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ABSTRACT2

Neuromorphic Very Large Scale Integration (VLSI) devices emulate the activation dynamics of3
biological neuronal networks using either mixed-signal analog/digital or purely digital electronic4
circuits. Using analog circuits in silicon to physically emulate the functionality of biological neurons5
and synapses enables faithful modelling of neural and synaptic dynamics at ultra low power6
consumption in real-time, and thus may serve as computational substrate for a new generation of7
efficient neural controllers for artificial intelligent systems. Although one of the main advantages of8
neural networks is their ability to perform on-line learning, only a small number of neuromorphic9
hardware devices implement this feature on-chip. In this work, we use a reconfigurable on-10
line learning spiking (ROLLS) neuromorphic processor chip to build a neuronal architecture for11
sequence learning. The proposed neuronal architecture uses the attractor properties of winner-12
takes-all (WTA) dynamics to cope with mismatch and noise in the ROLLS analog computing13
elements, and it uses its on-chip plasticity features to store sequences of states. We demonstrate,14
with a proof-of-concept feasibility study how this architecture can store, replay, and update15
sequences of states, induced by external inputs. Controlled by the attractor dynamics and an16
explicit destabilizing signal, the items in a sequence can last for varying amounts of time and17
thus reliable sequence learning and replay can be robustly implemented in a real sensorimotor18
system.19

Keywords: Neuromorphic engineering; on-chip learning, sequence learning; dynamic neural fields20

1 INTRODUCTION

Mixed-signal analog-digital neuromorphic Very Large Scale Integration (VLSI) systems emulate the21
biophysics of cortical neurons and synaptic connections between them using the physics of silicon electronic22
devices (Moradi et al., 2017). Computation and memory are co-localized in these systems. Furthermore,23
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as communication of signals across neurons and modules is asynchronous and data-driven, this leads to24
ultra low-power consumption and highly efficient real-time processing. While some recent neuromorphic25
hardware devices aim at speeding up the processing time of computational neuroscience simulations,26
e.g. SpiNNaker (Furber et al., 2012) or HICANN (Schemmel et al., 2010; Benjamin et al., 2014), other27
neuromorphic hardware systems have been developed as basic research tools for emulating the properties28
of real cortical circuits in real-time (Chicca et al., 2014b; Qiao et al., 2015). These latter systems are29
particularly well suited also as a neural computing substrate for real-time technical applications that can30
profit from their massively parallel architecture, ultra-low power consumption, and small form-factor, for31
example, in control of real-time robotic systems with embedded processing (Conradt et al., 2009; Ijspeert,32
2008; Xi, 2016).33

Several mixed signal analog/digital neuromorphic devices were previously used for spiking pattern34
classification (Mitra et al., 2009; Corradi and Indiveri, 2009; Kreiser et al., 2017), motor controllers35
for robotic devices (Perez-Peña et al., 2013; Serrano-Gotarredona, 2009; Perez-Pena et al., 2014b;36
Cartiglia et al., 2018; Kreiser et al., 2018; Glatz et al., 2019, submitted), simple stimulus-response37
based agents (Conradt et al., 2009; Indiveri et al., 2001), and were successful at the level of early sensory38
processing in vision and audition (Liu and Delbruck, 2010). Typically the neural network connectivity is39
determined at design-time off-line, to fulfill specific task requirements. However, neuromorphic systems40
with on-chip learning abilities (Mitra et al., 2009; Qiao et al., 2015; Davies et al., 2018; , ????). In particular,41
neuromorphic systems that have the ability to modify synaptic weights between neurons with biologically42
plausible plasticity mechanism allow the construction of low-power adaptive neural processing systems43
that can be used for building autonomous cognitive agents (Chicca et al., 2014a).44

In this work, we use a neuromorphic device that is equipped with analog on-chip learning circuits, in45
order to store a sequence of visual inputs in a robotic sensorimotor loop. Learning such sequence is enabled46
by a neural architecture that can cope with the challenges brought about by the mixed signal analog/digital47
neuromorphic hardware.48

One of the main challenges in applications of mixed signal neuromorphic systems is that of devices49
mismatch – variability in properties of computing elements due to the fabrication process and the sub-50
threshold operation. This leads to output noise and variability in properties of neurons and synapses, if51
realized with analog circuits (Neftci et al., 2011). To make neuromorphic hardware work reliably in face of52
its variability, the silicon neural networks need to form representations that are stable against mismatch.53
Biological neural networks face a similar problem of fluctuations of biochemical parameters, nevertheless54
animals are capable of precise and reproducible behavior, thus biology must have developed efficient55
solutions to this problem.56

One of these solutions is population dynamics with soft winner-take-all (WTA) connectivity. The WTA is57
a computational primitive that leads to continuous-attractor dynamics that were found to be characteristic58
for many cortical and subcortical neural networks (Wilson and Cowan, 1973; Gerstner and Kistler, 2002).59
Moreover, in the framework of Dynamic Neural Fields (DNFs), an analogy is drawn between population60
dynamics with WTA connectivity and behavioral dynamics, observed in experiments studying perceptual,61
motor, and cognitive behavior (Schöner and Spencer, 2015). DNFs, originally developed to describe the62
activation dynamics of large neural populations (Amari, 1977; Wilson and Cowan, 1973; Grossberg, 1988),63
have been used to account for human cognition (Johnson et al., 2008; Schöner and Spencer, 2015) and64
to develop cognitive architectures for robotics (Sandamirskaya et al., 2013; Richter et al., 2012; Lipinski65
et al., 2009; Bicho et al., 2012; Gaussier and Zrehen, 1994).66
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Robotic demonstrators are a novel tool entering the area of neuroscience that allows better understanding67
of brain structure and functionality by offering an “embodiment” for computational models (Pfeifer et al.,68
2007; Wolfgang and Jean-pierre, 2003; Thelen, 1995). A full spectrum of the currently ongoing projects in69
the area of neuromorphic robotics was listed and extensively analyzed in (Krichmar and Wagatsuma, 2011).70
The emerging tendency in brain-inspired robotics is to mimic the organization of nervous infrastructure in71
order to obtain similar functionality.72

