Since such three-factor learning rules are available on neuromor-
phic devices [8, 25], we believe that combining backpropagation-
based offline training with r-STDP online fine-tuning can provide a
promising research direction for neuromorphic sim-to-real transfer,
and could potentially open the door for more neuromorphic robotic
applications.

ACKNOWLEDGMENTS
This research has received funding from the European Union’s
Horizon 2020 Framework Programme for Research and Innovation
under the Specific Grant Agreement No. 945539 (Human Brain
Project SGA3).

REFERENCES
[1] Mahmoud Akl, Yulia Sandamirskaya, Florian Walter, and Alois Knoll. 2021. Port-

ing Deep Spiking Q-Networks to Neuromorphic Chip Loihi. In International
Conference on Neuromorphic Systems 2021 (Knoxville, TN, USA) (ICONS 2021).
Association for Computing Machinery, New York, NY, USA, Article 13, 7 pages.
https://doi.org/10.1145/3477145.3477159

[2] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. 1983. Neu-
ronlike adaptive elements that can solve difficult learning control problems.
IEEE Transactions on Systems, Man, and Cybernetics SMC-13, 5 (1983), 834–846.
https://doi.org/10.1109/TSMC.1983.6313077

[3] Zhenshan Bing, Claus Meschede, Kai Huang, Guang Chen, Florian Rohrbein,
Mahmoud Akl, and Alois Knoll. 2018. End to End Learning of Spiking Neural
Network Based on R-STDP for a Lane Keeping Vehicle. In 2018 IEEE International
Conference on Robotics and Automation (ICRA). 4725–4732. https://doi.org/10.
1109/ICRA.2018.8460482

[4] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kel-
cey, Mrinal Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Kono-
lige, Sergey Levine, and Vincent Vanhoucke. 2018. Using Simulation and Do-
main Adaptation to Improve Efficiency of Deep Robotic Grasping. In 2018
IEEE International Conference on Robotics and Automation (ICRA). 4243–4250.
https://doi.org/10.1109/ICRA.2018.8460875

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[6] Natalia Caporale and Yang Dan. 2008. Spike Timing–Dependent Plasticity: A
Hebbian Learning Rule. Annual Review of Neuroscience 31, 1 (July 2008), 25–46.
https://doi.org/10.1146/annurev.neuro.31.060407.125639

[7] Erwin Coumans and Yunfei Bai. 2016–2021. PyBullet, a Pythonmodule for physics
simulation for games, robotics and machine learning. http://pybullet.org.

[8] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
Yuyun Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty,
Steven McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkataramanan,
Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang. 2018. Loihi: A
Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 38, 1
(2018), 82–99. https://doi.org/10.1109/MM.2018.112130359

https://doi.org/10.1145/3477145.3477159
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1109/ICRA.2018.8460482
https://doi.org/10.1109/ICRA.2018.8460482
https://doi.org/10.1109/ICRA.2018.8460875
https://doi.org/10.1146/annurev.neuro.31.060407.125639
http://pybullet.org
https://doi.org/10.1109/MM.2018.112130359

ICONS 2022, July 27–29, 2022, Knoxville, TN, USA Akl et al.

[9] Egidio Falotico, Lorenzo Vannucci, Alessandro Ambrosano, Ugo Albanese, Ste-
fan Ulbrich, Juan Camilo Vasquez Tieck, Georg Hinkel, Jacques Kaiser, Igor
Peric, Oliver Denninger, et al. 2017. Connecting artificial brains to robots in a
comprehensive simulation framework: the neurorobotics platform. Frontiers in
Neurorobotics 11 (2017), 2. https://doi.org/10.3389/fnbot.2017.00002

[10] Linxi Fan, Yuke Zhu, Jiren Zhu, Zihua Liu, Orien Zeng, Anchit Gupta, Joan
Creus-Costa, Silvio Savarese, and Li Fei-Fei. 2018. SURREAL: Open-Source
Reinforcement Learning Framework and Robot Manipulation Benchmark. In
Proceedings of The 2nd Conference on Robot Learning (Proceedings of Machine
Learning Research, Vol. 87). PMLR, 767–782.

[11] Răzvan V. Florian. 2007. Reinforcement Learning Through Modulation of Spike-
Timing-Dependent Synaptic Plasticity. Neural Computation 19, 6 (June 2007),
1468–1502. https://doi.org/10.1162/neco.2007.19.6.1468 Conference Name: Neu-
ral Computation.

[12] Javier García, Fern, and o Fernández. 2015. A Comprehensive Survey on Safe
Reinforcement Learning. Journal of Machine Learning Research 16, 42 (2015),
1437–1480. http://jmlr.org/papers/v16/garcia15a.html

[13] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey
Levine. 2019. Learning to Walk Via Deep Reinforcement Learning. https:
//doi.org/10.15607/RSS.2019.XV.011

[14] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. 2018. Deep Reinforcement Learning That Matters. In Proceed-
ings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth
Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Sym-
posium on Educational Advances in Artificial Intelligence (New Orleans, Louisiana,
USA) (AAAI’18/IAAI’18/EAAI’18). AAAI Press, Article 392, 8 pages.

