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Abstract—Event based sensors and neural processing
architectures represent a promising technology for implementing
low power and low latency robotic control systems. However,
the implementation of robust and reliable control architectures
using neuromorphic devices is challenging, due to their limited
precision and variable nature of their underlying computing
elements. In this paper we demonstrate robust obstacle avoidance
and target acquisition behaviors in a compact mobile platform
controlled by a neuromorphic sensory-processing system and
validate its performance in a number of robotic experiments.

I. INTRODUCTION

Neuromorphic circuits harness some of the outstanding
properties of biological neuronal networks, such as massively
parallel distributed processing, clock-less event-based nature
of computation, and interwoven co-localized memory and
computing. These properties and the resulting speed and
efficiency of computation are particularly well-suited for
real-world robotic applications, in which large amount of
sensory information has to be processed in real time.

Along with purely digital neuromorphic approaches [1],
[2], neuromorphic processors designed using mixed signal
analog-digital neuromorphic electronic circuits combine the
energy efficiency and compact features of analog devices with
the reliability of digital processing [3], [4]. However, analog
circuits are affected by device mismatch and variability, e.g.
due to temperature changes. Therefore it is necessary to adopt
computational strategies and architectures that are tolerant to
variability, noise, and temporal fluctuations. A possible solu-
tion to this problem that appears to be employed by biological
neuronal systems lies in the use of attractor dynamics and
population dynamics. Population dynamics provide robustness
against mismatch and fluctuations in properties of neural
circuits. Similarly, attractor neural dynamics have been shown
to provide the required stability of the behaviorally relevant
states — such states of the neural network that correspond to
behavior — against sensory and neuronal noise [5], [6].

We present a proof of concept realization of these
dynamics implemented using a mixed-signal neuromorphic
processor, to process visual data sensed from a Dynamic
Vision Sensor (DVS) [7], and to produce obstacle avoidance
and target acquisition behaviors in a compact mobile robot.
The neuromorphic processor makes use of the Real-time
On-Line Learning Spiking (ROLLS) neural network chip,
originally proposed and fully characterized in [3]. The robotic
platform is a "PushBot” robot, developed by Joérg Conradt.

While similar recent attempts of using neurally inspired
controllers have been proposed to learn sensory-motor associa-
tions with robots [8], [9], to plan routes in an unknown environ-
ment [10], or to control a robotic arm [ | 1], this work represents
the first attempt to realize obstacle avoidance and target acqui-
sition behaviors on a real robot using a mixed signal analog-
digital neuromorphic device and a neuromorphic vision sensor.

II. METHODS
A. The mixed-signal neuromorphic processor chip

The ROLLS neuromorphic processor comprises 256
Adaptive-Exponential integrate and fire (AdExp IF)
silicon neurons [12], implemented using analog electronic
circuits [13]. The neurons express biologically plausible
neural dynamics including configurable refractory period,
spike frequency adaptation, and time constant of integration.
The 256 neurons on the ROLLS chip can be connected to
each other and to external signals via three sets of synapses:
each neuron has 256 programmable (non-plastic) synapses,
256 learning (plastic) synapses, and 4 auxiliary (“virtual”)
synapses. The synapse dynamics are expressed using a
current-mode Differential Pair Integrator (DPI) circuit, that
behaves as a linear filter: incoming pre-synaptic spikes
produce currents that have an amplitude proportional to the
synaptic weight and that decay with a time-constant that is
set by the DPL. The programmable and on-chip routing on
the ROLLS that supports all-to-all connectivity allows us to
implement any arbitrary neural architecture. However, the
synapses can assume only one of 4 possible synaptic weight
values, that can be programmed via a 12-bit temperature
compensated bias-generator. An extra digital circuit allows the
user to specify if the synapse is excitatory (positive weights) or
inhibitory (negative weights). Careful analog design allowed
to reduce the effect of device mismatch to an average of about
10 to 20% variability, depending on the bias settings chosen.

B. The vision sensor

The PushBot mobile robot is equipped with a DVS silicon
retina. Each pixel of the DVS reacts asynchronously to a local
change in luminance and sends out an event using the address-
event representation (AER) protocol [14]. Every event contains
the coordinates of the sending pixel (z,y), the time of event
occurrence (t), and its polarity (pol: “on-event” or “off-event”).
Due to the asynchronous sampling, the DVS is characterized
by an extreme low latency, which results in ps time resolution.
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Fig. 1: The neural architecture for obstacle avoidance and target acquisition realized on the ROLLS chip.