WTA connectivity is one of the organization schemes that was postulated in the past as an elementary73
computing unit for both neural processing and neuromorphic architectures (Indiveri et al., 2009; Neftci et al.,74
2013; Rutishauser and Douglas, 2009). DNF dynamics have been implemented on analog neuromorphic75
devices (Sandamirskaya, 2013) and in this paper, we build on this work to demonstrate how sequences of76
states, realised by application of WTA networks, can be learned in plastic synapses on a neuromorphic chip.77
The neuromorphic chip can be embedded in a robotic agent where states of the sequence are driven by78
sensory input. In particular, we show how on-chip plastic synapses store a sequence of visual information79
that is perceived by a neuromorphic camera (Delbruck and Lichtsteiner, 2006), mounted on a robotic agent.80

Neuronal mechanisms for representing sequences have been studied both in humans (e.g. in behavioral81
experiments on learning movement sequences (Hikosaka et al., 2002; Deroost et al., 2006) or in serial order82
errors, e.g. in typing or language production (Henson, 1998), as well as in animals (e.g. in rats performing83
grooming movements (Aldridge and Berridge, 2003) or during navigation in mazes (Foster and Wilson,84
2006)). Furthermore, recent recordings from basal ganglia in humans allowed to gain insights into the85
neuronal mechanisms of learning movement sequences, in particular, in detecting errors in serially ordered86
sequences of tones (Herrojo Ruiz et al., 2014).87

From a multitude of neural models for sequence learning (e.g., Rabinovich et al., 2006; Deco and Rolls,88
2005; Wörgötter and Porr, 2005), we selected one that allows an agent to learn sequences from real89
sensory data and produce sequences through a physical motor system. It achieves the required stability and90
robustness of actuators plans and perceptual decisions using the DNF, or likewise WTA attractor dynamics,91
and its transition ability through an explicit destabilizing signal (Sandamirskaya and Schöner, 2010a). This92
model is inspired by neuronal findings on serial order encoding in the brain (Aldridge and Berridge, 1998;93
Carpenter, 1999; Clower and Alexander, 1998; Procyk et al., 2000) and behavioral data on serial order94
errors (Henson, 1998).95

In this work, we implement the model on the ROLLS (Reconfigurable On-Line Learning Spiking)96
neuromorphic processor (Qiao et al., 2015). The model is a neural architecture that creates stable attractor97
states in a population of “ordinal” neurons that represent the ordinal position in a sequence. An active group98
of ordinal is associated – through synaptic plasticity – with a neuronal representation of the “content” for99
each item in a sequence. This content is represented with a population that features WTA network topology100
and is driven by sensory inputs during sequence learning. During learning, associations between ordinal101
positions and different regions on the content WTA are established. Learning is supported by co-existence102
of the attractor states in the two neural populations that are sustained for macroscopic amounts of time.103
During sequence replay – i.e. acting out of a memorised sequence, – each state in the content WTA is104
activated by the ordinal nodes for a variable amount of time, that is controlled by an external “condition of105
satisfaction” signal. To our knowledge, this simple example is the first demonstration of on-chip learning106
that proceeds autonomously in a mixed signal neuromorphic hardware in a closed sensorimotor loop.107
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Figure 1. Block diagram of the ROLLS chip architecture. Triangles on the right represent silicon neurons,
squares are synapses that are organized in three arrays: non-plastic, plastic, and virtual. The AER blocks
manage the input and output traffic of spikes, and the bias generator allows to program different parameter
settings of the analog circuits.

2 MATERIAL AND METHODS

2.1 Neuromorphic hardware: the ROLLS device108

The ROLLS neuromorphic device used in this work comprises mixed-signal analog/digital neuron and109
synapse circuits that can exhibit a range of biologically realistic dynamics (refractory period, time-course110
of integration and leakage, firing rate adaptation, short- and long-term plasticity, etc.). The silicon neuron111
circuits implement a model of the adaptive exponential integrate-and-fire (IF) neuron (Brette et al., 2007).112
A schematic diagram of the chip architecture is shown in Fig. 1.113

The device comprises 256 analog silicon neuron circuits, an array of 256×256 non-plastic programmable114
synapses, an array of 256×256 plastic synapses, and a 256×2 linear integrator filters – “virtual synapses”115
that can be used to direct external inputs to the neurons. The non-plastic synapses consist of analog circuits116
that reproduce short-term adaptation dynamics (Rasche and Hahnloser, 2001; Boegerhausen et al., 2003)and117
digital circuits that set the programmable weights. On ROLLS, four different weights are available on chip118
and each one of them can be set to a required value regulated by on-chip biases.119

The plastic synapses contain analog learning circuits and digital state-holding logic. The learning circuits
implement the synaptic plasticity model proposed in (Brader et al., 2007), which is particularly well-suited
to VLSI implementation. According to this rule, the synaptic weights are updated based on the timing
of the pre-synaptic spike, the state of the post-synaptic neuron‘s membrane potential, and an intrinsic
calcium variable, which depends on the recent spiking activity. On a long time-scale, the weight values
of the plastic synapses drift toward one of two possible states, depending if their value is above or below
a weight-threshold parameter. The synapses therefore are bistable and robust to input activity and state-
dependent variability. Equations (1) and (2) formalize the plasticity weight update mechanism that operates

This is a provisional file, not the final typeset article 4



Kreiser et al. Sequence Learning in a Neuromorphic Device

on short time-scales:

wi = wi + ∆w+, if Vmem(tpre) > θmem and θ1 < Ca(tpre) < θmax; (1)

wi = wi − ∆w−, if Vmem(tpre) < θmem and θ1 < Ca(tpre) < θmax. (2)

Here, wi is the synaptic weight of a plastic synapse; the terms ∆w+ and ∆w− determine the amplitude120
of the weight’s increase and decrease, respectively. Vmem(tpre) is the post-synaptic neuron’s membrane121
potential at the time of the pre-synaptic spike arrival. If Vmem is above the threshold θmem, the post-synaptic122
neuron must be about to spike, leading to the temporal sequence of pre- and post-synaptic spikes that123
leads to potentiation of the synapse (following to the “classical” spike-timing dependent plasticity rule),124
whereas if Vmem is below the threshold, the post-synaptic neuron is likely to have just spiked, leading to125
temporal sequence of spikes that correspond to depression of the synapse. The Ca variable represents the126
neuron’s Calcium concentration, which is proportional to the neuron’s recent spiking activity. This is the127
variable representing the “third factor” in this three-factor learning rule that gates plasticity (Neftci, 2018).128
The parameters θmin, θ2, and θmax are the thresholds that determine in which conditions the weights are129
updated.130