[15] Dongsung Huh and Terrence J Sejnowski. 2018. Gradient Descent for Spiking
Neural Networks. In Advances in Neural Information Processing Systems, Vol. 31.
Curran Associates, Inc.

[16] Eugene M. Izhikevich. 2007. Solving the distal reward problem through linkage
of STDP and dopamine signaling. Cerebral Cortex (New York, N.Y.: 1991) 17, 10
(Oct. 2007), 2443–2452. https://doi.org/10.1093/cercor/bhl152

[17] Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, Simon J Thorpe, and Timo-
thée Masquelier. 2018. STDP-based spiking deep convolutional neural networks
for object recognition. Neural Networks 99 (2018), 56–67.

[18] Łukasz Kuśmierz, Takuya Isomura, and Taro Toyoizumi. 2017. Learning with
three factors: modulating Hebbian plasticity with errors. Current Opinion in
Neurobiology 46 (Oct. 2017), 170–177. https://doi.org/10.1016/j.conb.2017.08.020

[19] Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srini-
vasan, and Kaushik Roy. 2020. Enabling spike-based backpropagation for training
deep neural network architectures. Frontiers in neuroscience (2020), 119.

[20] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco
Hutter. 2020. Learning quadrupedal locomotion over challenging terrain. Science
robotics 5, 47 (2020), eabc5986.

[21] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
2018. Learning hand-eye coordination for robotic grasping with deep learning
and large-scale data collection. The International journal of robotics research 37,
4-5 (2018), 421–436.

[22] Hao Lu, Junxiu Liu, Yuling Luo, Yifan Hua, Senhui Qiu, and Yongchuang Huang.
2021. An autonomous learning mobile robot using biological reward modulate
STDP. Neurocomputing 458 (2021), 308–318.

[23] Wolfgang Maass. 1997. Networks of spiking neurons: the third generation of
neural network models. Neural networks 10, 9 (1997), 1659–1671.

[24] ViktorMakoviychuk, LukaszWawrzyniak, YunrongGuo,Michelle Lu, Kier Storey,
Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and
Gavriel State. 2021. Isaac Gym: High Performance GPU Based Physics Simulation
For Robot Learning. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

[25] Mantas Mikaitis, Garibaldi Pineda García, James C Knight, and Steve B Furber.
2018. Neuromodulated synaptic plasticity on the SpiNNaker neuromorphic
system. Frontiers in neuroscience 12 (2018), 105.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[27] Milad Mozafari, Mohammad Ganjtabesh, Abbas Nowzari-Dalini, Simon J Thorpe,
and Timothée Masquelier. 2019. Bio-inspired digit recognition using reward-
modulated spike-timing-dependent plasticity in deep convolutional networks.
Pattern recognition 94 (2019), 87–95.

[28] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. 2019. Surrogate gradi-
ent learning in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Processing Magazine 36, 6
(2019), 51–63.

[29] Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun,
and Dawn Song. 2018. Assessing generalization in deep reinforcement learning.
arXiv preprint arXiv:1810.12282 (2018).

[30] Devdhar Patel, Hananel Hazan, Daniel J Saunders, Hava T Siegelmann, and
Robert Kozma. 2019. Improved robustness of reinforcement learning policies

upon conversion to spiking neuronal network platforms applied to Atari Breakout
game. Neural Networks 120 (2019), 108–115.

[31] José Antonio Pérez-Carrasco, Bo Zhao, Carmen Serrano, Begona Acha, Teresa
Serrano-Gotarredona, Shouchun Chen, and Bernabé Linares-Barranco. 2013. Map-
ping from frame-driven to frame-free event-driven vision systems by low-rate
rate coding and coincidence processing–application to feedforward ConvNets.
IEEE transactions on pattern analysis and machine intelligence 35, 11 (2013), 2706–
2719.

[32] Lutz Prechelt. 1998. Early stopping-but when? In Neural Networks: Tricks of the
trade. Springer, 55–69.

[33] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John
Schulman, Emanuel Todorov, and Sergey Levine. 2018. Learning Complex
Dexterous Manipulation with Deep Reinforcement Learning and Demonstra-
tions. In Proceedings of Robotics: Science and Systems. Pittsburgh, Pennsylvania.
https://doi.org/10.15607/RSS.2018.XIV.049

[34] Sumit B Shrestha and Garrick Orchard. 2018. Slayer: Spike layer error reassign-
ment in time. Advances in neural information processing systems 31 (2018).

[35] Richard S Sutton. 1996. Generalization in reinforcement learning: Successful
examples using sparse coarse coding. Advances in neural information processing
systems (1996), 1038–1044.

[36] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[37] Weihao Tan, Robert Kozma, and Devdhar Patel. 2022. Optimization methods for
improved efficiency and performance of Deep Q-Networks upon conversion to
neuromorphic population platforms. Knowledge-Based Systems (2022), 108257.