As the DVS detects the spatio-temporal changes in a
visual scene, a static camera only perceives moving objects.
However, on a moving robot, the DVS produces a continuous
stream of events at the objects’ boundaries, where change is
induced by the sensor motion. The fact that the DVS also emits
a fairly large amount of input-dependent noise makes the use
of this sensor particularly challenging in navigation scenarios.

C. Neuronal architecture for obstacle avoidance and target
acquisition

We designed a neural architecture that can cope with both
the DVS noise and the ROLLS devise mismatch in the same
way. Each event of the DVS is mapped onto a virtual synapse
of one of the neurons of neuronal populations on the ROLLS.
This mapping is realised on a miniature computer (“parallela”
board), used for the purpose of data logging and DVS to
ROLLS event mapping . In the longer term, this board can
be replaced by a more direct hardware interface between the
two neuromorphic devices. The neural obstacle avoidance and
target acquisition architecture is shown in Fig. 1. The figure
shows the connectivity matrix which realizes the network
architecture on the ROLLS chip, as well as a “connectionists”
scheme of the obstacle avoidance and the target acquisition
parts of the neural architecture.

1) Motor outputs of the ROLLS chip: We defined three pop-
ulations of 16 neurons each that represent three corresponding
robot commands: speed, turn left, and turn right. The speed
population receives constant input from an additional con-
stantly active population that represents the maximum speed.
Spikes from the speed population drive the forward motion of
the robot. The rurn left and turn right populations drive the
respective turning behavior of the robot. The spiking output
rates of the neural populations are transformed into robot com-
mands using a first-order low-pass filter with a sampling time
of 50 ms. Multiplied by a scaling factor, these firing rates (one
for each command population) are sent to the robot as velocity
commands. This mechanism is in principle equivalent to how,
e.g., motor neurons drive muscles in biological systems.

2) Obstacle Avoidance: We defined a group of 32 neurons
to represent obstacles in the lower half of the camera field

of view (FoV). We divided the FoV into vertical regions
(containing 4 columns of the 128x128 DVS pixels), each
region providing input to one of the obstacle neurons.
For every received DVS event in the assigned column the
respective neuron receives a spike. If enough events arrive,
the neurons start emitting spikes, thus signaling detection of
an object. To turn away from an obstacle, the first 16 neurons
representing the left half of the FoV are connected to the
turn right population and vice-versa for the other 16 neurons.
The turn-populations inhibit each other and thus implement
competitive dynamics. The decision about the driving direction
is made at this point. Furthermore, the obstacle detecting
neurons inhibit the speed population, slowing the robot down
if obstacles are present to ensure collision-free navigation.

3) Dynamic neural field for target representation: Similar
to the strategy above, we defined an edvs population of 64
neurons receiving input from the upper half of the FoV
(every neuron receiving events from 2 DVS columns). This
population filters out much of the sensory noise, since only
activity which persists over time (in contrary to the salt and
pepper noise) can activate neurons.

Every neuron in the edvs population is connected to one
neuron in a farget population of the same size. To represent
targets of the navigation dynamics, we use the principle of
Dynamic Neural Fields (DNFs) [15], which can be easily
realised in neuromorphic hardware by setting a winner-
takes-all (WTA) connectivity network: Every neuron has
excitatory connections to close neighbours while inhibiting
far off neighbours. This DNF population implements working
memory, remembering the target location in the DVS output
even if the target vanishes from sight. The target in our
experiments is a blinking LED of a second robot which is a
salient input for the DVS and simplifies the segregation from
the background (which is still non-trivial, as you will see).

4) Fine tuning: In order to achieve robust navigation,
we modulated the weights strength between the obstacle and
drive populations depending on the distance of the obstacle
from the camera mid-line. We set weights of different strength
for synapses from different obstacle neurons to the turn
populations to make the robot turn faster if an obstacle is



@
°
» ° -
[ 1

L)
2 ®
L4

4 3

DVS image

A speed

turn left
turn right

obstacle right

| obstacte left

12 13 21 22 23
time [s]

Fig. 2: Avoiding obstacles in a cluttered environment. Top:
overlay of the overhead camera frames that depict the robot’s
moving in a cluttered environment. Middle: DVS events at
three points during the experiments (the points are marked
with 1, 2, and 3 in the top pane). Green are off and blue are
on events. Bottom: Output of the obstacle, turn, and speed
populations of the ROLLS chip.

in front of the robot and slower if it is on the periphery. To
overcome the limitation of the ROLLS chip in the limited
(four) number of possible weight values, we used multiple
sets of synapses. Thus, neurons representing an obstacle in
the center project to all neurons in the turn population (16 in
total), while neurons representing obstacles on the edge have
only one connection. We use the same idea for the inhibition
of the speed population: the robot slows down more for central
than for peripheral obstacles. For target acquisition, we use an
inverted scheme: neurons representing a target in the center
have less connections since less turning is required. In this
way, convergence on the direction towards the target can be
achieved and the network effectively sets an attractor for the
robot’s heading direction on the direction towards the target.