The long-term drift that determines the synaptic weight bistability properties, and which is superimposed131
to this STDP plasticity rule, is governed by the following equations:132

d

dt
wi = Cdrift, if wi > θw and wi < wmax; (3)

d

dt
wi = −Cdrift, if wi < θw and wi > wmin, (4)

where Cdrift determines the rate of the drift, θw is the weight threshold that determines the direction of133
the drift, and wmin, wmax – the value of the high and low weights, respectively. Thus, plastic synapses are134
binary in the long term.135

Fig. 2 shows traces of different components of an active neuron on the ROLLS chip and one of its plastic136
synapses, whose weight increases in real time in response to a constant input. A thorough description and137
characterization of the circuits can be found in (Qiao et al., 2015).138

Additional peripheral analog/digital input-output circuits for both receiving and transmitting spikes in139
real-time on- and off-chip follow an Address-Event Representation (AER) protocol (Boahen, 1999) and can140
be used to stimulate individual synapses on the chip. An on-chip programmable bias generator, optimized141
for subthreshold circuits allows the user to create networks with different properties and topologies and to142
program the properties of the synapses and neurons (such as time constants, leak currents, etc.).143

The ROLLS was fabricated using a standard 180 nm CMOS 1P6M process. It occupies an area of144
51.4 mm2 with approximately 12.2 million transistors.145

2.2 Neuromorphic implementation of a soft-WTA network146

Implementing a neural architecture, or model, on the ROLLS chip involves two steps. First, the non-147
plastic synapses are configured to create the static part of the neural network. For each synapse, one of148
four available weights can be selected, alongside with their type (inhibitory or excitatory). In the second149
step, the parameters of the neuron and synapse circuits are selected by setting the on-chip biases. These150
parameters are globally shared by all neurons and synapses.151
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Figure 2. Oscilloscope traces of subthreshold activity of a silicon neuron and a plastic synapse. From top
to bottom: the input signal to the neuron with a number of (random) spikes, low-pass filtered by the “virtual”
synapse; the neuron’s membrane potential; a variable that models the neuron’s calcium concentration;
and the synaptic weight of a plastic synapse to which another external input is applied. One can observe
potentiation of the plastic synapse after each spike of the monitored neuron and diffusion of the synapse’s
weight to a high value after it reaches a certain threshold.

In this work, we use a simple 1D Dynamic Neural Field (DNF) (Schöner and Spencer, 2015) to represent152
items in a sequence. On the neuromorphic chip, such DNF can be realised using WTA connectivity153
pattern (Sandamirskaya, 2013). Such WTAs are considered building blocks for cognitive neuromorphic154
architectures (Neftci et al., 2013). In fact, two connectivity patterns can be used to realise a WTA network155
on the ROLLS chip, as shown in Fig. 3. The red and blue squares in the figure represent excitatory and156
inhibitory synapses that connect neurons (triangles on the right). Tables 1 and 2 present a list of exemplary157
biases for neural and synaptic circuits, respectively, that generate winner-take-all behavior in a configuration158
presented in the Fig. 3b.159

In order to realize a soft-WTA behavior (the term soft indicates that a group and not only a single neuron160
wins the competition) on the ROLLS chip, two types of connectivity networks can be configured.161

In both settings, local groups of neurons can stabilize their activity by excitatorily projecting to themselves162
and to their nearest neighbors. Global inhibition ensures that only one group is active at a time and keeps163
the network activity from spreading across the whole population. Stable activity bumps can be achieved164
with two connectivity patterns in a population of spiking neurons. In the first pattern (A), we define the165
extent of region around each neuron, in which it will be connected to its neighbors with excitatory synapses.166
Every connection exceeding this excitatory range will form an inhibitory synapse (see Fig. 3a). In the167
second pattern (B), a separate group of inhibitory neurons is introduced, which task is to suppress the168
activity of the excitatory population (Fig. 3b). In this case, all excitatory neurons are positively coupled to169
the inhibitory group, which inhibits them back.170

Evidence from neuroscience suggests that inhibition is provided by a separate set of inhibitory171
interneurons in many cortical areas (Couey et al., 2013; Buetfering et al., 2014). Thus, a WTA network172
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Figure 3. Setting the soft-WTA connectivity on the ROLLS chip. (a) Connectivity using excitatory
synapses to the neuron itself and to its nearest neighbors and inhibitory synapses to all other neurons. (b)
Connectivity scheme with excitatory projections of neurons to themselves, their nearest neighbors, and a
small inhibitory group. The latter inhibits the whole excitatory population.

with a separate group presented in Fig. 3b appears to be more biologically plausible. However, from an173
engineering point of view, the choice may depend on other considerations, e.g. if the number of available174
synapses per neuron is limited, pattern (B) maybe preferable, while if rather the number of neurons is175
the bottleneck, the pattern (A) might be more advantageous. One should also consider that the additional176
inhibitory group adds a delay to the inhibitory feedback and may render parameter tuning more challenging.177

2.3 Neuromorphic architecture for sequence learning178

In this work, an architecture for serial order memory proposed in the framework of dynamic neural179
fields (Sandamirskaya and Schöner, 2010a; Duran and Sandamirskaya, 2012), was realized in neuromorphic180
hardware in the following way.181

The connectivity pattern, shown in Fig. 4a, includes a population of ordinal nodes (yellow region in the182
figure). Each ordinal node, if active, represents a position in a sequence. Ordinal nodes activate each other183
sequentially. This is achieved through a set of memory nodes (orange region in the figure): each ordinal184
node activates the respective memory node, which in its turn activates the next ordinal node. Memory nodes185
feature strong recurrent connections that lead to their self-sustained activity: memory nodes stay active186
even when the respective ordinal node is not active any more. Thus, the memory nodes “keep track” of the187
position in the sequence during sequential transitions (when ordinal nodes are inhibited, as will be shown188
below).189

The content dynamic neural field (content DNF; blue region in the figure) represents the perceptual states190
and/or actions that can be associated with a sequential position (an ordinal node) with plastic synaptic191
connections (green region). The content DNF is connected to the action system of the agent and sets192
attractors to generate behavior. It also receives perceptual input during sequence learning that creates193
activity in this field that corresponds to the recognised, e.g. demonstrated, actions.194