[38] Guangzhi Tang, Neelesh Kumar, and Konstantinos P. Michmizos. 2020. Re-
inforcement co-Learning of Deep and Spiking Neural Networks for Energy-
Efficient Mapless Navigation with Neuromorphic Hardware. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 6090–6097.
https://doi.org/10.1109/IROS45743.2020.9340948

[39] Guangzhi Tang, Neelesh Kumar, Raymond Yoo, and Konstantinos Michmizos.
2021. Deep Reinforcement Learning with Population-Coded Spiking Neural
Network for Continuous Control. In Conference on Robot Learning. PMLR, 2016–
2029.

[40] J Camilo Vasquez Tieck, Pascal Becker, Jacques Kaiser, Igor Peric, Mahmoud Akl,
Daniel Reichard, Arne Roennau, and Rüdiger Dillmann. 2019. Learning target
reaching motions with a robotic arm using brain-inspired dopamine modulated
STDP. In 2019 IEEE 18th International Conference on Cognitive Informatics &
Cognitive Computing (ICCI* CC). IEEE, 54–61.

[41] Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey
Levine, Kate Saenko, and Trevor Darrell. 2020. Adapting Deep Visuomotor Rep-
resentations with Weak Pairwise Constraints. Springer International Publishing,
Cham, 688–703. https://doi.org/10.1007/978-3-030-43089-4_44

[42] Chao Wang, Jian Wang, Yuan Shen, and Xudong Zhang. 2019. Autonomous
Navigation of UAVs in Large-Scale Complex Environments: A Deep Reinforce-
ment Learning Approach. IEEE Transactions on Vehicular Technology 68, 3 (2019),
2124–2136. https://doi.org/10.1109/TVT.2018.2890773

[43] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. 2018. Spatio-temporal
backpropagation for training high-performance spiking neural networks. Fron-
tiers in neuroscience 12 (2018), 331.

[44] Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. 2017. Preparing for the
Unknown: Learning a Universal Policy with Online System Identification. In
Proceedings of Robotics: Science and Systems. Cambridge, Massachusetts. https:
//doi.org/10.15607/RSS.2017.XIII.048

[45] Friedemann Zenke. 2019. SpyTorch. https://doi.org/10.5281/zenodo.3724018
[46] Fangyi Zhang, Jürgen Leitner, Michael Milford, Ben Upcroft, and Peter Corke.

2015. Towards vision-based deep reinforcement learning for robotic motion
control. arXiv preprint arXiv:1511.03791 (2015).

[47] Wenrui Zhang and Peng Li. 2019. Spike-train level backpropagation for training
deep recurrent spiking neural networks. Advances in neural information processing
systems 32 (2019).

[48] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. 2020. Sim-to-real
transfer in deep reinforcement learning for robotics: a survey. In 2020 IEEE
Symposium Series on Computational Intelligence (SSCI). IEEE, 737–744.

[49] Yuke Zhu, RoozbehMottaghi, Eric Kolve, Joseph J. Lim, Abhinav Gupta, Li Fei-Fei,
and Ali Farhadi. 2017. Target-driven visual navigation in indoor scenes using
deep reinforcement learning. In 2017 IEEE International Conference on Robotics
and Automation (ICRA). 3357–3364. https://doi.org/10.1109/ICRA.2017.7989381

[50] Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran
Tunyasuvunakool, JÃ¡nos KramÃ¡r, Raia Hadsell, Nando de Freitas, and Nicolas
Heess. 2018. Reinforcement and Imitation Learning for Diverse Visuomotor
Skills. In Proceedings of Robotics: Science and Systems. Pittsburgh, Pennsylvania.
https://doi.org/10.15607/RSS.2018.XIV.009

https://doi.org/10.3389/fnbot.2017.00002
https://doi.org/10.1162/neco.2007.19.6.1468
http://jmlr.org/papers/v16/garcia15a.html
https://doi.org/10.15607/RSS.2019.XV.011
https://doi.org/10.15607/RSS.2019.XV.011
https://doi.org/10.1093/cercor/bhl152
https://doi.org/10.1016/j.conb.2017.08.020
https://doi.org/10.15607/RSS.2018.XIV.049
https://doi.org/10.1109/IROS45743.2020.9340948
https://doi.org/10.1007/978-3-030-43089-4_44
https://doi.org/10.1109/TVT.2018.2890773
https://doi.org/10.15607/RSS.2017.XIII.048
https://doi.org/10.15607/RSS.2017.XIII.048
https://doi.org/10.5281/zenodo.3724018
https://doi.org/10.1109/ICRA.2017.7989381
https://doi.org/10.15607/RSS.2018.XIV.009

	Abstract
	1 Introduction
	2 Methods
	2.1 Experimental Setup
	2.2 Environments
	2.3 Training SNNs with the DQN algorithm
	2.4 r-STDP

	3 Experiments and Results
	4 Discussion and Conclusion
	Acknowledgments
	References