5) Proprioception: In this work we also used the Inertia
Measurement Unit (IMU) device integrated in the eDVS
to model proprioception and saccadic suppression. We read
the measurement for angular velocity along the robots axis,
sampled every 50 ms. This measurement was used to set the
rate of stimulation for a gyro population on the ROLLS chip
(16 neurons). Because of the nature of the DVS output, a
greater number of events is produced while turning. We use
the gyro population to inhibit all populations receiving DVS
input (the obstacle and edvs populations), implementing a
mechanism analogous to saccadic suppression in mammals.

III. EXPERIMENTAL RESULTS

Figure 2 demonstrates the obstacle avoidance behavior
of the robot controlled by our neuronal architecture on the

ROLLS chip. The robot is put in an arena, in which a number
of obstacles is arbitrarily distributed. The top part of the figure
shows an overlay of camera frames from an overhead camera
that allows to follow the robot’s trajectory as it navigates in
this cluttered environment, avoiding collisions with objects and
walls. The middle part of the figure shows the output of the
DVS at three time points during this experiment (number 1,
2, and 3 in the top-view image). The DVS events are sampled
for 1500 ms to show them as one image. The neurons on the
ROLLS chip receive events from DVS pixel’s asynchronously
in real time. Note the noisy and cluttered character of the out-
put signal. The bottom plots in the figure show activity of the
obstacle, turn, and speed populations on the ROLLS chip. Note
how the speed population is inhibited when an obstacle is de-
tected, how the obstacles are represented in a spatially resolved
way by the obstacle left and obstacle right populations, and
how the turn populations are activated to a different degree de-
pending on the position of the obstacle relative to the midline.

Figure 3 demonstrates how the robot modulates the
amplitude of the obstacle avoidance maneuvre depending on
the distance of the obstacle from the midline of the DVS
frame. Here, the robot moves towards a cup, which is placed
at different distances from line that would be the robot’s
straight trajectory in the absence of the obstacle. The figure
shows that the obstacle and the turn neuronal populations are
activated stronger and for a longer time for the more central
obstacle, leading to a more pronounced avoidance maneuvre.
For a periferal obstacle, the robot only slightly changes its
trajectory. This behavior emerges from the dynamics and
connectivity of neuronal populations on the ROLLS chip and
is not “programmed” algorithmically.

Figure 4 demonstrates the target acquisition behavior of
the robot. In the presented experiment, the PushBot equipped
with the ROLLS device approaches a second PushBot with a
blinking LED. Since the upper part of the DVS FoV is used
for target acquisition, many disturbing events are perceived by
the DVS from the background objects outside the arena. The
edvs population filters our much of the noise events, whereas
the WTA connectivity of the target DNF population creates a
stable localised representation of the single most salient (the
LED) object.

IV. DISCUSSION

In this work, we presented a neuromorphic obstacle
avoidance and target acquisition architecture, realized
using low-power and low-latency event-based sensing and
processing. This architecture allows to smoothly and reliably
avoid obstacles and track the target object. We showed
how redundant synaptic connectivity between populations of
neurons can be used to cope with the low number of available
weights values in the neuromorphic hardware used and enable
to realize complex graded connectivity patterns with a limited
number of synaptic weights. We also demonstrated how we can
overcome the effects of device mismatch of the neuromorphic
hardware by redundant computation using population dynam-
ics and neuronal filtering. At the same time, the mismatch
may be beneficial in a neuronal controller, as the variability
would allows to avoid getting stuck in unstable fix-points
of the dynamics, as well as facilitate exploration behavior
in more complex scenarios. In summary we showed how
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Fig. 3: Demonstrating the graded nature of the spatial rep-
resentation of the obstacles in experiments with an object at
different distances relative to the initial heading direction of the
robot. Left: Overlays of the overhead camera images for three
different runs of the experiment. The red line marks the line of
the initial heading direction of the robot. Right: Activity of the
obstacle, drive, and speed populations of the ROLLS neurons.

our system can produce robust robotic behaviors, despite the
constrains and limitations of the neuromorphic hardware used.
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