The condition of satisfaction (CoS) system (lilac region in the figure) detects when each initiated action195
or perceptual state has reached the intended outcome (Richter et al., 2012). To achieve this, the CoS node196
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is driven by a perceptual module that receives input signaling the currently perceived or performed action197
and input from sensors, configured to activate the CoS node if the end of an action has been detected (e.g.,198
end of presentation of the object during learning, or end of a goal-directed movement during replay).199

When the CoS node is activated, it inhibits all ordinal nodes, in particular removing activation of the200
currently active ordinal node and thus stopping the learning process that was strengthening synaptic201
connection between this ordinal node and an active region in the content DNF. The activity in the content202
DNF will also cease in the transition.203

During learning, this happens because transition means switching to the next item, which happens204
through sequence of “forgetting” and “detection” instabilities (the old object disappears and the new object205
appears), which leads to decrease of activation in the DNF. If an item was successfully learned and there’s206
no perceptual input (Laser off), the ordinal population “recalls” the learned item in the activity in the207
content DNF. Since the DNF is connected to the CoS, successful learning (and not perceiving visual input)208
triggers the transition. When the laser is switched on the DVS on population, driven by the visual input,209
becomes active and inhibits the CoS, next item can be learned.210

During sequence replay, on the other hand, the activity peak in the content DNF is supported by the active211
ordinal node. When the CoS becomes active and inhibits the ordinal nodes, the activity in the content DNF212
also ceases. In both cases, the decrease of activity in the content DNF leads to deactivation of the CoS213
node, which releases the inhibition on the ordinal nodes. The next ordinal node can become active now,214
driven by the asymmetric connection from the previous memory node.215

Fig. 4b shows how this neural dynamic architecture can be realized with populations of spiking neurons – a216
step required for the implementation in neuromorphic hardware (Sandamirskaya, 2013). Several constraints217
have to be taken into account: (1) the limited amount of silicon neurons, (2) robustness to mismatch, and218
(3) shared parameter settings across all neurons that need to exhibit different firing behaviors.219

To cope with mismatch, we used populations of 10-20 neurons to represent a neuronal node (ordinal,220
memory, or CoS nodes).221

Ordinal groups: Each ordinal group contains 20 silicon neurons in our experiments, inter-connected via222
excitatory synapses in an all-to-all fashion. Silicon neurons in different ordinal groups inhibit each other,223
forming a WTA network. This allows only one ordinal group to be active at a time.224

Memory groups: each ordinal group excites a corresponding memory group that contains 10 neurons.225
Memory groups remain active for the whole trial due to their high self-excitation. Each memory group has226
excitatory synapses to the next ordinal group. At the same time, they signal whether their corresponding227
ordinal node has already been activated, by slightly inhibiting it. This ensures that the ordinal node that has228
not yet been activated receives the highest excitatory input in the transition phase.229

Content group: every content neuron is connected via plastic synapses with ordinal neurons with the230
possibility to strengthen synaptic weights towards an active region in the content WTA. Initially, all plastic231
synapses are depressed (have a low weight) and can only become potentiated once the ordinal and content232
neurons are co-active.233

CoS group contains 10 neurons that are externally stimulated upon a keystroke in most experiments here234
in order to trigger a transition.235

Fig. 5 shows the connectivity matrix of non-plastic synapses, set on the neuromorphic hardware to realize236
the sequence learning architecture. Fig. 5a shows the implemented architecture for storing a sequence of237
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Figure 4. The serial order architecture, introduced by Sandamirskaya and Schöner (2010a). (a) The
continuous version of the serial order architecture. A set of discrete neural-dynamic nodes represents
ordinal positions within a sequence. The content Dynamic Neural Field (DNF) represents the perceptual or
motor features of the stored items. A sequence of items is learned in adaptive connections between the
ordinal nodes and the content DNF. (b) The neuromorphic realization of the architecture using populations
of neurons. Note that in order to create stabilized peaks of activation that correspond to self-sustained
activation of a neural population, neurons within a group need to be recurrently connected. CoS is the
condition of satisfaction system that detects sequential transitions both during sequence learning and
acting-out.

three items and Fig. 5b shows the connectivity matrix for storing a sequence with five items. Note that the238
hardware used here is a research prototype with only 256 analog neurons, which, along with mismatch,239
limits the number of items that the system can store. For this reason, the size of the content DNF is reduced240
for the 5-items architecture.241

To achieve the desired behavior of the architecture, parameters specifying neuron and synapse dynamics242
have to be set in order to meet certain requirements posed on neural populations. Since ROLLS chip243
features only 4 different excitatory weights, we additionally used potentiated plastic synapses to strengethen244
connections within ordinal and memory groups. Fig. 6 shows the plastic synapse matrix after initializing a245
network for storing a sequence of three items. Each red dot shows a potentiated (high) plastic synapse at246
initialisation of the architecture (before learning). The diagonal of potentiated synpases for neurons 62 to247
92 (orange region) and 93 to 153 (yellow region) in Fig. 6 corresponds to the additional self-excitation248
in the memory groups and ordinal groups, respectively, using potentiated plastic synapses. Non-plastic249
connectivity in these groups is enhanced by using 30% of randomly potentiated plastic weights. Since state250
of the plastic synapses can not be read-out directly, we used a protocol to read them out, in which each251
synapse is stimulated and activity of the post-synaptic neuron is read-out, at turned-off plasticity.252

3 RESULTS

Storing a three-items sequence253

Fig. 7 shows how a simple sequence of three items can be successfully learned and recalled on254
neuromorphic hardware. Here, the architecture is presented with a sequence of items A-B-C and stores255
them in plastic synapses that connect ordinal groups (I., II., III.) to the content DNF.256
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Figure 5. Connectivity matrix of non-plastic synapses, sent to the neuromorphic chip to encode the serial
order architecture. Different shades of blue indicate different inhibitory synaptic weights (the darkest being
the strongest). Red represents excitatory synapses, which all have the same weight.
(a) Connectivity matrix for storing a sequence of three items. (b) Connectivity matrix for storing a sequence
of five items.

Fig. 7a shows the raster plot of spikes recorded from the neuromorphic chip ROLLS. Each black dot257
corresponds to a spike, emitted by one of the 256 neurons on the ROLLS chip. Vertical axis shows neuron258
index (0-255), horizontal axis shows time in seconds. Colors mark different populations of neurons on the259
chip, according to the serial order architecture (Fig. 4): from bottom to top, lilac is the CoS population,260
orange are the memory groups, yellow are the ordinal groups, dark blue is the content WTA / DNF (its261
excitatory and inhibitory parts).262

The neural activity is initially induced by an external input according to the following stimulation protocol.263
First, the sequence gets “launched” by the stimulation of the first ordinal group of neurons for 3000 ms264
with 200 Hz spiking input applied via virtual synapses (the “go” signal). The transition signal between265
sequential items, which suppresses the activity of ordinal neurons, is triggered by stimulating the CoS266
group for 500 ms with 800 Hz. An input to the content neurons, which will be replaced with sensory input267
in Section 3.1, consists of Poisson spike trains with firing rate distributed along the content population268
according to a Gaussian-function, centered at a selected “current item” neuron (marked with A, B, or269
C in Fig. 7a), with the maximum of 900 Hz and a standard deviation of 5 neurons. All content neurons270
additionally receive random inputs between 0 and 10 Hz to simulate sensory noise. During learning, the271
content neurons are stimulated for 6000 ms for each item in the sequence.272

The WTA connectivity in the content population leads to formation of a localised “activity bump”: noise273
is suppressed by global inhibition and activity within the Gaussian is stabilised by the recurrent excitation.274
The neural location of the activation peak defines the content (A, B, or C here) and leads to strengthening275
of the connections between the active region in the content population and active neurons in one of the276
ordinal populations, according to the on-chip learning rule.277

After learning the full sequence, an external input is sent to the inhibitory reset group which suppresses278
activity of the memory groups, resetting the ordinal system of the architecture. After the complete279
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Figure 6. Initial state of the plastic synapses for a sequence of three items before sequence learning, as
measured from the ROLLS chip. I., II., III mark pre-synaptic neurons that belong to the ordinal groups;
A, B, C mark post-synaptic neurons that belong to different regions of the content DNF. Red dots show
potentiated synapses, used for additional strengthening of recurrent connections in the ordinal and memory
groups. These synapses don’t participate in learning a sequence. Synapses in the green region connect
ordinal nodes to content DNF and will represent the sequence after learning. These plastic synapses are
depressed (low) at initialisation. The plastic synapses are read-out by activating them sequentially and
observing activity of the post-synaptic neuron.

suppression of the neural activity in the ordinal system, the recall is triggered by an external stimulation of280
the first ordinal group (the “go” signal). Transitions between states are initiated by an external stimulation281
of the CoS group and can take place at arbitrary moments in time (as can be seen in the “replay” phase282
on the raster plot of Fig. 7a). This transitions can be triggered by sensory input that signals the end of an283
action, associated with items in the sequence (where action can also be intrinsic, like an attention shift), or284
can be generated internally, e.g. by a neuronal “timer”, as was introduced by Duran and Sandamirskaya285
(2017). The serial order architecture leads to a sequential activation of the ordinal groups, which, in their286
turn, lead to sequential activation of the stored locations on the content population, through the on-chip287
plastic synapses.288

Note that memory groups keep firing until the end of the teaching or replay period, keeping track of the289
unfolding sequence. This activity is achieved by strong recurrent connections in the memory groups and290
can be used to monitor sequence learning and replay by a higher-level system in a hierarchical sequence291
representation architecture (Duran and Sandamirskaya, 2012).292

Fig. 7b shows plastic synapses on the ROLLS chip after learning. Here, each red dot corresponds to a293
potentiated plastic synapse. As mentioned previously, the portion of plastic synapses within the yellow294
and orange colored regions were set to be potentiated in order to increase self-excitation in the ordinal and295
memory neural populations and did not participate in learning. Plastic synapses in the green region are296
the ones connecting the ordinal groups to the content WTA and these synapses are depressed (set to zero)297
initially and are potentiated during sequence learning. Note that there is no direct access to the state of298
the plastic synapses on the ROLLS chip, thus to create Fig. 7b, the potentiated synapses were read out by299
stimulating each plastic synapse and measuring if the stimulation lead to a postsynaptic spike.300
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Figure 7. Learning a three-items sequence. (a) Time-course of neuronal spiking activity (raster plot) for
the sequence A-B-C. Numbers I., II., III. mark neurons of memory and ordinal populations; letters A, B, C
mark three regions on the content DNF; CoS – condition of satisfaction neurons that trigger sequential
transitions. In the teaching period, the sequence A, B, C is activated in the content DNF by an external
input. In the replay period, this sequence is reproduced by activity flowing from the ordinal nodes to the
content DNF through the potentiated plastic synapses. Note that memory nodes stay active until the end of
the sequence, when they are inhibited by the Reset population, both during teaching and replay. Active
memory nodes represent progress along the sequence. (b) Weights of the plastic synapses on the ROLLS
chip after learning the sequence A-B-C. Potentiated synapses in the green region show learned associations
from the ordinal groups to the content DNF: I.-A, II.-B, and III.-C.

One can observe the potentiated synapses between ordinal group I and item A, ordinal group II and301
item B, and ordinal group III and item C. One can also notice a considerable amount of noise in the302
plastic synapses (within green region, but also across the chip). Despite this noise, the system is capable to303
reproduce the A-B-C sequence, thanks to the WTA dynamics of the content population (seen in the “replay”304
part on the raster plot Fig. 7a).305

Storing a five-items sequence306

Similar to Fig. 7, Fig. 8 shows how a sequence of five items can be learned and reproduced on the307
ROLLS chip. Here, the sequence E-A-B-D-C is stored in the plastic synapses on the ROLLS chip during308
the “teaching” period ( Fig. 8a) and is reproduced by the chip without external stimulation in the “replay”309
period. As for the three-items sequence, the external inputs were used to start both the teaching and the310
replay periods and to trigger transitions between sequential elements at arbitrary moments in time (both311
during learning and replay). During learning, inputs to the content WTA that correspond to different items312
(E-A-B-D-C) were introduced externally (as spike trains with firing rate profile shaped according to a313
Gaussian, centered over selected location on the content DNF). During replay, activity in the content DNF314
is induced through the potentiated plastic synapses from the ordinal nodes to the content DNF.315

Fig. 8b shows the plastic weights on the ROLLS chip after learning. Again, potentiated synapses (red316
dots) in the yellow and orange regions are just auxiliary weights we used to support recurrent connections317
within ordinal and memory groups. Learned synapse are red dots in the green region and correspond to318
synapses between ordinal groups (I.-V.) and different regions (A-E) on the content DNF.319
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Figure 8. Learning a five-items sequence. (a) Raster plot of the spiking activity on the ROLLS, when the
sequence E-A-B-D-C is learned (“teaching”) and reproduced (“replay”). Colors mark different neuronal
populations (see also Fig. 7) (b) Weights of plastic synapses after learning the sequence. Plastic synapses
in the green region encode the sequence: I.-E; II.-A; III.-B; IV.-D; V.-C

Although the learned representation of the sequence is noisy, the system is capable of correctly recalling320
the stored sequence. The ordinal nodes activate the locations on the WTA population in the memorized321
order, with transitions triggered by the (externally stimulated) CoS population. In the recall session, the322
content WTA/DNF does not receive any external stimulation. Activity of neurons in the content DNF is323
solely triggered by the formed (learned) associations (potentiated plastic synapses) connecting subsets of324
ordinal and content populations.325

Fig. 9 shows another example of a five-items sequence (A-B-D-E-C) learned on the chip. By using326
smaller population sizes, longer sequences can potentially be learned. However, mismatch will become327
more noticeable by making the network prone to commit serial order errors.328

Repeating items329

Fig. 10 shows that sequences with repeating items can be stored on the chip. Here, a sequence A-A-C is330
learned and reproduced on the chip. Often, the serial order architectures, in which sequence is represented331
by direct connections between items’ representations, have difficulties with sequences with repeated items.332
In our simple 3-items example, for instance, item A would have to be connected both to itself and to the333
item C in order to represent the A-A-C sequence. Additional mechanism would be needed to distinguish334
between the first and the second occurrence of A. Our serial order architecture features a “positional” (i.e.335
spatial) representation of serial order (Sandamirskaya and Schöner, 2010a) and does not suffer from this336
problem.337

As can be seen in Fig. 10b, the plastic weights that connect ordinal group I to element A and ordinal338
group II to element A are independent of each other and sequences with arbitrary number of repeating339
elements in any position in the sequence can be stored in this way.340
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Figure 9. Learning sequence A-B-D-E-C. (a) Time-course of spiking neuronal during learning and recall
(similar as Fig. fig:EABDC). (b) Plastic weights after learning the sequence. Weights in the green region
encode the sequence by storing the associations between neuronal groups: I.-A; II.-B; III.-D; IV.-E; V.-C.

Figure 10. Learning a sequences with repeated items: (a) Time-course of spiking neuronal activity for
learning and reproducing the sequence A-A-C. (b) Plastic weights after learning the sequence AAC, storing
the sequence: I.-A; II.-B; III.-C.

Additional handling for repeated items is often required when sequences are learned in recurrent neural341
networks, e.g. (Hochreiter and Schmidhuber, 1997). In our architecture, to the contrary to these networks, all342
input representations are stored in the form of independent associations formed between the DNF content343
and the ordinal nodes. This feature distinguishes this implementation from other neural architectures344
designed to store sequences.345
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Unlearning a sequence346

Another property of the presented serial order architecture is its ability to forget and update previously347
learned sequences. When a sequence has been learned, activation of an ordinal node induces activation of a348
certain region on the content DNF, through the plastic synapses. A strong external input to the content DNF,349
however, can overcome this activation: the winner-take-all connectivity of the content population induces350
competition between the old item and a new item. If the external input is strong enough to overcome the351
global inhibition of the content DNF, new activity peak will be created. This new activity peak, in its352
turn, suppresses the activity induced through the learned plastic synapses. Thus, the synapses that conduct353
external input to the content DNF need to be stronger than the potentiated plastic synapses for such reset354
to work (input conducted through plastic synapses can not overcome global inhibition from the strongly355
supported activity peak, induced by the external input).356

When a new activity peak is formed in the content DNF, the learning rule leads to potentiation of the357
plastic synapses leading from the active ordinal node to the newly activated region on the content DNF. At358
the same time, the synapses to the old item will be slowly “forgotten”, because of the synaptic depression359
working on synapses with post-synaptic neurons having low (here, zero) firing rate. Thus, the new sequence360
can be learned, while the old sequence will slowly be forgotten using the synaptic depression of the on-chip361
learning rule (Brette et al., 2007).362

Forgetting becomes possible because of the specific learning rule implemented on the ROLLS device:363
The weight of the plastic synapse is updated upon the arrival of a pre-synaptic spike. Forgetting takes place364
whenever a pre-synaptic spike is not followed by a post-synaptic spike. In this case, the weight of the365
plastic synapse gradually decreases and eventually reaches a low (depressed) state.366

An experiment designed to test the forgetting mechanism is shown in Fig. 11. Fig. 11a shows the firing367
activity when sequence C - A - B is memorized and recalled. Fig. 11c shows the state of the plastic synapses368
after learning. After recalling the sequence C - A - B, we stimulated the content DNFs with items in a369
different order: B - A - C. The firing activity during learning and recalling the new sequence B - A - C is370
shown in Fig. 11b. The resulting synaptic weight matrix is shown in Fig. 11d.371

In this figure we can see that the plastic synapses that formed between the first ordinal group and the372
item C get depressed after stimulating the content neurons with the new sequence B - A - C a single373
time (compare with Fig. 11c). Instead, the first ordinal group strengthens synapses towards the recently374
stimulated content neurons B. However, traces of potentiated synapses between content B and ordinal375
group III remain potentiated after the single trial of learning the new sequence B - A - C. Synapses towards376
the correct element C in the position III become potentiated gradually.377

The weight matrices in Fig. 11d show that the previously learned element B remains more consolidated378
than the newly learned element C. However, Fig. 11b shows that the high activity of the externally379
stimulated content neurons eventually (after 4 trials) completely suppresses the activity of the previously380
learned sequence. Hence, during recall the neurons’ firing activity resembles only slightly the old sequence381
(meant to get forgotten and overwritten) and more strongly represents the new sequence.382

Fig. 11e shows plastic weights after stimulating the content layer with the items in order B - A - C383
four times. The new sequence B - A - C is successfully learned and the old sequence C - A - B is almost384
completely “forgotten”. A small trace of the previous sequence remains, which is suppressed by the WTA385
dynamics of the content DNF during replay.386
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Figure 11. An experiment to demonstrate unlearning: (a) spiking activity on ROLLS during learning and
replay of a sequence C-A-B; (b) learning and replay of a new sequence, B-A-C, without resetting the
plastic weights; (c) the plastic weights after learning the first sequence (C-A-B); (d) plastic weights after
the first trial of learning the second sequence, B-A-C; (e) plastic weights after the fourth trial of learning
the second sequence.

3.1 Robotic implementation: Learning a sequence of visual stimuli387

In this section, we present an implementation of the serial order architecture on the neuromorphic chip388
interfaced to a robotic platform. Here, the ROLLS processor is configured with with a similar connectivity389
as for the experiments with artificial external inputs. The only difference is that we found a configuration,390
in which the 30% of randomly potentiated plastic weights used in the ordinal and memory populations to391
enhance non-plastic self-excitation was not required (bias parameters, used here are listed in Table 2, Exp.2).392
The content DNF population here receives input from a neuromorphic camera Dynamic Vision Sensor393
(DVS) (Lichtsteiner et al., 2006; Liu and Delbruck, 2010), mounted on top of a robotic vehicle (Conradt394
et al., 2009) 1395

Each pixel of the eDVS is sensitive to the temporal change in luminance and signals events when such396
change exceeds a threshold. The change events are communicated off-sensor using the Address Event397
Representation (AER) protocol, typically used for spike-based communication.398

1 https://inilabs.com/products/pushbot
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Figure 12. Learning a sequence of cued locations with a robot. Top, left. The output of the Dynamic vision
Sensor (DVS) camera of the robot: events from rows of the DVS over time. Regions with high activity
correspond to horizontal positions of locations, cued with a laser pointer. Top, right. Plastic synapses after
learning. Dark red dots are synapses with high weights (only synapses from ordinal populations to the
content DNF are probed here). Middle Spiking activity of neurons on the ROLLS chip during the robotic
sequence learning experiment, in which sequence of three locations was learned (A-C-B) and reproduced
by turning to center respective location in the field of view of the robot’s DVS (the mapping from position
in the camera’s FoV and angle of rotation was hard-coded here for simplicity). Bottom. Snapshots of the
experiment from an overhead camera. See main text for details.
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The DVS sends events directly as input spikes to the virtual synapses of the content neurons. Each event399
is a tuple of pixel coordinates (x,y) and polarity (pol), which signals whether the detected brightness change400
is positive or negative (we don’t distinguish between events with different polarities here). Each DVS event401
triggers stimulation of a neuron in the content DNF according to the x coordinate of the active pixel2. As a402
sensory stimulus, we used a blinking laser pointer, highlighting different points of the scene, perceived by403
the robot. The reflection of the laser pointer generates a large number of DVS events that allow the content404
WTA to easily filter out sensory noise and form activity bump over the highlighted region. This allows us405
to avoid any sophisticated visual preprocessing.406

Observing the highlighted region at different positions in the DVS’s field of view creates activity at407
different locations of the content WTA on ROLLS. Simultaneous high activity in the content DNF408
population and an active ordinal population lead to potentiation of plastic synapses between these409
populations during sequence learning. During sequence recall, activity of the ordinal populations is410
transmitted to the content DNF population over the potentiated synapses for each sequential item. The411
active regions of the content WTA are read-out to set the turning angles for the robot (we hard-coded this412
mapping here for simplicity, although DNF-based navigation principles could be used to drive robot’s413
movement more directly, as we have demonstrated previously (Milde et al., 2017b; Blum et al., 2017;414
Milde et al., 2017c)). Active content WTA neurons initiate turning to the stored directions in the order of415
the learned sequence.416

The experimental setup is shown in Fig. 12, bottom. The pushbot learns the sequence of angular locations417
of the highlighted regions. The middle plot on the Fig. 12 shows the resulting spiking activity of this418
experiment. During learning, the content WTA neurons are activated by DVS events shown in Fig. 12, top,419
left. This plot shows the DVS events from each column of the sensor over time during the learning phase.420
The most salient input is amplified (neurons activated by the laser pointer reflection), whereas noise is421
suppressed due to the global inhibition in the DNF / WTA network.422

In this experimental example, sequence transition is initiated by activation of the CoS group when the423
laser pointer is switched off before it is moved to the new position. This creates a clear sequential structure424
of the task. With a more sophisticated vision processing available, transitions could be triggered by the425
lack of an overlap of the highlighted region and segmented object when the laser pointer is moved from426
one object to another one without switching it off.427

Whenever the laser pointer is switched off, the CoS population is activated. We achieved this by428
introducing a neural population that is activated by the strong input from the DVS (irrespective of its429
position), DVS on population in Fig. 12. This population inhibits the CoS population, which is otherwise430
activated by the output of the content DNF. When the laser pointer is switched off, the DVS on population431
yields its activation and the CoS is activated briefly. The CoS population suppresses all ordinal nodes until432
the laser is turned on again, activating the DVS on population. The next ordinal group is then activated,433
driven by the connectivity of the serial order architecture. The ordinal populations are consequently434
activated in a sequence and strengthen their synapses to different active content neurons.435

The learning phase is followed by a global reset that suppresses the activity of the memory nodes, which436
otherwise keep track of the unfolding sequence. A sequence recall is triggered by a “go” signal – external437
activation of the first ordinal neural population and a new population, which sustains its activity through438
the whole experiments and excites the DVS on population in order to suppress the CoS signal. The target439
positions, stored in plastic synapses during learning, are reproduced and drive the robot to turn towards440

2 We drop 80% of events randomly to further reduce events’ flow without loss in performance for the simple vision task used here.
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the orientation that puts the cued positions in the center of field of view of the DVS. Once the movement441
execution towards the recalled orientation is finished, the DVS on population is inhibited externally leading442
to activation of the CoS signal and thus a transition in the sequence.443

Fig. 12, top-right shows the read out of the plastic weights after learning the visual sequence. Here,444
to visualise the strengths of the plastic connections, the ordinal neurons are stimulated one by one and445
activity of the whole chip is observed. In particular, we can see that three different positions in the content446
populations get activated when associated ordinal groups are stimulated. This measurement is based on447
whether or not a spike of a particular ordinal item triggers the firing of a particular content item, which448
reveals the state of the connecting plastic synapse. We can see that the sequence of three rotations were449
successfully stored in the plastic connections. Since we focus on the neuronal architecture for storing450
sequences here rather than on the aspects of the robotic implementation, we did not quantify precision451
of the sequence reproduction and only accessed it qualitatively (as can be observed in the accompanying452
video sequence).453

4 DISCUSSION

In a proof-of-concept demonstration we have shown how sequences can be stored in a mixed signal454
analog/digital neuromorphic device with on-chip plasticity (Qiao et al., 2015). We have shown that455
sequences of different length can be learned and updated and how sequence learning can be driven by456
sensory input from a silicon retina camera DVS.457

Computing architectures in neuromorphic hardware can process events efficiently, in an inherently458
event-based manner, in real-time, and with ultra-low power consumption (e.g., the ROLLS device used459
here consumes <4mW if all its neurons fire at an average frequency of 30Hz). Of course, on the current460
prototype stage, neuromorphic hardware requires a regular computer (a credit-card size computer Parallella461
in our case) to connect the device to the robot and monitor its activity, and an FPGA to be configured462
efficiently, but in a final embedded application, all computation can happen in the device. The main463
remaining challenge to achieve this are AER interfaces to different sensors and motors, which are currently464
being developed (Perez-Pena et al., 2015, 2014a). Power saving is of particular importance in small in agile465
robots, but even for larger robotic systems, in which at the moment motors dominate the power budget,466
when (spiking) neural networks are used to process multi-modal sensory information and to control the467
robot, power consumption of their simulation might become substantial for a real-time application.468

First robotic architectures that deploy neuromorphic controllers have been introduced over the last years469
using analog (Milde et al., 2017a) and digital (Conradt et al., 2015) neuromorphic devices. Compared to470
the mixed-signal neuromorphic hardware used here, digital realisations of neuromorphic computing offer471
more flexibility in terms of neuronal and synaptic models at the cost of increased power consumption and472
device size. Choosing a well-suited neuromorphic system is highly task-dependent and it has been shown473
that large digital neuromorphic devices (e.g., the SpiNNacker platform (Furber et al., 2012)) can also be474
used to control autonomous mobile robots (Conradt et al., 2015). The presented on-chip sequence learning475
neuromorphic architecture can be realised both in analog and digital neuromorphic devices.476

The main limitation when using analog hardware is the mismatch in device parameters that leads to noisy477
and unreliable computing elements – neurons and synapses. We showed how the use of population-based478
representations (“place-code”) and attractor dynamics of neural fields allow to nevertheless produce reliable479
behavior with these noisy elements, thus unleaching this ultra-low power of analog neuromorphic hardware480
for practical use.481
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Table 1. Biases of the silicon neuron
Parameter Description Value
IF RST The reset threshold current 1pA
IF DC A constant current injected to all neurons 1pA
IF BUF Buffer for oscilloscope 10.9nA
IF ATHR Neuron’s adaptive threshold current 1pA
IF RFR1 The duration of the neuron’s refractory period 1.5nA
IF RFR2 The duration of a specified neuron’s refractory period 1.5nA
IF AHW The adaptation time constant 1pA
IIF AHTAU Neuron’s adaptive Tau 7.4nA
IIF TAU2 Time constant for specified neurons 22.6pA
IF TAU1 Time constant for all other neurons 24uA
IF NMDA The sensitivity of the neurons 1pA
IF CASC The cascade current 1pA
IF THR The neuron’s firing threshold 280nA

The proposed neuromorphic architecture presents a crucial building block for complex “cognitive”482
neuromorphic robotic systems, since sequence learning and sequence generation are key to the most basic483
robotic tasks, such as map formation (in a simultaneous localisation and mapping task) or production of484
motor sequences. Showing that sequences can be learned, updated, and replayed with flexible timing on a485
neuromorphic device is thus a crucial stepping stone for neuromorphic cognitive robots and for autonomous486
learning using plastic on-board synapses that realise a local learning rule.487

The particular model for sequence representation, used here (Sandamirskaya and Schöner, 2010a), has488
several properties, advantageous for a neuromorphic implementation: First, it allows for flexible timing of489
sequential elements during sequence learning and replay, allowing the sensory input signalling completion490
of actions to drive sequential transitions. Second, it circumvents problems of some other serial order models491
that have to do with ordinal vs. chaining representation of serial order (Henson, 1998). Thus, repeated492
items – both on adjacent or distant positions in a sequence – are not a problem for the model. The length493
of the sequence can be arbitrary and is limited by the required number of neurons, which grows linearly494
with the sequence length. A model can be easily extended to represent hierarchical sequences (Duran and495
Sandamirskaya, 2012), sequences of state coming from different modalities (Sandamirskaya and Schöner,496
2010b), or sequences with intrinsic timing of transitions (Duran and Sandamirskaya, 2017). Finally, and497
most importantly, a sequence here can be learned with a very simple Hebbian learning rule in a fast – one498
shot – learning process. The sequence can be refined and corrected by further repetitions, but it can be499
replayed already after a single presentation. Thus, we find this model a promising building block for a wide500
range of future neuromorphic architectures that require storing sequences of states, e.g., in reinforcement501
learning, map formation, imitation learning, or human-robot interaction.502

5 APPENDIX

5.1 On-chip biases to realise a WTA on the ROLLS chip503
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Table 2. Biases for the recurrent synaptic connections
Parameter Description Value: Exp.1 Value: Exp.2
WHT STD Controls the magnitude of short term depression 1pA 1pA
PWLK Controls the pulse width of the synaptic current 448.4pA 69.7pA
WHT INH Controls the magnitude of the excitatory weight independent

when set to value 0
3.8nA 5.5nA

WHT INH0 Controls the magnitude of the inhibitory current component
which is injected into the excitatory DPI when set to value 1

8.7nA 198.4nA

WHT INH1 Controls the magnitude of the excitatory current component
which is injected into the excitatory DPI when set to value 2

199.4nA 336.7nA

WHT EXC Controls the magnitude of the excitatory weight independent
when set to value 0

110.9nA 689.7pA

WHT EXC0 Controls the magnitude of the excitatory current component
which is injected into the excitatory DPI when set to value 1

291.2nA 3.3uA

WHT EXC1 Controls the magnitude of the excitatory current component
which is injected into the excitatory DPI when set to value 2

1.4nA 1.4nA

DPIE THR Controls the threshold of excitatory synapses 33.1nA 5.38nA
DPIE TAU Controls the time constant of excitatory synapses 402.2pA 853.7pA
DPII TAU Controls the time constant of inhibitory synapses 1pA 20.5pA
DPII THR Controls the threshold of inhibitory synapses 262.6nA 33.0nA
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